
Simple code sum.f90

program summary

real :: sum, sum1

integer :: n

sum = 1.

sum1 = 0.

n = 1

do while (sum > sum1)

sum1 = sum

n = n + 1.

sum = sum + 1./n

enddo

print*,’End after ’,n,’-steps, sum = ’, sum

end program summary

see also https://msekce.karlin.mff.cuni.cz/~dolejsi/Vyuka/NS_source/Fortran/index.html link

translation of the program sum.f90 from the command line:

� gfortran sum.f90 -o sum – single precision

� gfortran -fPIC -fdefault-real-8 sum.f90 -o sum – double precision

1. Write a simple code showing that
∑∞

n=1
1
n is finite in the finite precision arithemtic. Try the

single and double precision arithemtics.

1

https://msekce.karlin.mff.cuni.cz/~dolejsi/Vyuka/NS_source/Fortran/index.html

2. Find experimentally the approximate values of OFL, UFL and ϵmach. Try the single and double

precision arithemtics. Compare the obtained valued with the theoretical ones.

3. Try and explain the behaviour of the following codes

eps = 1.

10 eps = eps/2.

write(*,’(es18.10)’) eps

eps1 = eps + 1

if(eps1 > 1.) goto 10

and

eps = 1.

10 eps = eps/2.

write(*,’(es18.10)’) eps

if(eps > 0.) goto 10

Explain the differences?

4. The number e = 2.7182817459106445 . . . can be defined as e = limn→∞(1 + 1/n)n. This

suggests an algorithm for calculating e: choose n large and evaluate e∗ = (1 + 1/n)n. Write

a simple code and explain the results, Explain this effect, i.e, why the approximation e∗ of the

Euler number e is first increasing for increasing n and then it decrease until complete information

is lost.

5. Write a code for the solution of the quadratic equation ax2 + bx + c = 0, which is robust with

respect the overflow, underflow and the cancellation. Test the following data:

� a =6, b = 5, c = −4

2

� a =6E+30, b = 5E+30, c = −4E+30

� a = 1, b = −1E + 6, c = −1

6. The Taylor series for the error function is

erf(x) =
2√
π

∞∑
k=0

(−1)kx2k+1

k!(2k + 1)
.

This series converges for all x ∈ R. Programme it and try x = 0.5, x = 1.0, x = 5 and x = 10.

Explain the results.

7. Numerical differentiating of a function f is based on the formula:

f ′(x̄) ≈ f (x̄ + h)− f (x̄)

h
=: Df (x̄;h).

� Determine the dependence of discretization and rounding errors on h.

� For which h the formula is the most accurate (in finite precision arithmetic).

� Write a simple code for f (x) = x2 at x̄ = 1.5 and test several values h.

� Try to find an algorithm, which gives the optimal size of h.

3

