Numerical software 2 Anisotropic mesh adaptation

V. Dolejší

Charles University Prague, Faculty of Mathematics and Physics

Lecture 1

NumSoft 2, lecture 1

Numerical solution of PDE

- we seek $u:\Omega \to \mathbb{R}$ such that $\mathscr{L}u = f$ in Ω
- we define mesh \mathscr{T}_h of Ω and finite dimensional space V_h
- approximate solution $u_h \in V_h$

Main goal

Define (create) a mesh \mathcal{T}_h such that

- the computational error is under the given tolerance
- ② the number of elements of \mathscr{T}_h is as small as possible

Fundamental question

How to fulfil the main goal?

• we adapt the given mesh based on the computed solution and its error estimation

Numerical solution of PDE

- we seek $u:\Omega \to \mathbb{R}$ such that $\mathscr{L}u = f$ in Ω
- we define mesh \mathscr{T}_h of Ω and finite dimensional space V_h
- approximate solution $u_h \in V_h$

Main goal

Define (create) a mesh \mathcal{T}_h such that

- the computational error is under the given tolerance
- **2** the number of elements of \mathscr{T}_h is as small as possible

Fundamental question

How to fulfil the main goal?

• we adapt the given mesh based on the computed solution and its error estimation

Numerical solution of PDE

- we seek $u: \Omega \to \mathbb{R}$ such that $\mathscr{L}u = f$ in Ω
- we define mesh \mathscr{T}_h of Ω and finite dimensional space V_h
- approximate solution $u_h \in V_h$

Main goal

Define (create) a mesh \mathscr{T}_h such that

- the computational error is under the given tolerance
- **2** the number of elements of \mathcal{T}_h is as small as possible

Fundamental question

How to fulfil the main goal?

• we adapt the given mesh based on the computed solution and its error estimation

Interpolation error

Main idea

- let u be the exact solution and $u_h \in V_h$ the approximate one
- let $\Pi_h: V \to V_h$ be a projection
- we approximate $u u_h \approx u \prod_h u$
- $u \prod_h u = \text{interpolation error}$

Formulation of an abstract problem

- Let $u:\Omega \to \mathbb{R}$ be a given function and $\omega > 0$
- let $\Pi_h: V \to V_h$ be a projection
- We seek \mathcal{T}_h such that

$$||u - \Pi_h|| \le \omega$$

(a) $\# \mathscr{T}_h$ be minimal

exact solution u is unknown, it will be later approximated by u_h

Interpolation error

Main idea

- let u be the exact solution and $u_h \in V_h$ the approximate one
- let $\Pi_h: V \to V_h$ be a projection
- we approximate $u u_h \approx u \prod_h u$
- $u \prod_h u = \text{interpolation error}$

Formulation of an abstract problem

- Let $u:\Omega \to \mathbb{R}$ be a given function and $\omega > 0$
- let $\Pi_h: V \to V_h$ be a projection
- We seek \mathscr{T}_h such that

$$||u - \Pi_h|| \le \omega$$

2 $\#\mathcal{T}_h$ be minimal

exact solution u is unknown, it will be later approximated by u_h

Interpolation error

Main idea

- let u be the exact solution and $u_h \in V_h$ the approximate one
- let $\Pi_h: V \to V_h$ be a projection
- we approximate $u u_h \approx u \prod_h u$
- $u \prod_h u = \text{interpolation error}$

Formulation of an abstract problem

- Let $u:\Omega \to \mathbb{R}$ be a given function and $\omega > 0$
- let $\Pi_h: V \to V_h$ be a projection
- We seek \mathscr{T}_h such that

$$||u - \Pi_h|| \le \omega$$

2 $\#\mathcal{T}_h$ be minimal

exact solution u is unknown, it will be later approximated by u_h

・ロト ・回ト ・ヨト ・ヨ

Concrete formulation

- $V_h = \{v_h \in L^2(\Omega); v_h|_{\mathcal{K}} \in P^1(\mathcal{K}) \ \forall \mathcal{K} \in \mathcal{T}_h\}$ discontinuous piecewise linear
- $\|\cdot\| := \|\cdot\|_{L^{\infty}(\Omega)}$
- $\Pi_h: V \to V_h$ such that
- $\Pi_h u(x_K) = u(x_K)$, x_K is the barycentre of $K \in \mathscr{T}_h$
- ② $\nabla \Pi_h u(x_K) = \nabla u(x_K)$, x_K is the barycentre of $K \in \mathscr{T}_h$

