Simple code sum.f90

```
program summary
    real :: sum, sum1
    integer :: n
    sum = 1.
    sum1 = 0.
    n = 1
```

 do while (sum > sum1)
 sum1 = sum
 \(\mathrm{n}=\mathrm{n}+1\).
 sum \(=\) sum \(+1 . / n\)
 enddo
 print*,'End after ',n,'-steps, sum = ', sum
 end program summary
see also https://msekce.karlin.mff.cuni.cz/~dolejsi/Vyuka/NS_source/Fortran/index.html link
translation of the program sum.f90 from the command line:

- gfortran sum.f90 -o sum - single precision
- gfortran -fPIC -fdefault-real-8 sum.f90 -o sum - double precision

1. Write a simple code showing that $\sum_{n=1}^{\infty} \frac{1}{n}$ is finite in the finite precision arithemtic. Try the single and double precision arithemtics.
2. Find experimentally the approximate values of OFL, UFL and $\epsilon_{\text {mach }}$. Try the single and double precision arithemtics. Compare the obtained valued with the theoretical ones.
3. Try and explain the behaviour of the following codes
```
    eps = 1.
10 eps = eps/2.
    write(*,'(es18.10)') eps
    eps1 = eps + 1
    if(eps1 > 1.) goto 10
```

and
eps $=1$.
$10 \mathrm{eps}=\mathrm{eps} / 2$.
write(*,'(es18.10)') eps
if (eps > 0.) goto 10

Explain the differences?
4. The number $e=2.7182817459106445 \ldots$ can be defined as $e=\lim _{n \rightarrow \infty}(1+1 / n)^{n}$. This suggests an algorithm for calculating e : choose n large and evaluate $e^{*}=(1+1 / n)^{n}$. Write a simple code and explain the results, Explain this effect, i.e, why the approximation e^{*} of the Euler number e is first increasing for increasing n and then it decrease until complete information is lost.
5. Write a code for the solution of the quadratic equation $a x^{2}+b x+c=0$, which is robust with respect the overflow, underflow and the cancellation. Test the following data:

- $a=6, b=5, c=-4$
- $a=6 \mathrm{E}+30, b=5 \mathrm{E}+30, c=-4 \mathrm{E}+30$
- $a=1, b=-1 E+6, c=-1$

6. The Taylor series for the error function is

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{k!(2 k+1)}
$$

This series converges for all $x \in \mathbb{R}$. Programme it and try $x=0.5, x=1.0, x=5$ and $x=10$. Explain the results.
7. Numerical differentiating of a function f is based on the formula:

$$
f^{\prime}(\bar{x}) \approx \frac{f(\bar{x}+h)-f(\bar{x})}{h}=: D f(\bar{x} ; h)
$$

- Determine the dependence of discretization and rounding errors on h.
- For which h the formula is the most accurate (in finite precision arithmetic).
- Write a simple code for $f(x)=x^{2}$ at $\bar{x}=1.5$ and test several values h.
- Try to find an algorithm, which gives the optimal size of h.

