Numerical software 2 Anisotropic mesh adaptation

V. Dolejší

Charles University Prague, Faculty of Mathematics and Physics

Lecture 1

Overview

Numerical solution of PDE

- we seek $u: \Omega \rightarrow \mathbb{R}$ such that $\mathscr{L} u=f$ in Ω
- we define mesh \mathscr{T}_{h} of Ω and finite dimensional space V_{h}
- approximate solution $u_{h} \in V_{h}$
Main goalDefine (create) a mesh \mathscr{T}_{h} such that
(0) the computational error is under the given tolerance
(2) the number of elements of \mathscr{T}_{h} is as small as possible
Fundamental question
How to fulfil the main goal? its error estimation

Overview

Numerical solution of PDE

- we seek $u: \Omega \rightarrow \mathbb{R}$ such that $\mathscr{L} u=f$ in Ω
- we define mesh \mathscr{T}_{h} of Ω and finite dimensional space V_{h}
- approximate solution $u_{h} \in V_{h}$

Main goal

Define (create) a mesh \mathscr{T}_{h} such that
(1) the computational error is under the given tolerance
(2) the number of elements of \mathscr{T}_{h} is as small as possible

[^0]
Overview

Numerical solution of PDE

- we seek $u: \Omega \rightarrow \mathbb{R}$ such that $\mathscr{L} u=f$ in Ω
- we define mesh \mathscr{T}_{h} of Ω and finite dimensional space V_{h}
- approximate solution $u_{h} \in V_{h}$

Main goal

Define (create) a mesh \mathscr{T}_{h} such that
(1) the computational error is under the given tolerance
(2) the number of elements of \mathscr{T}_{h} is as small as possible

Fundamental question

How to fulfil the main goal?

- we adapt the given mesh based on the computed solution and its error estimation

Interpolation error

Main idea

- let u be the exact solution and $u_{h} \in V_{h}$ the approximate one
- let $\Pi_{h}: V \rightarrow V_{h}$ be a projection
- we approximate $u-u_{h} \approx u-\Pi_{h} u$
- $u-\Pi_{h} u=$ interpolation error

Formulation of an abstract problem

- Let $u: \Omega \rightarrow \mathbb{R}$ be a given function and $\omega>0$
- let $\Pi_{h}: V \rightarrow V_{h}$ be a projection
- We seek \mathscr{T}_{h} such that
(1) $\left\|u-\Pi_{h}\right\| \leq \omega$
exact solution u is unknown, it will be later approximated by u_{h}

Interpolation error

Main idea

- let u be the exact solution and $u_{h} \in V_{h}$ the approximate one
- let $\Pi_{h}: V \rightarrow V_{h}$ be a projection
- we approximate $u-u_{h} \approx u-\Pi_{h} u$
- $u-\Pi_{h} u=$ interpolation error

Formulation of an abstract problem

- Let $u: \Omega \rightarrow \mathbb{R}$ be a given function and $\omega>0$
- let $\Pi_{h}: V \rightarrow V_{h}$ be a projection
- We seek \mathscr{T}_{h} such that
(1) $\left\|u-\Pi_{h}\right\| \leq \omega$
(2) $\# \mathscr{T}_{h}$ be minimal
exact solution u is unknown, it will be later approximated by u_{h}

Interpolation error

Main idea

- let u be the exact solution and $u_{h} \in V_{h}$ the approximate one
- let $\Pi_{h}: V \rightarrow V_{h}$ be a projection
- we approximate $u-u_{h} \approx u-\Pi_{h} u$
- $u-\Pi_{h} u=$ interpolation error

Formulation of an abstract problem

- Let $u: \Omega \rightarrow \mathbb{R}$ be a given function and $\omega>0$
- let $\Pi_{h}: V \rightarrow V_{h}$ be a projection
- We seek \mathscr{T}_{h} such that
(1) $\left\|u-\Pi_{h}\right\| \leq \omega$
(2) $\# \mathscr{T}_{h}$ be minimal
exact solution u is unknown, it will be later approximated by u_{h}

