Write a simple code for the solution of problem: find $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
&-\Delta u(x)=g(x), \tag{0.1}\\
& u(x)=u_{D}(x), \tag{0.2}\\
& \nabla u(x) \cdot \boldsymbol{n}=g_{N}(x), \tag{0.3}\\
& \nabla \in \partial \Omega_{D},
\end{align*}
$$

where Ω is a domain in \mathbb{R}^{2} with a boundary $\partial \Omega$ consisting of two disjoint parts $\partial \Omega_{D}$ and $\partial \Omega_{N}$, $g \in L^{2}\left(\partial \Omega_{D}\right), g_{N} \in L^{2}(\partial \Omega)$ and u_{D} is a trace of some $u^{*} \in H^{1}(\Omega)$.

- use P_{1}-conforming FE
- the arising linear system solve by a simple iterative method, e.g., Jacobi or Gauss-Seidl
- the stiffness matrix can be treated as dense

Use the code: http://msekce.karlin.mff.cuni.cz/~dolejsi/Vyuka/NS_source/FEM/FEM-code.tgz link

- mesh.f90 - reading the mesh from the file triang
- matrix. f 90 - create the stiffness matrix, solution of $\mathbb{A} x=b$
- sol.f90 - setting of RHS and BC (input of data)
- femP1.f90 - main code
- type of boundary set in subroutine Read_mesh, file mesh.f90
- array ip(: , 1) - type of mesh vertices: > 0 - interior, $=0$ - Neumann, < 0 - Dirichlet,
- array $\operatorname{ip}(:, 2)$ - index of vertex after removing Dirichlet nodes

Example of file triang for the unit square

54	4	4			npoin nelem nbelm nbc			
0.0	0.0	0	0	0.0	0.0	00	periodi	
0.0	0.0					$x p(1) \quad y$	(1)	
1.0	0.0					$x p(2)$ yp	(2)	
0.5	0.5					.		
1.0	1.0					.		
0.0	1.0					$x p(5)$ yp	(5)	
12	3					lnd (1, 1)	lnd (1,2)	$\operatorname{lnd}(1,3)$
24	3					.		
45	3					.		
51	3					$\operatorname{lnd}(4,1)$	$\operatorname{lnd}(4,2)$	$\operatorname{lnd}(4,3)$
12	1					$\operatorname{lbn}(1,1)$	$\operatorname{lbn}(1,2)$	$\operatorname{lbn}(1,3)$
24	2					.		
45	3					.		
51	4					$\operatorname{lbn}(4,1)$	$\operatorname{lbn}(4,2)$	$\operatorname{lbn}(4,3)$

the mesh of $\Omega=(0,1) \times(0,1)$

Basic tasks

1. study the code line by line, is something is unclear ask the teacher
2. find what problem is solved by default
3. find how is solved the arising algebraic system
4. replace this subroutine by another one
5. modify the code such that the following boundary conditions are treated
(a) homogeneous Dirichlet on the whole boundary
(b) non-homogeneous Dirichlet on the whole boundary
(c) combination of the Dirichlet and Neumann BC
(d) Neumann BC on the whole boundary (troubles are expected)

More advanced tasks

1. write a subroutine computing the error in the L^{2}-norm and H^{1}-seminorm (provided that the exact solution is known)
2. using computation on a sequence of meshes set the experimental order of convergence

2D quadrature on triangle (weights and the barycentric coordinates $n=6:$ order $=4$)

```
w
w
w
w
w5}=1.0995174365532200\textrm{E}-0
w6}=1.0995174365532200E-01
x}(1:3)=(1.0810301816807000\textrm{E}-01,\quad4.4594849091596500\textrm{E}-01,\quad4.4594849091596500\textrm{E}-01
x}(1:3)=(4.4594849091596500\textrm{E}-01,\quad4.4594849091596500\textrm{E}-01,\quad1.0810301816807000\textrm{E}-01
x}(1:3)=(4.4594849091596500\textrm{E}-01,\quad1.0810301816807000\textrm{E}-01,\quad4.4594849091596500\textrm{E}-01
x}(1:3)=(8.1684757298045896\textrm{E}-01,\quad9.1576213509771007\textrm{E}-02,\quad9.1576213509770035\textrm{E}-02
x5}(1:3)=(9.1576213509771007\textrm{E}-02,\quad9.1576213509771007\textrm{E}-02,\quad8.1684757298045796\textrm{E}-01
x}(1:3)=(9.1576213509771007\textrm{E}-02,\quad8.1684757298045896\textrm{E}-01,\quad9.1576213509770035\textrm{E}-02
```

