
FINITE ELEMENT METHODS:
IMPLEMENTATIONS

Vı́t DOLEJŠÍ

Charles University Prague
Faculty of Mathematics and Physics

Department of Numerical Mathematics
Sokolovská 83, 186 75 Prague

Czech Republic

Praha March 15, 2021

2

Contents

1 Implementation of FEM and DGM 5
1.1 P 1 solution of the model problem . 5

1.1.1 Triangulation . 6
1.1.2 Finite element space . 6
1.1.3 Discretization . 8
1.1.4 Implementation . 8
1.1.5 Treatment of general boundary conditions 15

1.2 General FE solution of the model problem 17
1.2.1 Definition of reference elements 17
1.2.2 Evaluation of integrals on the reference element 19
1.2.3 Grids and functional spaces . 21
1.2.4 Implementation . 23

1.3 Basis and shape functions . 24
1.3.1 The reference Lagrangian shape functions 24
1.3.2 The reference Lobatto shape functions 27
1.3.3 Global basis functions on Vh . 31

1.4 Discontinuous finite elements . 34
1.4.1 DG discretization of the model problem 34
1.4.2 The hp-discontinuous Galerkin method 35
1.4.3 Definition of the DG basis . 36
1.4.4 Construction of the DG basis functions 37
1.4.5 Evaluation of volume integrals 38
1.4.6 Evaluation of face integrals . 39
1.4.7 Data structures . 41

1.5 Numerical quadratures . 41
1.5.1 Edge quadratures . 42
1.5.2 Quadratures on quadrilaterals 42
1.5.3 Quadratures on triangles . 42
1.5.4 Data structure . 42

1.6 Basic visualization techniques . 45
1.6.1 Types of visualization . 45
1.6.2 Software for visualization . 46
1.6.3 Visualization of higher order polynomial functions 48

Bibliography 53

3

4

Chapter 1

Implementation of FEM and DGM

In this chapter we deal with the implementation of the finite element and the discon-
tinuous Galerkin methods which were introduced in the previous chapters. However,
the implementation of these methods is a rather complicated problem which can differ
based on the practical applications. Our aim is only to introduce some basic ideas. This
chapter is relatively autonomous, all necessary definitions and notations are recalled.

In order to render these notes more readable, we start in Section 1.1 with the
implementation of a simple problem, namely P 1 continuous finite element solution of
the Poisson problem with homogeneous Dirichlet boundary condition. We describe the
implementation of this problem in details including the code subroutines which are
written in Fortran 90 syntax. We suppose that the non-Fortran readers will be able
to understand this syntax too since the subroutines contain only standard ’if then’
conditions and ’do’ cycles. The subroutines are commented in the standard way, i.e.,
text behind the character ’ !’ is ignored by a Fortran 90 translator.

In Section 1.2, we describe a general implementation of the conforming finite ele-
ment method. We employ the concept of the reference element which seems (in the
authors’ opinion) more suitable for the implementation. Moreover, we include a de-
scription of the necessary data structures. In Section 1.3, we present a construction of
the basis functions based on two possible sets of shape functions, the Lagrangian and
the Lobatto shape functions. Section 1.4 contains an implementation of the discontin-
uous Galerkin method with emphasis on the differences with the conforming methods.
Since DG methods allow a simple treatment of hp-methods, we consider an approxi-
mation of different polynomial degrees on different elements. Finally, Sections 1.5 and
1.6 describe possible numerical quadratures and visualization techniques, respectively.

1.1 P 1 solution of the model problem

In order to explain the basic aspects of the implementation of FEM and DGM, we
start with a model problem represented by the Poisson equation. We recall the weak
formulation and the finite element formulation of this elliptic problem.