Concrete formulation

- $V_{h}=\left\{v_{h} \in L^{2}(\Omega) ;\left.v_{h}\right|_{K} \in P^{1}(K) \forall K \in \mathscr{T}_{h}\right\}$ - discontinuous piecewise linear
- $\|\cdot\|:=\|\cdot\|_{L^{\infty}(\Omega)}$
- $\Pi_{h}: V \rightarrow V_{h}$ such that
(1) $\Pi_{h} u\left(x_{K}\right)=u\left(x_{K}\right), x_{K}$ is the barycentre of $K \in \mathscr{T}_{h}$
(2) $\nabla \Pi_{h} u\left(x_{K}\right)=\nabla u\left(x_{K}\right), x_{K}$ is the barycentre of $K \in \mathscr{T}_{h}$
$\Pi_{h} u$ is a discontinuous piecewise linear, the same value and gradient as u in the barycentres of all $K \in \mathscr{T}_{h}$

Interpolation error
$u(x)=\underbrace{u\left(x_{K}\right)+\nabla u\left(x_{K}\right)\left(x-x_{K}\right)}+\frac{1}{2}\left(x-x_{K}\right)^{\top} \mathscr{H}\left(u\left(x^{\prime}\right)\right)\left(x-x_{K}\right)$
\square Hessian matrix

Concrete formulation

- $V_{h}=\left\{v_{h} \in L^{2}(\Omega) ;\left.v_{h}\right|_{K} \in P^{1}(K) \forall K \in \mathscr{T}_{h}\right\}$ - discontinuous piecewise linear
- $\|\cdot\|:=\|\cdot\|_{L^{\infty}(\Omega)}$
- $\Pi_{h}: V \rightarrow V_{h}$ such that
(1) $\Pi_{h} u\left(x_{K}\right)=u\left(x_{K}\right), x_{K}$ is the barycentre of $K \in \mathscr{T}_{h}$
(2) $\nabla \Pi_{h} u\left(x_{K}\right)=\nabla u\left(x_{K}\right), x_{K}$ is the barycentre of $K \in \mathscr{T}_{h}$
$\Pi_{h} u$ is a discontinuous piecewise linear, the same value and gradient as u in the barycentres of all $K \in \mathscr{T}_{h}$

Interpolation error

$$
u(x)=\underbrace{u\left(x_{K}\right)+\nabla u\left(x_{K}\right)\left(x-x_{K}\right)}_{\Pi_{h} u(x)}+\frac{1}{2}\left(x-x_{K}\right)^{T} \mathscr{H}\left(u\left(x^{\prime}\right)\right)\left(x-x_{K}\right)
$$

$\mathscr{H}(u(\cdot))$... Hessian matrix

Interpolation error estimate

$$
\begin{array}{r}
u(x)-\Pi_{h} u(x) \approx \frac{1}{2}\left(x-x_{K}\right)^{T} \mathscr{H}\left(u\left(x_{K}\right)\right)\left(x-x_{K}\right), \\
\mathscr{H}(u(x))=\left(\begin{array}{cc}
\frac{\partial^{2} u(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} u(x)}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} u(x)}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} u(x)}{\partial x_{2}^{2}}
\end{array}\right)
\end{array}
$$

we assume that $\mathscr{H}(u)$ is positively definite then (up to a higher order terms)

Interpolation error estimate

$$
\left|u(x)-\Pi_{h} u(x)\right| \leq \frac{1}{2}\left(x-x_{K}\right)^{T} \mathscr{H}\left(u\left(x_{K}\right)\right)\left(x-x_{K}\right)
$$

Optimal triangle

Interpolation error estimate

$$
\left|u(x)-\Pi_{h} u(x)\right| \leq \frac{1}{2}\left(x-x_{K}\right)^{\top} \mathscr{H}\left(u\left(x_{K}\right)\right)\left(x-x_{K}\right), \quad x \in K
$$

Our goal

$$
\left\|u(x)-\Pi_{h} u(x)\right\| \leq \omega \quad \Leftrightarrow \quad\left|u(x)-\Pi_{h} u(x)\right| \leq \omega \forall x \in K
$$

Equivalent condition

$$
\begin{equation*}
\frac{1}{2}\left(x-x_{K}\right)^{T} \mathscr{H}\left(u\left(x_{K}\right)\right)\left(x-x_{K}\right) \leq \omega \quad \forall x \in K \tag{1}
\end{equation*}
$$

