Numerical solution of IVP (ODE)

Vít Dolejší

Charles University Prague
Faculty of Mathematics and Physics

Quiz \# 5

Question \#1

Describe in 1-2 sentences what are the Runge-Kutta-Fehlberg methods for the numerical solution of ODEs.

Question \#1

Describe in 1-2 sentences what are the Runge-Kutta-Fehlberg methods for the numerical solution of ODEs.

Runge-Kutta-Fehlberg methods are a class of pairs of Runge-Kutta methods where the first method has order p and the second one has the order $p+1$. From their difference, we can efficiently estimate the local error of the first method.
where y_{k+1} and \hat{y}_{k+1} are the approximate solutions of these two methods

Question \#1

Describe in 1-2 sentences what are the Runge-Kutta-Fehlberg methods for the numerical solution of ODEs.

Runge-Kutta-Fehlberg methods are a class of pairs of Runge-Kutta methods where the first method has order p and the second one has the order $p+1$. From their difference, we can efficiently estimate the local error of the first method.

$$
\mathrm{EST}=y_{k+1}-\hat{y}_{k+1},
$$

where y_{k+1} and \hat{y}_{k+1} are the approximate solutions of these two methods

Question \#2

Let us consider the 4-stage Runge-Kutta method of order $4(s=p=4)$. We can estimate the local error by the following techniques:
(i) half-step size method,
(ii) Runge-Kutta-Fehlberg method $(s=6)$.

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?
(A) $2: 1$
(B) $3: 2$
(C) $3: 1$

Question \#2

Let us consider the 4-stage Runge-Kutta method of order $4(s=p=4)$. We can estimate the local error by the following techniques:
(i) half-step size method,
(ii) Runge-Kutta-Fehlberg method $(s=6)$.

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?

Question \#2

Let us consider the 4-stage Runge-Kutta method of order $4(s=p=4)$. We can estimate the local error by the following techniques:
(i) half-step size method,
(ii) Runge-Kutta-Fehlberg method $(s=6)$.

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?

Question \#2

Let us consider the 4-stage Runge-Kutta method of order $4(s=p=4)$. We can estimate the local error by the following techniques:
(i) half-step size method,
(ii) Runge-Kutta-Fehlberg method $(s=6)$.

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?
(A) $2: 1$
(B) $3: 2$
(C) $3: 1$

Question \#2

Let us consider the 4-stage Runge-Kutta method of order $4(s=p=4)$. We can estimate the local error by the following techniques:
(i) half-step size method,
(ii) Runge-Kutta-Fehlberg method $(s=6)$.

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?
(A) $2: 1$
(B) $3: 2$
(C) $3: 1$

Question \#2

Let us consider the 4-stage Runge-Kutta method of order $4(s=p=4)$. We can estimate the local error by the following techniques:
(i) half-step size method,
(ii) Runge-Kutta-Fehlberg method $(s=6)$.

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?
(A) $2: 1$
(B) $3: 2$
(C) $3: 1$

Computational time is proportional to the number of evaluation of $f(\cdot, \cdot)$:

- half-step size method $4+2 \cdot 4=12$
- Runge-Kutta-Fehlherg method $(s=6) 6$

Question \#2

Let us consider the 4-stage Runge-Kutta method of order $4(s=p=4)$. We can estimate the local error by the following techniques:
(i) half-step size method,
(ii) Runge-Kutta-Fehlberg method $(s=6)$.

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?
(A) $2: 1$
(B) $3: 2$
(C) $3: 1$

Computational time is proportional to the number of evaluation of $f(\cdot, \cdot)$:

- half-step size method $4+2 \cdot 4=12$
- Runge-Kutta-Fehlberg method $(s=6) 6$

Question \#2

Let us consider the 4-stage Runge-Kutta method of order $4(s=p=4)$. We can estimate the local error by the following techniques:
(i) half-step size method,
(ii) Runge-Kutta-Fehlberg method $(s=6)$.

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?
(A) $2: 1$
(B) $3: 2$
(C) $3: 1$

Computational time is proportional to the number of evaluation of $f(\cdot, \cdot)$:

- half-step size method $4+2 \cdot 4=12$
- Runge-Kutta-Fehlberg method $(s=6) 6$

Question \#2

Let us consider the 4-stage Runge-Kutta method of order $4(s=p=4)$. We can estimate the local error by the following techniques:
(i) half-step size method,
(ii) Runge-Kutta-Fehlberg method $(s=6)$.

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?
(A) $2: 1$
(B) $3: 2$
(C) $3: 1$

Computational time is proportional to the number of evaluation of $f(\cdot, \cdot)$:

- half-step size method $4+2 \cdot 4=12$
- Runge-Kutta-Fehlberg method $(s=6) 6$

Question \#3

We solve numerically ODE by the method of order p. We carried out the computation using the step h and obtained the estimate of the local error $=$ EST.
gives us the the estimate of the local error equal

Question \#3

We solve numerically ODE by the method of order p. We carried out the computation using the step h and obtained the estimate of the local error = EST.
Which size of $h^{\text {opt }}$ gives us the the estimate of the local error equal to TOL?

Question \#3

We solve numerically ODE by the method of order p. We carried out the computation using the step h and obtained the estimate of the local error = EST.
Which size of $h^{\text {opt }}$ gives us the the estimate of the local error equal to TOL?

- $\mathrm{EST}=C h^{p+1}$,

Question \#3

We solve numerically ODE by the method of order p. We carried out the computation using the step h and obtained the estimate of the local error = EST.
Which size of $h^{\text {opt }}$ gives us the the estimate of the local error equal to TOL?

- $\mathrm{EST}=C h^{p+1}$,
- TOL $=C\left(h^{\text {opt }}\right)^{p+1}$
- $\frac{\mathrm{TOL}}{\mathrm{EST}}=\left(\frac{h^{\mathrm{opt}}}{h}\right)^{p}$

Question \#3

We solve numerically ODE by the method of order p. We carried out the computation using the step h and obtained the estimate of the local error $=$ EST.
Which size of $h^{\text {opt }}$ gives us the the estimate of the local error equal to TOL?

- $\mathrm{EST}=C h^{p+1}$,
- TOL $=C\left(h^{\text {opt }}\right)^{p+1}$
- $\frac{\mathrm{TOL}}{\mathrm{EST}}=\left(\frac{h^{\mathrm{opt}}}{h}\right)^{p+1} \Rightarrow$

Question \#3

We solve numerically ODE by the method of order p. We carried out the computation using the step h and obtained the estimate of the local error = EST.
Which size of $h^{\text {opt }}$ gives us the the estimate of the local error equal to TOL?

- $\mathrm{EST}=C h^{p+1}$,
- TOL $=C\left(h^{\text {opt }}\right)^{p+1}$
- $\frac{\mathrm{TOL}}{\mathrm{EST}}=\left(\frac{h^{\mathrm{opt}}}{h}\right)^{p+1} \Rightarrow h^{\text {opt }}=h\left(\frac{\mathrm{TOL}}{\mathrm{EST}}\right)^{\frac{1}{p+1}}$.