Let Ω be a bounded polygonal domain in R
d, d = 2, 3, with a boundary ∂Ω. We

5

seek a function u : Ω→ R such that

−∆u(x) = g(x), x ∈ Ω, (1.1)

u(x) = 0, x ∈ ∂Ω, (1.2)

where g ∈ L2(Ω).
Let V := H1

0 (Ω) then the weak formulation of (1.1) reads

find u ∈ V : (∇u,∇v) = (g, v) ∀v ∈ V. (1.3)

Let Vh be a finite dimensional subspace of V then the finite element approximation
(1.3) can be written as

find uh ∈ Vh : (∇uh,∇vh) = (g, vh) ∀vh ∈ Vh. (1.4)

In the following, we describe in details the implementation of the method (1.4) with
the aid of a continuous piecewise linear approximation constructed over a triangular
grid.

1.1.1 Triangulation

Let Th (h > 0) be a partition of the closure Ω of the domain Ω into a finite number of
closed d-dimensional simplexes T with mutually disjoint interiors such that

Ω =
⋃

T∈Th

T. (1.5)

In two-dimensional problems (d = 2), the elements T ∈ Th are triangles and in three-
dimensional problems (d = 3) the elements T ∈ Th are tetrahedra. Figure 1.1 shows
two examples of a triangular grid constructed over a square domain.

Moreover, we use the following notation for vertices and edges (faces for d = 3) of
Th. We denote by {vi}

N
i=1 the set of all vertices of T ∈ Th lying inside of Ω and by

{vi}
N+Nb

i=N+1 the set of all vertices of T ∈ Th lying on ∂Ω. Finally, {ei}
E
i=1 denotes the

set of all edges (faces) of all T ∈ Th lying inside of Ω and {ei}
E+Eb

i=E+1 the set of all edges
(faces) of all T ∈ Th lying on ∂Ω.

1.1.2 Finite element space

Let
Vh := {vh, vh ∈ C(Ω) ∩H

1
0 (Ω), vh|T ∈ P

1(T) ∀T ∈ Th} (1.6)

denote the space of continuous piecewise linear functions on Th vanishing on ∂Ω.
Obviously, each vh ∈ Vh is uniquely defined by its values in {vi}

N
i=1.

We denote by B := {ϕi}
N
i=1 the set of basis functions of Vh defined by

ϕi ∈ Vh, ϕi(vj) = δij , i, j = 1, . . . , N, (1.7)

where δij is the Kronecker symbol. Obviously, the support of each ϕi, i = 1, . . . , N is
small and consists of all triangles T ∈ Th having vi as a vertex, see Figure 1.2.

6

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure 1.1: Examples of triangular meshes constructed over Ω = (−1, 1) × (−1, 1): a
coarser grid (left) and a finer one (right)

vi

suppϕi

◦

Figure 1.2: Support of the basis function ϕi corresponding to the node vi

7

1.1.3 Discretization

The approximate solution uh ∈ Vh can be expressed as

uh(x) =
N∑

j=1

ujϕj(x), uj ∈ R, j = 1, . . . , N. (1.8)

Moreover, since ϕi, i = 1, . . . , N form the basis of Vh, it is sufficient that the relation
(1.4) is valid for each ϕi, i = 1, . . . , N . Then, using (1.8), the approximate problem
(1.4) is equivalent to

find {uj}
N
j=1 ∈ R

N

N∑

j=1

uj(∇ϕj,∇ϕi) = (g, ϕi) ∀i = 1, . . . , N. (1.9)

Let us define the stiffness matrix

S = {Sij}
N
i,j=1, Sij = (∇ϕj,∇ϕi), (1.10)

the solution vector u = {ui}
N
i=1 and the right-hand side

g = {gi}
N
i=1, gi = (g, ϕi), i = 1, . . . , N. (1.11)

Then problem (1.9) is equivalent to the linear algebraic system

Su = g. (1.12)

Therefore, in order to implement the conforming piecewise linear FEM for (1.3), we
have to

• evaluate S and g according to (1.10) – (1.11),

• solve the algebraic system (1.12),

• reconstruct the approximate solution uh ∈ Vh from u using (1.8).

1.1.4 Implementation

Data structures

In order to present the algorithms, we introduce global data structures defining the
triangulation Th. For simplicity, we restrict to d = 2.