 $\Pi_h u$ is a discontinuous piecewise linear, the same value and gradient as u in the barycentres of all $K \in \mathscr{T}_h$

Interpolation error

$$u(x) = \underbrace{u(x_K) + \nabla u(x_K)(x - x_K)}_{\prod_h u(x)} + \frac{1}{2}(x - x_K)^T \mathscr{H}(u(x'))(x - x_K)$$

$\mathscr{H}(u(\cdot))$... Hessian matrix

Concrete formulation

- $V_h = \{v_h \in L^2(\Omega); v_h|_{\mathcal{K}} \in P^1(\mathcal{K}) \ \forall \mathcal{K} \in \mathcal{T}_h\}$ discontinuous piecewise linear
- $\|\cdot\| := \|\cdot\|_{L^{\infty}(\Omega)}$
- $\Pi_h: V \to V_h$ such that
- $\Pi_h u(x_K) = u(x_K)$, x_K is the barycentre of $K \in \mathscr{T}_h$
- ② $\nabla \Pi_h u(x_K) = \nabla u(x_K)$, x_K is the barycentre of $K \in \mathscr{T}_h$

 $\Pi_h u$ is a discontinuous piecewise linear, the same value and gradient as u in the barycentres of all $K \in \mathscr{T}_h$

Interpolation error

$$u(x) = \underbrace{u(x_{\mathcal{K}}) + \nabla u(x_{\mathcal{K}})(x - x_{\mathcal{K}})}_{\Pi_{h}u(x)} + \frac{1}{2}(x - x_{\mathcal{K}})^{T} \mathscr{H}(u(x'))(x - x_{\mathcal{K}})$$

 $\mathscr{H}(u(\cdot))$... Hessian matrix

$$u(x) - \prod_h u(x) \approx \frac{1}{2} (x - x_K)^T \mathscr{H}(u(x_K))(x - x_K),$$

$$\mathscr{H}(u(x)) = \left(egin{array}{c} rac{\partial^2 u(x)}{\partial x_1^2} & rac{\partial^2 u(x)}{\partial x_1 \partial x_2} \\ rac{\partial^2 u(x)}{\partial x_1 \partial x_2} & rac{\partial^2 u(x)}{\partial x_2^2} \end{array}
ight)$$

we assume that $\mathscr{H}(u)$ is positively definite then (up to a higher order terms)

Interpolation error estimate

$$|u(x) - \Pi_h u(x)| \leq \frac{1}{2} (x - x_{\mathcal{K}})^T \mathscr{H}(u(x_{\mathcal{K}}))(x - x_{\mathcal{K}}),$$

Interpolation error estimate

$$|u(x) - \prod_h u(x)| \leq \frac{1}{2}(x - x_K)^T \mathscr{H}(u(x_K))(x - x_K), \quad x \in K$$

Our goal

$$\|u(x) - \Pi_h u(x)\| \le \omega \quad \Leftrightarrow \quad |u(x) - \Pi_h u(x)| \le \omega \ \forall x \in K$$

Equivalent condition

$$\frac{1}{2}(x-x_{\mathcal{K}})^{\mathcal{T}}\mathscr{H}(u(x_{\mathcal{K}}))(x-x_{\mathcal{K}}) \leq \omega \quad \forall x \in \mathcal{K}$$
(1)

Geometrical interpretation

all $x \in \mathbb{R}^2$ satisfying (1) form an ellipse

Ellipse

 $\bullet\,$ let $\mathbb M$ be a symmetric, positively definite, then

$$\mathbb{M} = \mathbb{R}^{T} \mathbb{L} \mathbb{R},$$
where $\mathbb{R} = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix}, \quad \mathbb{L} = \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{pmatrix},$

$$(x - x_{K})^{T} \mathbb{M} (x - x_{K}) \leq 1 \iff x \in E$$

NumSoft 2, lecture 1

Fulfilling of requirements

let $\mathscr{H}(u(x_{\mathcal{K}}))$ be the Hessian, $E_{\mathcal{K}}$ be the corresponding ellipse

