Numerical solution of IVP (ODE)

Vít Dolejší

Charles University Prague Faculty of Mathematics and Physics

Quiz # 4

Numerical solution of IVP (ODE)

Let us consider the initial value problem

• $y'(x) = f(x, y(x)), \qquad y(a) = \eta.$

(P)

Implicit Euler method: $y_{k+1} = y_k + h_k f(x_{k+1}, y_{k+1})$

- (A) the stability of the method is guaranteed for any $h_k > 0$ and any problem (P)
- (B) the stability of the method is guaranteed for any $h_k > 0$ and any stable problem (P)
- (C) the stability of the method is guaranteed for any $h_k > 0$ and any stable linear problem (P)

The unconditional stability was derived for linear problems.

イロト イヨト イヨト イヨト

Let us consider the initial value problem

• $y'(x) = f(x, y(x)), \qquad y(a) = \eta.$ (P)

Implicit Euler method: $y_{k+1} = y_k + h_k f(x_{k+1}, y_{k+1})$

The implicit Euler method is unconditionally stable which means:

- (A) the stability of the method is guaranteed for any $h_k > 0$ and any problem (P)
- (B) the stability of the method is guaranteed for any $h_k > 0$ and any stable problem (P)
- (C) the stability of the method is guaranteed for any $h_k > 0$ and any stable linear problem (P)

The unconditional stability was derived for linear problems.

<ロト <問ト < 目ト < 目ト

Let us consider the initial value problem

• $y'(x) = f(x, y(x)), \quad y(a) = \eta.$ (P)

Implicit Euler method: $y_{k+1} = y_k + h_k f(x_{k+1}, y_{k+1})$

The implicit Euler method is unconditionally stable which means:

- (A) the stability of the method is guaranteed for any $h_k > 0$ and any problem (P)
- (B) the stability of the method is guaranteed for any $h_k > 0$ and any stable problem (P)

(C) the stability of the method is guaranteed for any $h_k > 0$ and any stable linear problem (P)

The unconditional stability was derived for linear problems.

A D N A B N A B N A B N

Let us consider the initial value problem

• $y'(x) = f(x, y(x)), \quad y(a) = \eta.$ (P)

Implicit Euler method: $y_{k+1} = y_k + h_k f(x_{k+1}, y_{k+1})$

The implicit Euler method is unconditionally stable which means:

- (A) the stability of the method is guaranteed for any $h_k > 0$ and any problem (P)
- (B) the stability of the method is guaranteed for any $h_k > 0$ and any stable problem (P)
- (C) the stability of the method is guaranteed for any $h_k > 0$ and any stable linear problem (P)

The unconditional stability was derived for linear problems.

<ロト <問ト < 目ト < 目ト

Let us consider the initial value problem

• $y'(x) = f(x, y(x)), \quad y(a) = \eta.$ (P)

Implicit Euler method: $y_{k+1} = y_k + h_k f(x_{k+1}, y_{k+1})$

The implicit Euler method is unconditionally stable which means:

- (A) the stability of the method is guaranteed for any $h_k > 0$ and any problem (P)
- (B) the stability of the method is guaranteed for any $h_k > 0$ and any stable problem (P)
- (C) the stability of the method is guaranteed for any $h_k > 0$ and any stable linear problem (P)

The unconditional stability was derived for linear problems.

イロト イポト イヨト イヨト

• $y'(x) = f(x, y(x)), \quad y(a) = \eta,$

which is stiff.

It is advantageous to solve the stiff problem (P) by the implicit Euler method (in comparison to the explicit one) since

- (A) it is more accurate
- (B) since it is possible to choose larger time steps
- (C) it is less sensitive to the rounding errors due to machine arithmetic
- (D) it is more efficient

•
$$y'(x) = f(x, y(x)), \qquad y(a) = \eta,$$

which is stiff.

It is advantageous to solve the stiff problem (P) by the implicit Euler method (in comparison to the explicit one) since

- (A) it is more accurate
- (B) since it is possible to choose larger time steps
- (C) it is less sensitive to the rounding errors due to machine arithmetic

(D) it is more efficient

•
$$y'(x) = f(x, y(x)), \qquad y(a) = \eta,$$

which is stiff.

It is advantageous to solve the stiff problem (P) by the implicit Euler method (in comparison to the explicit one) since

- (A) it is more accurate
- (B) since it is possible to choose larger time steps
- (C) it is less sensitive to the rounding errors due to machine arithmetic

(D) it is more efficient

•
$$y'(x) = f(x, y(x)), \qquad y(a) = \eta,$$

which is stiff.

It is advantageous to solve the stiff problem (P) by the implicit Euler method (in comparison to the explicit one) since

- (A) it is more accurate
- (B) since it is possible to choose larger time steps
- (C) it is less sensitive to the rounding errors due to machine arithmetic

(D) it is more efficient

larger stability \Rightarrow larger time steps \Rightarrow small number of time steps on $(a, b) \Rightarrow$ save computational time

Let us consider the following the ODE: find $y:(a,b) \to \mathbb{R}^2$ such that

• y'(x) = f(x, y(x)),

the eigenvalues of the Jacobian $\{\frac{\partial f_i}{\partial y_i}\}_{i,j=1}^2$ are $\lambda_1 = -100$, $\lambda_2 = -120$.

It is advantageous to solve this problem (P) by

- (A) the explicit Euler method
- (B) the implicit Euler method
- (C) the Crank-Nicolson method

Let us consider the following the ODE: find $y: (a, b) \rightarrow \mathbb{R}^2$ such that

•
$$y'(x) = f(x, y(x)),$$

the eigenvalues of the Jacobian $\{\frac{\partial f_i}{\partial y_i}\}_{i,j=1}^2$ are $\lambda_1 = -100$, $\lambda_2 = -120$.

It is advantageous to solve this problem (P) by

- (A) the explicit Euler method
- (B) the implicit Euler method
- (C) the Crank-Nicolson method

Let us consider the following the ODE: find $y: (a, b) \rightarrow \mathbb{R}^2$ such that

•
$$y'(x) = f(x, y(x)),$$

the eigenvalues of the Jacobian $\{\frac{\partial f_i}{\partial y_i}\}_{i,j=1}^2$ are $\lambda_1 = -100$, $\lambda_2 = -120$.

It is advantageous to solve this problem (P) by

- (A) the explicit Euler method
- (B) the implicit Euler method
- (C) the Crank-Nicolson method

Let us consider the following the ODE: find $y:(a,b) \to \mathbb{R}^2$ such that

•
$$y'(x) = f(x, y(x)),$$

the eigenvalues of the Jacobian $\{\frac{\partial f_i}{\partial y_i}\}_{i,j=1}^2$ are $\lambda_1 = -100$, $\lambda_2 = -120$.

It is advantageous to solve this problem (P) by

- (A) the explicit Euler method
- (B) the implicit Euler method
- (C) the Crank-Nicolson method

problem is not stiff \Rightarrow explicit method is more efficient