Let N denote the number of inner vertices of Th and Nb denote the number of vertices
of Th lying on ∂Ω. Let the real arrays xp(1:N+Nb) and yp(1:N+Nb) be the x1- and
x2-coordinates of the nodes of mesh Th, indexed by i = 1, . . . , N+Nb, respectively. We
assume that the first N components of xp(:) and yp(:) correspond to inner vertices
and the last Nb components of xp(:) and yp(:) to boundary vertices.

Furthermore, let the vertices of triangles Ti ∈ Th, i = 1, . . . ,M be indexed by the
(two-dimensional) array node(1:M,1:3) of integers. Therefore, indices of vertices of
Ti are stored in node(i,1), node(i,2) and node(i,3). Obviously, if some vertex of
Ti lies on ∂Ω then the corresponding value satisfies node(i,j)>N.

For simplicity, we assume that xp(:), yp(:), node(:,:) are global arrays so that
we have access to them from any subroutine.

8

vi

vj

Dij

suppϕi

suppϕi

◦

◦

Figure 1.3: The volume Dij = supp(ϕi) ∩ supp(ϕj) for nodes vi and vj connected by
an edge

Setting of the stiffness matrix – non-optimized algorithm

Here we present a non-optimized algorithm for the evaluation of the entries of the
stiffness matrix S. According to (1.10), the entries of the stiffness matrix satisfy

Sij =

∫

Ω

∇ϕj · ∇ϕi dx. (1.13)

Since the support of each ϕi, i = 1, . . . , N is located around the corresponding node
vi, we can distinguish three cases:

Sij =

∫
supp(ϕi)

|∇ϕi|
2 dx if i = j,

∫
Dij
∇ϕj · ∇ϕi dx if vi and vj are connected by an edge,

0 otherwise.

(1.14)

Here, Dij = supp(ϕi) ∩ supp(ϕj), see Figure 1.3.

For the diagonal entries of the stiffness matrix Sii, i = 1, . . . , N , we have

Sii =

∫

supp(ϕi)

|∇ϕi|
2 dx =

∑

T⊂supp(ϕi)

∫

T

|∇ϕi|
2 dx =

∑

T⊂supp(ϕi)

|T |
∣∣∇ϕi|T

∣∣2. (1.15)

The last equality follows from the fact that ϕi is linear on each T ⊂ supp(ϕi) and thus
∇ϕi is constant on T . Therefore, it is necessary to evaluate ∇ϕi on triangles having
vi as an vertex.

9

[x1, y1]

[x2, y2]

[x3, y3]

ϕ̄

ϕ̄(x1, y1) = 1

T̄

Figure 1.4: Triangle T̄ and the function ϕ̄

Let us consider a triangle T̄ with vertices [x1, y1], [x2, y2] and [x3, y3]. Let ϕ̄(x, y)
be the linear function on T̄ such that

ϕ̄(x1, y1) = 1, ϕ̄(x2, y2) = 0, ϕ̄(x3, y3) = 0, (1.16)

see Figure 1.4.
It is possible to derive explicit relations for the gradient of ϕ̄. Let us put

D = det

x1 y1 1
x2 y2 1
x3 y3 1

 , Dx = det

1 y1 1
0 y2 1
0 y3 1

 , Dy = det

x1 1 1
x2 0 1
x3 0 1

 . (1.17)

Then

∇ϕ̄ =

(
Dx

D
,
Dy

D

)
=

(y2 − y3, x3 − x2)

2|T̄ |
, (1.18)

where |T̄ | is the area of the triangle T̄ .
Hence, based on (1.17) – (1.18), we can define the following subroutine GRADn,

which evaluates the gradient of the linear function on the triangle with vertices [x1, y1],
[x2, y2] and [x3, y3] such that this function has value 1 in [x1, y1] and vanishes at [x2, y2]
and [x3, y3]. We use the convention that x1 = x1, y1 = y1 etc.

subroutine GRADn (x1,y1, x2, y2, x3, y3, Dx, Dy)

real, intent(in) :: x1,y1, x2, y2, x3, y3 ! input parameters

real, intent(out) :: Dx, Dy ! output parameters

real :: D ! local variable

D = x1*(y2-y3) + x2*(y3-y1) + x3*(y1-y2)