Lemma

$$\frac{1}{2}(x-x_{\mathcal{K}})^{\mathcal{T}}\mathscr{H}(u(x_{\mathcal{K}}))(x-x_{\mathcal{K}}) \leq \omega \,\,\forall x \in \mathcal{K} \text{ is valid } \Leftrightarrow \quad \mathcal{K} \subset \mathcal{E}_{\mathcal{K}}$$

Definition

K is optimal triangle $\Leftrightarrow K \subset E_K$ & area of K is maximal

Lemma

Let $\mathscr{H} = \mathscr{H}(u(x_{\mathcal{K}}))$ be the Hessian, $E_{\mathcal{K}}$ the ellipse. Then \mathcal{K} is optimal triangle \Leftrightarrow

$$\|\boldsymbol{e}_{K,i}\|_{\mathscr{H}} := \left(\boldsymbol{e}_{K,i}^{\mathsf{T}} \mathscr{H} \boldsymbol{e}_{K,i}\right)^{1/2} = \sqrt{6\omega}, \quad i = 1, 2, 3,$$

where $e_{K,i}$, i = 1, 2, 3 are edges of K.

< □ > < 同 > < 回 > < Ξ > < Ξ

Edge-based optimality

- Let K and K' share edge e, \mathscr{H} and \mathscr{H}' be the Hessians
- then $\|e\|_{\mathscr{H}} = \sqrt{6\omega} = \|e\|_{\mathscr{H}'}$ can not be valid!!
- it is impossible to consider \mathcal{T}_h as a set of "optimal triangles"

Edge-based mesh

- Let \mathscr{F}_h denotes the set of edges e of the mesh \mathscr{T}_h
- Let \mathscr{H}_e be the Hessian evaluated at edge $e \in \mathscr{F}_h$.
- Def: mesh \mathscr{T}_h is edge-optimal $\Leftrightarrow ||e||_{\mathscr{H}_e} = \sqrt{6\omega} \quad \forall e \in \mathscr{F}_h$

Edge optimal mesh exists only in special situation

Definition

Mesh \mathscr{T}_h is optimal $\iff Q_{\mathscr{T}_h} = \min_{\mathscr{T}_{h'}} Q_{\mathscr{T}_{h'}}$

where $Q_{\mathscr{T}_{h'}} = rac{1}{\#\mathscr{T}_{h'}} \sum_{e \in \mathscr{F}_{h'}} (\|e\|_{\mathscr{H}_e} - \sqrt{6\omega})^2$

 $Q_{\mathscr{T}_h} \geq 0 \dots$ parameter of "quality"

Edge-based optimality

- Let K and K' share edge e, \mathscr{H} and \mathscr{H}' be the Hessians
- then $\|e\|_{\mathscr{H}} = \sqrt{6\omega} = \|e\|_{\mathscr{H}'}$ can not be valid!!
- it is impossible to consider \mathcal{T}_h as a set of "optimal triangles"

Edge-based mesh

- Let \mathscr{F}_h denotes the set of edges e of the mesh \mathscr{T}_h
- Let \mathscr{H}_e be the Hessian evaluated at edge $e \in \mathscr{F}_h$.
- Def: mesh \mathscr{T}_h is edge-optimal $\Leftrightarrow ||e||_{\mathscr{H}_e} = \sqrt{6\omega} \quad \forall e \in \mathscr{F}_h$

Edge optimal mesh exists only in special situation

Definition

$$\mathsf{Mesh}\ \mathscr{T}_h \text{ is optimal } \iff \mathsf{Q}_{\mathscr{T}_h} = \min_{\mathscr{T}_{h'}} \mathsf{Q}_{\mathscr{T}_{h'}}$$

where
$$Q_{\mathscr{T}_{h'}} = \frac{1}{\#\mathscr{F}_{h'}} \sum_{e \in \mathscr{F}_{h'}} (\|e\|_{\mathscr{H}_e} - \sqrt{6\omega})^2$$

$$Q_{\mathscr{T}_h} \geq 0$$
 ... parameter of "quality"