Geometrical interpretation

 all $x \in \mathbb{R}^{2}$ satisfying (1) form an ellipse
Ellipse

- let \mathbb{M} be a symmetric, positively definite, then

$$
\mathbb{M}=\mathbb{R}^{T} \mathbb{L} \mathbb{R},
$$

where $\mathbb{R}=\left(\begin{array}{cc}\cos \phi & \sin \phi \\ -\sin \phi & \cos \phi\end{array}\right), \quad \mathbb{L}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$,

$$
\left(x-x_{K}\right)^{T} \mathbb{M}\left(x-x_{K}\right) \leq 1 \quad \Longleftrightarrow \quad x \in E
$$

Fulfilling of requirements

let $\mathscr{H}\left(u\left(x_{K}\right)\right)$ be the Hessian, E_{K} be the corresponding ellipse

Lemma

$$
\frac{1}{2}\left(x-x_{K}\right)^{T} \mathscr{H}\left(u\left(x_{K}\right)\right)\left(x-x_{K}\right) \leq \omega \forall x \in K \text { is valid } \Leftrightarrow K \subset E_{K}
$$

Definition

K is optimal triangle $\Leftrightarrow K \subset E_{K}$ \& area of K is maximal

Lemma

Let $\mathscr{H}=\mathscr{H}\left(u\left(x_{K}\right)\right)$ be the Hessian, E_{K} the ellipse.
Then K is optimal triangle \Leftrightarrow

$$
\left\|e_{K, i}\right\|_{\mathscr{H}}:=\left(e_{K, i}^{T} \mathscr{H} e_{K, i}\right)^{1 / 2}=\sqrt{6 \omega}, \quad i=1,2,3
$$

where $e_{K, i}, i=1,2,3$ are edges of K.

Edge-based optimality

- Let K and K^{\prime} share edge e, \mathscr{H} and \mathscr{H}^{\prime} be the Hessians
- then $\|e\|_{\mathscr{H}}=\sqrt{6 \omega}=\|e\|_{\mathscr{H}^{\prime}}$ can not be valid!!
- it is impossible to consider \mathscr{T}_{h} as a set of "optimal triangles"

Edge-based mesh

- Let \mathscr{F}_{h} denotes the set of edges e of the mesh \mathscr{T}_{h}
- Let \mathscr{H}_{e} be the Hessian evaluated at edge $e \in \mathscr{F}_{h}$.
- Def: mesh \mathscr{T}_{h} is edge-optimal $\Leftrightarrow\|e\|_{\mathscr{H}_{e}}=\sqrt{6 \omega} \quad \forall e \in \mathscr{F}_{h}$

Edge optimal mesh exists only in special situation
\square
Definition
Mesh \mathscr{T}_{h} is optimal
where Q

Edge-based optimality

- Let K and K^{\prime} share edge e, \mathscr{H} and \mathscr{H}^{\prime} be the Hessians
- then $\|e\|_{\mathscr{H}}=\sqrt{6 \omega}=\|e\|_{\mathscr{H}^{\prime}}$ can not be valid!!
- it is impossible to consider \mathscr{T}_{h} as a set of "optimal triangles"

Edge-based mesh

- Let \mathscr{F}_{h} denotes the set of edges e of the mesh \mathscr{T}_{h}
- Let \mathscr{H}_{e} be the Hessian evaluated at edge $e \in \mathscr{F}_{h}$.
- Def: mesh \mathscr{T}_{h} is edge-optimal $\Leftrightarrow\|e\|_{\mathscr{H}_{e}}=\sqrt{6 \omega} \quad \forall e \in \mathscr{F}_{h}$

Edge optimal mesh exists only in special situation

Definition

Mesh \mathscr{T}_{h} is optimal $\Longleftrightarrow Q_{\mathscr{T}_{h}}=\min _{\mathscr{T}_{h^{\prime}}} Q_{\mathscr{T}_{h^{\prime}}}$ where $Q_{\mathscr{T}_{h^{\prime}}}=\frac{1}{\# \mathscr{F}_{h^{\prime}}} \sum_{e \in \mathscr{F}_{h^{\prime}}}\left(\|e\|_{\mathscr{H}_{e}}-\sqrt{6 \omega}\right)^{2}$
$Q_{\mathscr{T}_{h}} \geq 0 \ldots$ parameter of "quality"

Mesh optimization process

Quality of mesh

- $Q_{\mathscr{T}_{h}}=\frac{1}{\# \mathscr{F}_{h}} \sum_{e \in \mathscr{F}_{h}}\left(\|e\|_{\mathscr{H}_{e}}-\sqrt{6 \omega}\right)^{2} \geq 0$
- smaller $Q_{\mathscr{T}_{h}}$ means "better" mesh.