Dx = (y2 - y3) / D

Dy = (x3 - x2) / D

end subroutine GRADn

10

[x0, y0]

[x1, y1]

[x2, y2]

[x3, y3]

[x4, y4][x5, y5]

[x6, y6]

T 1
i

T 2
i

T 3
i

T 4
i

T 5
i

T 6
i

[xi, yi]

[xj , yj]

[xk, yk]

[xl, yl]

Figure 1.5: Notation for the evaluation of the diagonal entries (left) and off-diagonal
entries (right) of the stiff matrix

Now, let us go back to the evaluation of Sii. Let T j
i , j = 1, . . . , n be triangles

having the node vi as a vertex. Obviously, supp(ϕi) = ∪n
j=1T

j
i . We assume that vi

has coordinates [x0, y0]. Moreover, the vertices of T j
i , j = 1, . . . , n have coordinates

[xj, yj], j = 1, . . . , n, indexed counter-clock-wise, see Figure 1.5, left.
Finally, taking into account (1.15) we can evaluate Sii by the following subroutine:

subroutine STIFF_DIAGn(n, x(0:n), y(0:n), sii)

integer, intent(in) :: n ! input parameter

real, intent(in) :: x(0:n), y(0:n) ! input array

real, intent(out) :: sii ! output parameter

real :: D, Dx, Dy ! local variables

integer :: j, j1 ! local variables

sii = 0.

do j=1,n

j1 = mod(j, n) + 1

call GRADn(x(0), y(0), x(j), y(j), x(j1), y(j1), Dx, Dy)

D = x(0)*(y(j)-y(j1)) + x(j)*(y(j1)-y(0)) + x(j1)*(y(0)-y(j))

sii = sii + (Dx*Dx + Dy*Dy)*D/2 ! D/2 = area of triangle

end do

end subroutine STIFF_DIAGn

Comparing the subroutines GRADn and STIFF_DIAGn, we observe that the values
Dx and Dy are divided by D in GRADn, then we square this value and multiply by D in
STIFF_DIAGn. It is more efficient to avoid the division and the following multiplication
by the same value. Hence, we can modify the subroutines GRADn and STIFF_DIAGn by
their more efficient variants GRAD and STIFF_DIAG defined bellow.

subroutine GRAD (x1,y1, x2, y2, x3, y3, Dx, Dy)

11

real, intent(in) :: x1,y1, x2, y2, x3, y3

real, intent(out) :: Dx, Dy

Dx = (y2 - y3)

Dy = (x3 - x2)

end subroutine GRAD

and

subroutine STIFF_DIAG(n, x, y, sii)

integer, intent(in) :: n

real, intent(in) :: x(0:n), y(0:n)

real, intent(out) :: sii

real :: D, Dx, Dy ! local variables

integer :: j, j1

sii = 0.

do j=1,n

j1 = mod(j+1, n) + 1

call GRAD(x(0), y(0), x(j), y(j), x(j1), y(j1), Dx, Dy)

D = x(0)*(y(j)-y(j1)) + x(j)*(y(j1)-y(0)) + x(j1)*(y(0)-y(j))

sii = sii + (Dx*Dx + Dy*Dy)/D/2 ! D/2 = area of triangle

end do

end subroutine STIFF_DIAG

Moreover, we have to evaluate the off-diagonal terms of the stiffness matrix, i.e., Sij

where vi and vj are connected by an edge of Th. We denote the coordinates of vertices
of triangles sharing the edge vivj according to Figure 1.5, right. Then we define the
subroutine for the evaluation of the off-diagonal terms of the stiffness matrix:

subroutine STIFF_OFFDIAG(xi, yi, xj, yj, xk, yk, xl, yl, sij)

real, intent(in) :: xi, yi, xj, yj, xk, yk, xl, yl

real, intent(out) :: sij

real :: D, Dxi, Dyi, Dxi, Dyj ! local variables

sij = 0.

call GRAD(xi, yi, xk, yk, xj, yj, Dxi, Dyi)

call GRAD(xj, yj, xi, yi, xk, yk, Dxj, Dyj)

