Numerical quadratures

Vít Dolejší

Charles University Prague
Faculty of Mathematics and Physics

Quiz \# 1

Question \#1

Let us consider numerical quadrature

- $I(f):=\int_{a}^{b} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.
- it is exact for polynomial functions of degree $\leq p$, i.e.

What is the order of error of the corresponding composite formula Q_{h} with the step h ?
(A) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p-1}\right)$
(B) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p}\right)$
(C) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p+1}\right)$

Question \#1

Let us consider numerical quadrature

- $I(f):=\int_{a}^{b} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.
- it is exact for polynomial functions of degree $\leq p$, i.e.

$$
I\left(x^{q}\right)=Q\left(x^{q}\right) \text { for } q=0,1, \ldots, p .
$$

What is the order of error of the corresponding composite formula Q_{h} with the step h ?

$$
\begin{aligned}
& \text { (A) }\left|I(f)-Q_{h}(f)\right|=O\left(h^{p-1}\right) \\
& \text { (B) }\left|I(f)-Q_{h}(f)\right|=O\left(h^{p}\right) \\
& \text { (C) }\left|I(f)-Q_{h}(f)\right|=O\left(h^{p+1}\right)
\end{aligned}
$$

Question \#1

Let us consider numerical quadrature

- $I(f):=\int_{a}^{b} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.
- it is exact for polynomial functions of degree $\leq p$, i.e.

$$
I\left(x^{q}\right)=Q\left(x^{q}\right) \text { for } q=0,1, \ldots, p .
$$

What is the order of error of the corresponding composite formula Q_{h} with the step h ?
(A) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p-1}\right)$
(B) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p}\right)$
(C) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p+1}\right)$

Question \#1

Let us consider numerical quadrature

- $I(f):=\int_{a}^{b} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.
- it is exact for polynomial functions of degree $\leq p$, i.e.

$$
I\left(x^{q}\right)=Q\left(x^{q}\right) \text { for } q=0,1, \ldots, p .
$$

What is the order of error of the corresponding composite formula Q_{h} with the step h ?
(A) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p-1}\right)$
(B) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p}\right)$
(C) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p+1}\right)$

Question \#1

Let us consider numerical quadrature

- $I(f):=\int_{a}^{b} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.
- it is exact for polynomial functions of degree $\leq p$, i.e.

$$
I\left(x^{q}\right)=Q\left(x^{q}\right) \text { for } q=0,1, \ldots, p .
$$

What is the order of error of the corresponding composite formula Q_{h} with the step h ?
(A) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p-1}\right)$
(B) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p}\right)$
(C) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p+1}\right)$

Idea of proof: Taylor expansion on each sub-interval $f(x)=\phi_{p}(x)+O\left(h^{p+1}\right)$

Question \#1

Let us consider numerical quadrature

- $I(f):=\int_{a}^{b} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.
- it is exact for polynomial functions of degree $\leq p$, i.e.

$$
I\left(x^{q}\right)=Q\left(x^{q}\right) \text { for } q=0,1, \ldots, p .
$$

What is the order of error of the corresponding composite formula Q_{h} with the step h ?
(A) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p-1}\right)$
(B) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p}\right)$
(C) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p+1}\right)$

Idea of proof: Taylor expansion on each sub-interval $f(x)=\phi_{p}(x)+O\left(h^{p+1}\right)$

Question \#1

Let us consider numerical quadrature

- $I(f):=\int_{a}^{b} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.
- it is exact for polynomial functions of degree $\leq p$, i.e.

$$
I\left(x^{q}\right)=Q\left(x^{q}\right) \text { for } q=0,1, \ldots, p .
$$

What is the order of error of the corresponding composite formula Q_{h} with the step h ?
(A) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p-1}\right)$
(B) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p}\right)$
(C) $\left|I(f)-Q_{h}(f)\right|=O\left(h^{p+1}\right)$

Idea of proof: Taylor expansion on each sub-interval $f(x)=\phi_{p}(x)+O\left(h^{p+1}\right)$

Question \#2

Let us consider numerical quadrature

- $I(f):=\int_{0}^{1} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.

This numerical quadrature has order ≥ 1. Which of the following conditions are necessary? (Multiple answers are possible)
(A) $w_{1}+w_{2}+\cdots+w_{n}=1$
(B) $w_{i} \geq 0$ for $i=1, \ldots, n$
(C) $a \leq x_{i} \leq b$ for $i=1, \ldots, n$

$Q(f)$ is exact for $f=1(A)$ and $f=x(D)$,
weights can be negative, nodes can be outside of interval.

