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Numerical solution of PDE
o we seek u: Q — R such that Zu=1fin Q

o we define mesh .7, of Q and finite dimensional space V},

@ approximate solution up € Vj
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Numerical solution of PDE
o we seek u: Q — R such that Zu=1fin Q

o we define mesh .7, of Q and finite dimensional space V},

@ approximate solution up € Vj

Define (create) a mesh .7, such that

© the computational error is under the given tolerance

@ the number of elements of .7}, is as small as possible

V. Dolejsi NumSoft 2, lecture 1 Lecture 1 2 /17



Overview
Numerical solution of PDE

o we seek u: Q — R such that Lu =17 in Q
o we define mesh .7, of Q and finite dimensional space V},

@ approximate solution up € Vp

Define (create) a mesh .7, such that

@ the computational error is under the given tolerance

@ the number of elements of .7}, is as small as possible

Fundamental question

How to fulfil the main goal?

@ we adapt the given mesh based on the computed solution and
its error estimation

N
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Interpolation error

Main idea

@ let u be the exact solution and up € V), the approximate one
o let N, : V — V, be a projection
@ we approximate u — up ~ u — [1yu

@ u — lNyu = interpolation error
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Interpolation error

Main idea

@ let u be the exact solution and up € V), the approximate one
o let N, : V — V, be a projection
@ we approximate u — up ~ u — [1yu

@ u — [1pu = interpolation error

Formulation of an abstract problem

@ Let u:Q — R be a given function and w > 0

o let Ny : V — V), be a projection
o We seek 7}, such that

Q [[u—Th| <w
Q +#.7, be minimal
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Interpolation error

Main idea

@ let u be the exact solution and up € V), the approximate one
o let N, : V — V, be a projection
@ we approximate u — up ~ u — [1yu

@ u — [1pu = interpolation error

Formulation of an abstract problem

@ Let u:Q — R be a given function and w > 0

o let Ny : V — V), be a projection
o We seek 7}, such that

Q [[u—Th| <w
Q +#.7, be minimal

exact solution v is unknown, it will be later approximated by uj J
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Concrete formulation

o Vj, ={v, € L2(Q); wplk € PL(K) VK € Z},} — discontinuous
piecewise linear

o [l =1"ll=

o M, : V — V, such that

O Myu(xk) = u(xk), xk is the barycentre of K € 7},

@ Vju(xk) = Vu(xk), xk is the barycentre of K € 7},

[Mpu is a discontinuous piecewise linear, the same value and
gradient as v in the barycentres of all K € 7}
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Concrete formulation

o Vj, ={v, € L2(Q); wplk € PL(K) VK € Z},} — discontinuous
piecewise linear

o [|-[I:= 1"l

o M, : V — V, such that

O Myu(xk) = u(xk), xk is the barycentre of K € 7},

@ Vju(xk) = Vu(xk), xk is the barycentre of K € 7},

[Mpu is a discontinuous piecewise linear, the same value and
gradient as v in the barycentres of all K € 7}

Interpolation error

u(x) = u(xk) + Vu(xk)(x — xk) —i—%(x — xi) T A (u(x'))(x — xk)

Mpu(x)

€ (u(-)) ... Hessian matrix
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Interpolation error estimate

u(x) — Npu(x) =~ %(x — XK)T%”(U(XK))(X — XK),

Qu(x)  0%u(x)

. Ox2 Ox10x2
%(u(x)) - 82u(lx) 8% u(x)
0x10x 8x22

we assume that .##°(u) is positively definite then
(up to a higher order terms)

Interpolation error estimate

Ju(x) = Mau(x)] < 3(x = xk) T (u(x)) (x = x),
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Optimal triangle

Interpolation error estimate

lu(x) = Mpu(x)] < 3(x — xk) T (u(xk))(x — xk), x € K

Our goal
lu(x) = MNpu(x)|| <w < |u(x) —Npu(x)| <w ¥x € K

Equivalent condition

%(X—XK)T%”(U(XK))(X—XK) <w VYxeK (1)

Geometrical interpretation

all x € R? satisfying (1) form an ellipse
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Ellipse