D = xi*(yk-yj) + xk*(yj-yi) + xj*(yi-yk)

sij = sij + (Dxi*Dxj + Dyi*Dyj)/D/2 ! D/2 = area of triangle

call GRAD(xi, yi, xj, yj, xl, yl, Dxi, Dyi)

call GRAD(xj, yj, xl, yl, xi, yi, Dxj, Dyj)

D = xi*(yj-yl) + xj*(yl-yi) + xl*(yi-yj)

sij = sij + (Dxi*Dxj + Dyi*Dyj)/D/2 ! D/2 = area of triangle

12

end subroutine STIFF_OFFDIAG

Finally, in order to evaluate all entries of the stiffness matrix S we should call either
subroutine STIFF_DIAG or STIFF_OFFDIAG for all Sij 6= 0. However, this requires the
setting of appropriate data structures, namely some link to the nodes connected by an
edge to a given node (see 1.5, left) and some link between elements sharing a face (see
1.5, right.) Since we are going to introduce a better algorithm in the following section,
we shall skip further considerations.

Setting of the stiffness matrix – optimized algorithm

We can notice that when we evaluate all non-vanishing terms of matrix S, we call
subroutine GRAD for each T ∈ Th several times. It is more efficient to go over all
T ∈ Th only one time. This means that we compute the gradients of all possible linear
functions on T vanishing in two vertices of T and equal to 1 in the remaining node.
Then we evaluate the corresponding entries of the stiffness matrix.

Here we introduce a more efficient algorithm for the evaluation of S. It evaluates
all entries of S which correspond to inner vertices of Th given by (1.10). First, we
define a subroutine, which evaluates the gradient of three possible restrictions of the
test functions on a given triangle.

subroutine GRADIENTS(x, y, Dphi)

real, intent(in) :: x(1:3), y(1:3)

real, intent(out) :: Dphi(1:3, 1:2)

! Dphi(i,j) = derivative of i-th function with respect x_j

Dphi(1,1) = y(2) - y(3)

Dphi(1,2) = x(3) - x(2)

Dphi(2,1) = y(3) - y(1)

Dphi(2,2) = x(1) - x(3)

Dphi(3,1) = y(1) - y(2)

Dphi(3,2) = x(2) - x(1)

end subroutine GRADIENTS

Then we have the following subroutine for the evaluation of all entries of S. Let
us recall that xp(:), yp(:), node(:,:) are global arrays storing the coordinates of
vertices and the indices of vertices of triangles, cf. the beginning of Section 1.1.4.
Hence, we have access to them from the subroutines without their specification as
input parameters.

subroutine STIFF(M, N, S)

integer, intent(in) :: M ! = number of triangles of triangulation

integer, intent(in) :: N ! = number of vertices of triangulation

real, dimension(1:N, 1:N), intent(out) :: S ! = stiff matrix

13

real :: Dphi(1:3, 1:2) , D ! local variables

integer :: i,j,ki, kj

S(1:N, 1:N) = 0

do k=1,M

x(1:3) = xp(node(k, 1:3))

y(1:3) = yp(node(k, 1:3))

D = x(1)*(y(2)-y(3)) + x(2)*(y(3)-y(1)) + x(3)*(y(1)-y(2))

call GRADIENTS(x(1:3), y(1:3), Dphi(1:3, 1:2))

do ki=1,3

i = node(k,ki)

if(i <= N) then !! inner vertex?

do kj=1,3

j = node(k,kj)

if(j <= N) then !! inner vertex?

S(i,j) = S(i,j) + (Dphi(ki,1)* Dphi(kj,1) &

+ Dphi(ki,2)* Dphi(kj,2))/D/2

endif

enddo

endif

enddo

enddo

end subroutine STIFF

Remark 1.1. The subroutine STIFF evaluates only entries of the stiff matrix corre-
sponding to the inner vertices of Th. This is assured by two if then conditions in
subroutine STIFF. If more general boundary conditions than (1.2) are given also the
entries corresponding to the boundary vertices of Th have to be evaluated. In this case,
N denotes the number of all vertices including the boundary ones, see Section 1.1.5.