Idea of mesh optimization

modify locally mesh in such a way that $Q_{\mathscr{T}_{h}}$ is decreasing

Mesh optimization algorithm

- several local operations (adding a node, removing an edge, moving a node, etc.)
- tested and performed if $Q_{\mathscr{T}_{h}}$ is decreasing

Riemann metric

Optimal mesh
\Leftrightarrow mesh is uniform in the Riemann metric generated by \mathscr{H}

Local operations: adding and moving

Local operations: removing and swapping

Towards practical realization

Mesh optimization algorithm

For given $u \in V$ and $\omega>0$, we can construct optimal mesh \mathscr{T}_{h}

- u has to be approximated by u_{h}
- in practice, we need to approximate $\mathscr{H}(u)$ on each edge only
- we approximate $\mathscr{H}(u)$ at vertices P_{k} of mesh
- let D_{k} be a polygon around P_{k}

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\left(P_{k}\right) \approx \frac{1}{\left|D_{k}\right|} \int_{D_{k}} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \mathrm{~d} x & =\frac{1}{\left|D_{k}\right|} \int_{\partial D_{k}} \frac{\partial u}{\partial x_{i}} n_{j} \mathrm{~d} S \\
& \approx \frac{1}{\left|D_{k}\right|} \int_{\partial D_{k}} \frac{\partial u_{k}}{\partial x_{i}} n_{j} \mathrm{~d} S
\end{aligned}
$$

Towards practical realization

Approximation of \mathscr{H}

- previous approximation gives $\mathscr{H}\left(u\left(P_{k}\right)\right) \approx \mathbb{H}\left(u_{h}\left(P_{k}\right)\right)$
- \mathbb{H} is symmetric, not positively definite
- we put $\overline{\mathbb{H}}:=|\mathbb{H}|$ using the eigenvalue decomposition

Regularization

- if u_{h} is linear then $\overline{\mathbb{H}}=0 \ldots$ problem
- if u_{h} is discontinuous then $\overline{\mathbb{H}}$ can blow up
- in order to overcome this problem, we set

$$
\begin{equation*}
\mathbb{M}\left(P_{k}\right)=c\left[\mathbb{I}+\frac{\varepsilon_{1}}{\varepsilon_{1} / p+\left\|\overline{\mathbb{H}}\left(P_{k}\right)\right\|} \overline{\mathbb{H}}\left(P_{k}\right)\right] \tag{2}
\end{equation*}
$$

- we replace $\overline{\mathbb{H}}$ by \mathbb{M}
- c, ε_{1}, p suitably chosen constants

Setting of matrices \mathbb{M} (metric)

$$
\mathbb{M}\left(P_{k}\right)=c\left[\mathbb{I}+\frac{\varepsilon_{1}}{\varepsilon_{1} / p+\left\|\overline{\mathbb{H}}\left(P_{k}\right)\right\|} \overline{\mathbb{H}}\left(P_{k}\right)\right]
$$

Setting of constant

- if $\overline{\mathbb{H}}=0$ then $\mathbb{M}=c \mathbb{I}, c$ density of the coarsest mesh \sim numel
- if $\|\overline{\mathbb{H}}\| \rightarrow \infty$ then $\|\mathbb{M}\| \rightarrow c\left(1+\varepsilon_{1}\right) \approx c \varepsilon_{1}, \quad \varepsilon_{1}=\left(\frac{\ell_{\max }}{\ell_{\text {min }}}\right)^{2}$
- p the "speed" of transition (from coarse to fine parts)

Setting of matrices \mathbb{M} (metric)

$$
p_{1}>p_{2}
$$

Multilevel computation

[^0]: Fundamental question
 How to fulfil the main goal?

 - we adapt the given mesh based on the computed solution and
 its error estimation

