Numerical solution of IVP (ODE)

Vít Dolejší

Charles University Prague Faculty of Mathematics and Physics

Quiz # 5

V. Dolejší

Numerical solution of IVP (ODE)

Quiz # 5 1 / 4

Describe in 1-2 sentences what are the Runge-Kutta-Fehlberg methods for the numerical solution of ODEs.

Describe in 1-2 sentences what are the Runge-Kutta-Fehlberg methods for the numerical solution of ODEs.

Runge-Kutta-Fehlberg methods are a class of pairs of Runge-Kutta methods where the first method has order p and the second one has the order p + 1. From their difference, we can efficiently estimate the local error of the first method.

 $\mathrm{EST} = y_{k+1} - \hat{y}_{k+1},$

where y_{k+1} and \hat{y}_{k+1} are the approximate solutions of these two methods

Describe in 1-2 sentences what are the Runge-Kutta-Fehlberg methods for the numerical solution of ODEs.

Runge-Kutta-Fehlberg methods are a class of pairs of Runge-Kutta methods where the first method has order p and the second one has the order p + 1. From their difference, we can efficiently estimate the local error of the first method.

 $\mathrm{EST} = y_{k+1} - \hat{y}_{k+1},$

where y_{k+1} and \hat{y}_{k+1} are the approximate solutions of these two methods

Let us consider the 4-stage Runge-Kutta method of order 4 (s = p = 4). We can estimate the local error by the following techniques:

- (i) half-step size method,
- (ii) Runge-Kutta-Fehlberg method (s = 6).

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?

Let us consider the 4-stage Runge-Kutta method of order 4 (s = p = 4). We can estimate the local error by the following techniques:

- (i) half-step size method,
- (ii) Runge-Kutta-Fehlberg method (s = 6).

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?

Let us consider the 4-stage Runge-Kutta method of order 4 (s = p = 4). We can estimate the local error by the following techniques:

- (i) half-step size method,
- (ii) Runge-Kutta-Fehlberg method (s = 6).

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?

(A) 2:1(B) 3:2(C) 3:1

V. Dolejší

Let us consider the 4-stage Runge-Kutta method of order 4 (s = p = 4). We can estimate the local error by the following techniques:

- (i) half-step size method,
- (ii) Runge-Kutta-Fehlberg method (s = 6).

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?

Let us consider the 4-stage Runge-Kutta method of order 4 (s = p = 4). We can estimate the local error by the following techniques:

- (i) half-step size method,
- (ii) Runge-Kutta-Fehlberg method (s = 6).

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?

Let us consider the 4-stage Runge-Kutta method of order 4 (s = p = 4). We can estimate the local error by the following techniques:

- (i) half-step size method,
- (ii) Runge-Kutta-Fehlberg method (s = 6).

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?

(A) 2:1(B) 3:2(C) 3:1

Computational time is proportional to the number of evaluation of $f(\cdot, \cdot)$:

- half-step size method $4 + 2 \cdot 4 = 12$
- Runge-Kutta-Fehlberg method (s = 6) 6

Let us consider the 4-stage Runge-Kutta method of order 4 (s = p = 4). We can estimate the local error by the following techniques:

- (i) half-step size method,
- (ii) Runge-Kutta-Fehlberg method (s = 6).

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?

(A) 2:1(B) 3:2

(C) 3:1

Computational time is proportional to the number of evaluation of $f(\cdot, \cdot)$:

- half-step size method $4 + 2 \cdot 4 = 12$
- Runge-Kutta-Fehlberg method (s = 6) 6

Let us consider the 4-stage Runge-Kutta method of order 4 (s = p = 4). We can estimate the local error by the following techniques:

- (i) half-step size method,
- (ii) Runge-Kutta-Fehlberg method (s = 6).

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?

(A)	2:1
(B)	3:2

(C) 3:1

Computational time is proportional to the number of evaluation of $f(\cdot, \cdot)$:

- half-step size method $4 + 2 \cdot 4 = 12$
- Runge-Kutta-Fehlberg method (s = 6) 6

Let us consider the 4-stage Runge-Kutta method of order 4 (s = p = 4). We can estimate the local error by the following techniques:

- (i) half-step size method,
- (ii) Runge-Kutta-Fehlberg method (s = 6).

What is the ratio between the amount of computational time of these two techniques (i), (ii) necessary for the performing of one time step?

(A)	2:1
(B)	3:2

(C) 3:1

Computational time is proportional to the number of evaluation of $f(\cdot, \cdot)$:

- half-step size method $4 + 2 \cdot 4 = 12$
- Runge-Kutta-Fehlberg method (s = 6) 6

• EST =
$$C h^{p+1}$$
,

• TOL =
$$C(h^{\text{opt}})^{p+1}$$

• $\frac{\text{TOL}}{\text{EST}} = \left(\frac{h^{\text{opt}}}{h}\right)^{p+1} \Rightarrow h^{\text{opt}} = h\left(\frac{\text{TOL}}{\text{EST}}\right)^{\frac{1}{p+1}}$

• EST =
$$C h^{p+1}$$
,

• TOL =
$$C(h^{\text{opt}})^{p+1}$$

• $\frac{\text{TOL}}{\text{EST}} = \left(\frac{h^{\text{opt}}}{h}\right)^{p+1} \Rightarrow h^{\text{opt}} = h\left(\frac{\text{TOL}}{\text{EST}}\right)^{\frac{1}{p+1}}$

• EST =
$$C h^{p+1}$$
,

• TOL =
$$C(h^{\text{opt}})^{p+1}$$

• $\frac{\text{TOL}}{\text{EST}} = \left(\frac{h^{\text{opt}}}{h}\right)^{p+1} \Rightarrow h^{\text{opt}} = h\left(\frac{\text{TOL}}{\text{EST}}\right)^{p}$

• EST =
$$C h^{p+1}$$
,

• TOL =
$$C (h^{\text{opt}})^{p+1}$$

• $\frac{\text{TOL}}{\text{EST}} = \left(\frac{h^{\text{opt}}}{h}\right)^{p+1} \Rightarrow h^{\text{opt}} = h \left(\frac{\text{TOL}}{\text{EST}}\right)^{\frac{1}{p+1}}$