@ let M be a symmetric, positively definite, then

M = RTLR, J
[ cos¢p  sing (A O
WhereR_(—singb cos¢>’ L_<O )\2>’
(x—xk) " M(x—xk) <1 <= x€cE J
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Fulfilling of requirements

let 7 (u(xk)) be the Hessian, Ex be the corresponding ellipse )

2(x — xk) T (u(xk))(x — xk) Sw Vx € K isvalid & K C Ex

Definition

K is optimal triangle & K C Ex & area of K is maximal

Let 7 = 5 (u(xk)) be the Hessian, Ex the ellipse.
Then K is optimal triangle <

1/2 .
||6‘K7,'”y/ = (e;—’it%ﬂe}(,,) =V 6w, I = 1,2,3,

where ek j, i = 1,2,3 are edges of K.
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Edge-based optimality

@ Let K and K’ share edge e, 7 and .7’ be the Hessians
@ then |le||,» = V6w = ||e||,# can not be valid!!

@ it is impossible to consider 7}, as a set of “optimal triangles”

4

Edge-based mesh

o Let .#, denotes the set of edges e of the mesh 7,

o Let 47, be the Hessian evaluated at edge e € .%,.
@ Def: mesh .7}, is edge-optimal < |le||,x = VOow Ve € %,

v
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Edge-based optimality

@ Let K and K’ share edge e, 7 and .7’ be the Hessians
@ then |le||,» = V6w = ||e||,# can not be valid!!

@ it is impossible to consider 7}, as a set of “optimal triangles”

| A

Edge-based mesh

o Let .#, denotes the set of edges e of the mesh 7,
o Let 47, be the Hessian evaluated at edge e € .%,.
@ Def: mesh .7}, is edge-optimal < |le||,x = VOow Ve € %,

Edge optimal mesh exists only in special situation

Definition

Mesh J, is optimal <= Qg, = ming, Qg,
1
where Qz, = 25— Y ec 7, (llellz — Vow)?

Rz, > 0 ...parameter of “quality”
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Mesh optimization process

Quality of mesh

° Q7 = 77 e (lelle — Vow)® >0
@ smaller Qg means “better” mesh.

Idea of mesh optimization

modify locally mesh in such a way that Qg is decreasing

Mesh optimization algorithm

@ several local operations (adding a node, removing an edge,
moving a node, etc.)

o tested and performed if Qg is decreasing

V.

Riemann metric

Optimal mesh
< mesh is uniform in the Riemann metric generated by 7

<
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Local operations: adding and moving

A

adding (II or IB—edge)

A

=

A

adding (BB—edge)

22

moving (I-node)

P

=

moving (B—node)

v
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Local operations: removing and swapping

removing (II-edge) removing (IB—edge)
removing (BB—edge) swapping
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Towards practical realization

Mesh optimization algorithm
For given u € V and w > 0, we can construct optimal mesh .7,

@ u has to be approximated by up

@ in practice, we need to approximate . (u) on each edge only
@ we approximate .#’(u) at vertices Py of mesh

@ let Dy be a polygon around P

d%u _ 1

ax,-ax,-(P [Dy] ka ax,ax, X = D4 faDk o ds
~ 1 Jup
~ DA faDk ox; ds
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Towards practical realization
Approximation of 77

@ previous approximation gives 7 (u(Px)) ~ H(un(Px))

e H is symmetric, not positively definite

o we put H := |H| using the eigenvalue decomposition

Regularization

o if uy is linear then H = 0 . .. problem

o if up is discontinuous then H can blow up

@ in order to overcome this problem, we set
€1

e1/p + [[H(PK)]|

M(Py) = ¢ [T+ H(Py) (2)

o we replace H by M

@ ¢, €1, p suitably chosen constants

v
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Setting of matrices M (metric)

+ =
e1/p + [[H(P)|

Setting of constant

o if H=0then M = cI, ¢ density of the coarsest mesh ~numel
o if ||H|| — oo then ||M|| — c(1+¢e1) ~ ce1, e = (be=)?

min

M(Py) = c [}1 H(Pk)]

@ p the “speed” of transition (from coarse to fine parts)

M|

c(l+g)

A
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Setting of matrices M (metric)

b b

pr > p2
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Multilevel computation

V. Dolejsi

using num. method

compute up, on Jp,

!

compute M from up,

Hessian matrices

!

using AMA method

create mesh ,,

NO

YES

END
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