Setting of the right-hand side

Here we present an algorithm which evaluates the entries of the vector g given by
(1.11). Let i = 1, . . . , N , we have

gi = (g, ϕi) =
∑

T⊂supp(ϕi)

∫

T

g ϕi dx, (1.19)

where supp(ϕi) is shown in Figure 1.2. Generally, the integrals in (1.19) are evaluated
with the aid of numerical quadratures, which are discussed in Section 1.5. Since we
considered in this section the piecewise linear approximation, we will consider only the
following simple quadrature rule

∫

T

g(x)ϕ(x) dx ≈
1

3
|T |

3∑

l=1

ϕ(xl)g(xl), (1.20)

14

where xl, l = 1, 2, 3 are the vertices of a triangle T ∈ Th. This quadrature rule
integrates linear functions exactly, hence it has first order accuracy.

The application of (1.20) to the evaluation of (1.19) leads to a very simple relation,
since ϕi(x0, y0) = 1 and ϕi(xl, yl) = 0, l = 1, . . . , n, see Figure 1.5, left. Then we have

gi ≈
1

3
meas(supp(ϕi))g(vi), i = 1, . . . , N (1.21)

where vi, i = 1, . . . , N are inner vertices of Th.
Finally, let us note that the numerical quadrature (1.20) is generally not sufficiently

accurate.

Solution of the linear algebraic system (1.12)

Once we have evaluated the entries of matrix S and vector g, we have to solve the
linear algebraic system (1.12). In the case of the Laplace problem (1.1) the situation
is very simple. First we introduce the following term

Definition 1.1. Let Th be a mesh on Ω. Let T and T ′ be a pair of triangles from
Th sharing an edge vivj. Let vi,vj,vk and vj,vi,vl be the vertices of T and T ′,
respectively. We denote by SumAngles(T, T ′) the sum of angles of T and T ′ adja-
cent to vertices vk and vl, respectively. We say that Th is of the Delaunay type if
SumAngles(T, T ′) ≤ π for each pair of triangles T, T ′ from Th sharing an edge.

It is possible to show that if Th is of Delaunay type then the corresponding stiffness
matrix S is symmetric and diagonally dominant. In this case an arbitrary direct or
iterative solver can be used with success for the solution of (1.12).

Reconstruction of the approximate solution

Once we have found the vector u which is the solution of (1.12), we will reconstruct
the piecewise linear function uh ∈ Vh from u using (1.8). However, in practice we need
not know an explicit relation for uh. Usually, we require a visualization of the solution
and/or an evaluation of some characteristics. Some basic visualization techniques are
mentioned in Section 1.6.

1.1.5 Treatment of general boundary conditions

In the previous sections, the homogeneous Dirichlet boundary condition was considered.
However, in practice, more general boundary conditions have to be taken into account.

Let Ω be a bounded polygonal domain in R
d, d = 2, 3, with a boundary ∂Ω which

consists of two disjoint parts ∂ΩD and ∂ΩN . We seek a function u : Ω→ R such that

−∆u(x) = g(x), x ∈ Ω, (1.22)

u(x) = uD(x), x ∈ ∂ΩD, (1.23)

∇u(x) · n = gN(x), x ∈ ∂ΩN , (1.24)

where g ∈ L2(Ω), gN ∈ L
2(∂Ω) and uD is a trace of some u∗ ∈ H1(Ω).

15

Let
V := {v ∈ H1(Ω), v|∂ΩD

= 0 in the sense of traces } (1.25)

then the week formulation of (1.22) – (1.24) reads

find u ∈ H1(Ω) : u− u∗ ∈ V, (1.26)

(∇u,∇v) = (g, v) + (gN , v)L2(∂ΩN) ∀v ∈ V.