Question \#2

Let us consider numerical quadrature

- $I(f):=\int_{0}^{1} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.

This numerical quadrature has order ≥ 1. Which of the following conditions are necessary? (Multiple answers are possible)
\square
(B) $w_{i} \geq 0$ for $i=1, \ldots, n$

$Q(f)$ is exact for $f=1(A)$ and $f=x(D)$,
weights can be negative, nodes can be outside of interval.

Question \#2

Let us consider numerical quadrature

- $I(f):=\int_{0}^{1} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.

This numerical quadrature has order ≥ 1. Which of the following conditions are necessary? (Multiple answers are possible)
(A) $w_{1}+w_{2}+\cdots+w_{n}=1$
(B) $w_{i} \geq 0$ for $i=1, \ldots, n$
(C) $a \leq x_{i} \leq b$ for $i=1, \ldots, n$
(D) $w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}=\frac{1}{2}$
$Q(f)$ is exact for $f=1(\mathrm{~A})$ and $f=x(\mathrm{D})$,
weights can be negative, nodes can be outside of interval.

Question \#2

Let us consider numerical quadrature

- $I(f):=\int_{0}^{1} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.

This numerical quadrature has order ≥ 1. Which of the following conditions are necessary? (Multiple answers are possible)
(A) $w_{1}+w_{2}+\cdots+w_{n}=1$
(B) $w_{i} \geq 0$ for $i=1, \ldots, n$
(C) $a \leq x_{i} \leq b$ for $i=1, \ldots, n$
(D) $w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}=\frac{1}{2}$
$Q(f)$ is exact for $f=1(\mathrm{~A})$ and $f=x(\mathrm{D})$,
weights can be negative, nodes can be outside of interval.

Question \#2

Let us consider numerical quadrature

- $I(f):=\int_{0}^{1} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.

This numerical quadrature has order ≥ 1. Which of the following conditions are necessary? (Multiple answers are possible)
(A) $w_{1}+w_{2}+\cdots+w_{n}=1$
(B) $w_{i} \geq 0$ for $i=1, \ldots, n$
(C) $a \leq x_{i} \leq b$ for $i=1, \ldots, n$
(D) $w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}=\frac{1}{2}$
$Q(f)$ is exact for $f=1(\mathrm{~A})$ and $f=x(\mathrm{D})$,
weights can be negative, nodes can be outside of interval

Question \#2

Let us consider numerical quadrature

- $I(f):=\int_{0}^{1} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.

This numerical quadrature has order ≥ 1. Which of the following conditions are necessary? (Multiple answers are possible)
(A) $w_{1}+w_{2}+\cdots+w_{n}=1$
(B) $w_{i} \geq 0$ for $i=1, \ldots, n$
(C) $a \leq x_{i} \leq b$ for $i=1, \ldots, n$
(D) $w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}=\frac{1}{2}$
$Q(f)$ is exact for $f=1(\mathrm{~A})$ and $f=x(\mathrm{D})$, weights can be negative, nodes can be outside of interval

Question \#2

Let us consider numerical quadrature

- $I(f):=\int_{0}^{1} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.

This numerical quadrature has order ≥ 1. Which of the following conditions are necessary? (Multiple answers are possible)
(A) $w_{1}+w_{2}+\cdots+w_{n}=1$
(B) $w_{i} \geq 0$ for $i=1, \ldots, n$
(C) $a \leq x_{i} \leq b$ for $i=1, \ldots, n$
(D) $w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}=\frac{1}{2}$
$Q(f)$ is exact for $f=1(\mathrm{~A})$ and $f=x(\mathrm{D})$,
weights can be negative, nodes can be outside of interval.

Question \#3

Let us consider numerical quadrature

- $I(f):=\int_{a}^{b} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.

How are defined the Newton-Cotes formulas for the given n ?
(A) The nodes and weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.
(B) The nodes are chosen equidistantly and the weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.
(C) The nodes are chosen as the roots of Legendre polynomial of degree n and the weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.

Question \#3

Let us consider numerical quadrature

- $I(f):=\int_{a}^{b} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.

How are defined the Newton-Cotes formulas for the given n ?
(A) The nodes and weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.
(B) The nodes are chosen equidistantly and the weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.
(C) The nodes are chosen as the roots of Legendre polynomial of degree n and the weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.

Question \#3

Let us consider numerical quadrature

- $I(f):=\int_{a}^{b} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.

How are defined the Newton-Cotes formulas for the given n ?
(A) The nodes and weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.
(B) The nodes are chosen equidistantly and the weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.
(C) The nodes are chosen as the roots of Legendre polynomial of degree n and the weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.