Mesh optimization process

Quality of mesh

•
$$Q_{\mathscr{T}_h} = \frac{1}{\#\mathscr{F}_h} \sum_{e \in \mathscr{F}_h} (\|e\|_{\mathscr{H}_e} - \sqrt{6\omega})^2 \ge 0$$

• smaller $Q_{\mathscr{T}_h}$ means "better" mesh.

Idea of mesh optimization

modify locally mesh in such a way that $Q_{\mathscr{T}_h}$ is decreasing

Mesh optimization algorithm

 several local operations (adding a node, removing an edge, moving a node, etc.)

• tested and performed if $Q_{\mathcal{T}_h}$ is decreasing

Riemann metric

Optimal mesh

 $\Leftrightarrow\,$ mesh is uniform in the Riemann metric generated by $\mathscr H$

Local operations: removing and swapping

Mesh optimization algorithm

For given $u \in V$ and $\omega > 0$, we can construct optimal mesh \mathscr{T}_h

- u has to be approximated by u_h
- \bullet in practice, we need to approximate $\mathscr{H}(u)$ on each edge only
- we approximate $\mathscr{H}(u)$ at vertices P_k of mesh
- let D_k be a polygon around P_k

$$\frac{\partial^2 u}{\partial x_i \partial x_j}(P_k) \approx \frac{1}{|D_k|} \int_{D_k} \frac{\partial^2 u}{\partial x_i \partial x_j} \, \mathrm{d}x = \frac{1}{|D_k|} \int_{\partial D_k} \frac{\partial u}{\partial x_i} n_j \, \mathrm{d}S$$
$$\approx \frac{1}{|D_k|} \int_{\partial D_k} \frac{\partial u_h}{\partial x_i} n_j \, \mathrm{d}S$$

Towards practical realization

Approximation of \mathscr{H}

- previous approximation gives $\mathscr{H}(u(P_k)) \approx \mathbb{H}(u_h(P_k))$
- $\mathbb H$ is symmetric, not positively definite
- \bullet we put $\bar{\mathbb{H}}:=|\mathbb{H}|$ using the eigenvalue decomposition

Regularization

- if u_h is linear then $\overline{\mathbb{H}} = 0 \dots$ problem
- if u_h is discontinuous then $\overline{\mathbb{H}}$ can blow up
- in order to overcome this problem, we set

$$\mathbb{M}(P_k) = \frac{c}{c} \left[\mathbb{I} + \frac{\varepsilon_1}{\varepsilon_1/p} + \|\bar{\mathbb{H}}(P_k)\|} \bar{\mathbb{H}}(P_k) \right]$$
(2)

- we replace $\bar{\mathbb{H}}$ by \mathbb{M}
- c, ε_1 , p suitably chosen constants

Setting of matrices \mathbb{M} (metric)

$$\mathbb{M}(P_k) = c \left[\mathbb{I} + \frac{\varepsilon_1}{\varepsilon_1/\rho + \|\bar{\mathbb{H}}(P_k)\|} \bar{\mathbb{H}}(P_k) \right]$$

Setting of constant

- if $\overline{\mathbb{H}} = 0$ then $\mathbb{M} = c\mathbb{I}$, *c* density of the coarsest mesh ~numel
- if $\|\bar{\mathbb{H}}\| \to \infty$ then $\|\mathbb{M}\| \to c(1 + \varepsilon_1) \approx c\varepsilon_1$, $\varepsilon_1 = (\frac{\ell_{\max}}{\ell_{\min}})^2$
- *p* the "speed" of transition (from coarse to fine parts)

Setting of matrices \mathbb{M} (metric)

 $p_1 > p_2$

▲ ≣ ▶ ≣ ∽ ೩ ペ Lecture 1 16 / 17

I ← E → I

- (日)

Multilevel computation

NumSoft 2, lecture 1