Question \#4

We integrate $\int_{0}^{1} \exp (2 \sqrt{x}) d x$ numerically by the composite midpoint formula and the composite trapezoid formula. We obtain the results

- $M_{h}(f)=4.21$
- $T_{h}(f)=4.24$
- What is the estimate of the error (EST) of these results?
- What is the results obtained by the Simpson rule $\left(S_{h}(f)\right)$?

Outputs are two numbers.

Question \#4

We integrate $\int_{0}^{1} \exp (2 \sqrt{x}) \mathrm{d} x$ numerically by the composite midpoint formula and the composite trapezoid formula. We obtain the results

- $M_{h}(f)=4.21$
- $T_{h}(f)=4.24$
- What is the estimate of the error (EST) of these results?
- What is the results obtained by the Simpson rule $\left(S_{h}(f)\right)$?

Outputs are two numbers.

Question \#4

We integrate $\int_{0}^{1} \exp (2 \sqrt{x}) d x$ numerically by the composite midpoint formula and the composite trapezoid formula. We obtain the results

- $M_{h}(f)=4.21$
- $T_{h}(f)=4.24$
- What is the estimate of the error (EST) of these results?
- What is the results obtained by the Simpson rule $\left(S_{h}(f)\right)$?

Outputs are two numbers.

Answer

- $E S T=\frac{1}{3}\left(M_{h}(f)-T_{h}(f)\right)=0.01$ (estimate of the error of $\left.M_{h}(f)\right)$
- $S_{h}(f)=\frac{1}{3}\left(2 M_{h}(f)+T_{h}(f)\right)=4.22$

Question \#5

We integrate $\int_{0}^{1} f(x) \mathrm{d} x$ numerically by the composite Simpson formula. We obtain the following results:

- for $h=0.2, S_{h}(f)=2.220$
- for $h=0.1, S_{h}(f)=2.234$

Output is one number

Question \#5

We integrate $\int_{0}^{1} f(x) \mathrm{d} x$ numerically by the composite Simpson formula. We obtain the following results:

- for $h=0.2, S_{h}(f)=2.220$
- for $h=0.1, S_{h}(f)=2.234$
- What is the estimate of the error of the result with $h=0.1$?

Output is one number.

Question \#5

We integrate $\int_{0}^{1} f(x) \mathrm{d} x$ numerically by the composite Simpson formula. We obtain the following results:

- for $h=0.2, S_{h}(f)=2.220$
- for $h=0.1, S_{h}(f)=2.234$
- What is the estimate of the error of the result with $h=0.1$?

Output is one number.

Answer

- Simpson formula has order $=3$
- estimate of the error by the half-step size method is

$$
E S T=\frac{Q_{h}-Q_{h / 2}}{2^{p+1}-1}=\frac{2.234-2.220}{2^{4}-1}=\frac{0.014}{15} \approx 10^{-3}
$$

Question \#6

Let us consider numerical quadrature

- $I(f):=\int_{a}^{b} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.

How are defined the Gauss formulas for the given n ?
(A) The nodes and weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.
(B) The nodes are chosen equidistantly and the weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.
(C) The nodes are chosen as the roots of Legendre polynomial of degree $n-1$ and the weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.

Question \#6

Let us consider numerical quadrature

- $I(f):=\int_{a}^{b} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.

How are defined the Gauss formulas for the given n ?
(A) The nodes and weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.
(B) The nodes are chosen equidistantly and the weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.
(C) The nodes are chosen as the roots of Legendre polynomial of degree $n-1$ and the weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.

Question \#6

Let us consider numerical quadrature

- $I(f):=\int_{a}^{b} f(x) \mathrm{d} x \approx Q(f):=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$,
- $x_{i}, i=1, \ldots, n$ are the nodes, $w_{i} \in \mathbb{R}, i=1, \ldots, n$ are the weights.

How are defined the Gauss formulas for the given n ?
(A) The nodes and weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.
(B) The nodes are chosen equidistantly and the weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.
(C) The nodes are chosen as the roots of Legendre polynomial of degree $n-1$ and the weights are chosen in such a way that the order of $Q(f)$ is the maximal possible.

Question \#7

Fill the following table which contains the order of the Newton-Cotes and Gauss formulas for n integration nodes.

$\#$ nodes	Newton-Cotes	Gauss
$n=1$		
$n=2$		
$n=3$		
$n=4$		
$n=5$		
$n=6$		
$n=7$		

Question \#7

Fill the following table which contains the order of the Newton-Cotes and Gauss formulas for n integration nodes.

\# nodes	Newton-Cotes	Gauss
$n=1$	1	1
$n=2$	1	3
$n=3$	3	5
$n=4$	3	7
$n=5$	5	9
$n=6$	5	11
$n=7$	7	13

Question \#8

Why the half-step size method can not be used for the estimation of the error of the Gauss quadrature?

```
(A) this method is unstable since the nodes of a Gauss quadrature are
not distributed equidistantly,
(B) this method significantly over-estimates the error (it is not
sufficiently accurate) since the error of the Gauss quadrature is too
small due to its high order,
(C) it can be used but it is less efficient (it requires too many evaluation
in integration nodes)
```


Question \#8

Why the half-step size method can not be used for the estimation of the error of the Gauss quadrature?
(A) this method is unstable since the nodes of a Gauss quadrature are not distributed equidistantly,
(B) this method significantly over-estimates the error (it is not sufficiently accurate) since the error of the Gauss quadrature is too small due to its high order,
(C) it can be used but it is less efficient (it requires too many evaluation in integration nodes).

Question \#8

Why the half-step size method can not be used for the estimation of the error of the Gauss quadrature?
(A) this method is unstable since the nodes of a Gauss quadrature are not distributed equidistantly,
(B) this method significantly over-estimates the error (it is not sufficiently accurate) since the error of the Gauss quadrature is too small due to its high order,
(C) it can be used but it is less efficient (it requires too many evaluation in integration nodes).

Question \#8

Why the half-step size method can not be used for the estimation of the error of the Gauss quadrature?
(A) this method is unstable since the nodes of a Gauss quadrature are not distributed equidistantly,
(B) this method significantly over-estimates the error (it is not sufficiently accurate) since the error of the Gauss quadrature is too small due to its high order,
(C) it can be used but it is less efficient (it requires too many evaluation in integration nodes).

Newton-Cotes

Gauss

Question \#9

- Which assertion about Gauss-Kronrod quadrature formulae is true? (Multiple answers are possible)
> (A) The pair of quadrature formulas where the Gauss quadrature G_{n} has order $2 n-1$ and the Kronrod quadrature $K_{2 n+1}$ has order $3 n+1$.
> (B) The pair of quadrature formulas $G_{n} K_{2 n+1}$ which is suitable for the estimation of the error of the Gauss quadrature.
> (C) The quadrature formulas where the Gauss quadrature G_{n} is enhanced by additional $n+1$ nodes in such a way that the resulting formula has the maximal order of accuracy.
> (D) The pair of quadrature formulas which are open (i.e., $a \neq x_{i} \neq b$, $i=1,2,3 \ldots$) and the weight are irrational numbers in general

Question \#9

- Which assertion about Gauss-Kronrod quadrature formulae is true?
(Multiple answers are possible)
(A) The pair of quadrature formulas where the Gauss quadrature G_{n} has order $2 n-1$ and the Kronrod quadrature $K_{2 n+1}$ has order $3 n+1$.
(B) The pair of quadrature formulas $G_{n} K_{2 n+1}$ which is suitable for the estimation of the error of the Gauss quadrature.
(C) The quadrature formulas where the Gauss quadrature G_{n} is enhanced by additional $n+1$ nodes in such a way that the resulting formula has the maximal order of accuracy.
(D) The pair of quadrature formulas which are open (i.e., $a \neq x_{i} \neq b$, $i=1,2,3 \ldots)$ and the weight are irrational numbers in general.

Question \#9

- Which assertion about Gauss-Kronrod quadrature formulae is true?
(Multiple answers are possible)
(A) The pair of quadrature formulas where the Gauss quadrature G_{n} has order $2 n-1$ and the Kronrod quadrature $K_{2 n+1}$ has order $3 n+1$.
(B) The pair of quadrature formulas $G_{n} K_{2 n+1}$ which is suitable for the estimation of the error of the Gauss quadrature.
(C) The quadrature formulas where the Gauss quadrature G_{n} is enhanced by additional $n+1$ nodes in such a way that the resulting formula has the maximal order of accuracy.
(D) The pair of quadrature formulas which are open (i.e., $a \neq x_{i} \neq b$, $i=1,2,3 \ldots$) and the weight are irrational numbers in general.

Temporary page!

ATEX was unable to guess the total number of pages correctly. there was some unprocessed data that should have been added the final page this extra page has been added to receive it. If you rerun the document (without altering it) this surplus pag will go away, because ${ }^{A} T_{E} X$ now knows how many pages to exp for this document.