Let Th be a mesh reflecting that ∂Ω consists of two disjoint parts ∂ΩD and ∂ΩN .
Let Xh be a finite dimensional subspace of H1(Ω) constructed over the mesh Th and
Vh ⊂ Xh its subspace such that vh|∂ΩD

= 0 ∀vh ∈ Vh. The finite element approximation
(1.26) can be written as

find uh ∈ Xh : (uh − uD, vh)L2(∂ΩD) = 0 ∀vh ∈ Xh, (1.27)

(∇uh,∇vh) = (g, vh) + (gN , vh)L2(∂ΩN) ∀vh ∈ Vh.

The numerical implementation of (1.27) is more complicated than the implemen-
tation of (1.4). In this place we skip the evaluation of the boundary integral on the
right hand side of (1.27) and refer to Section 1.4.6. We focus on satisfying the Dirichlet
boundary condition on ∂ΩD.

We use the following notation for vertices of Th which differs from the notation
introduced in the previous sections. We denote by {vi}

N
i=1 the set of all vertices of

T ∈ Th lying inside of Ω or on ∂ΩN and by {vi}
N+Nb

i=N+1 a set of all vertices of T ∈ Th

lying on ∂ΩD.
Similarly as in the previous, we restrict to the piecewise linear approximations.

Therefore, each function from Xh is uniquely given by its values in {vi}
N+Nb

i=1 and each
function from Vh is uniquely given by its values at {vi}

N
i=1 . We denote by ϕi ∈ Xh the

basis functions corresponding to vi, i = 1, . . . , N +Nb given by

ϕi ∈ Xh, ϕi(vj) = δij, i, j = 1, . . . , N +Nb. (1.28)

First, we introduce a piecewise linear approximation of uD from the boundary
condition. We define a function uD,h ∈ Xh \ Vh by

(uD,h − uD, vh)L2(∂ΩD) = 0 ∀vh ∈ Xh \ Vh. (1.29)

Such uD,h can be simply constructed since Xh is a finite dimensional spaces and then
(1.29) represents a system of linear algebraic equations. Namely, we have

uD,h(x) =

Nb∑

j=N+1

uD,jϕj(x), (1.30)

therefore, we have from (1.29) – (1.30) the following system of linear algebraic equations

Nb∑

j=N+1

uD,j(ϕj, ϕi)L2(∂ΩD) = (uD, ϕi)L2(∂ΩD), i = N + 1, . . . , Nb. (1.31)

16

The evaluation of terms (ϕj, ϕi)L2(∂ΩD), i, j = N+1, . . . , Nb is simple since these terms
are non-vanishing only if vi and vi are connected by an edge on ∂ΩD. Moreover, the
evaluation of (uD, ϕi)L2(∂ΩD), i = N + 1, . . . , Nb reduces to an integration over two
edges on ∂ΩD having vi as an end-point.

The solution of (1.27) can be written in the form

uh(x) =
N∑

j=1

ujϕi(x) +

Nb∑

j=N+1

uD,jϕj(x) =
N∑

j=1

ujϕi(x) + uD,h, (1.32)

where the coefficients uD,j , j = N + 1, . . . , Nb are known and the coefficients uj, j =
1, . . . , N are unknown. Inserting (1.32) into (1.27) and putting vh := ϕi, we have

N∑

j=1

uj(∇ϕj,∇ϕi) = (g, ϕi) + (gN , ϕi)L2(∂ΩN) − (∇uD,h,∇ϕi), i = 1, . . . , N,(1.33)

which is very close to the problem (1.9), where the right-hand-side contains additional
terms arising from the Dirichlet and the Neumann boundary conditions. Moreover,
the symbol N has a slightly different meanings in (1.10) and (1.33), in the former
case it denotes the number of interior vertices, in the latter case the number of inner
and “Neumann” nodes. However, all subroutines presented in Section 1.1.4 can be
employed with these minor changes.

1.2 General FE solution of the model problem

In Section 1.1 we described the implementation of the conforming piecewise linear finite
element approximation of problem (1.1) – (1.2). Here we consider a higher degree of
polynomial approximation. The implementation is more complicated since the gradient
of test function is not constant over T ∈ Th.

It is more comfortable to employ the concept of the reference element. This ap-
proach allows us to deal with more general elements than triangles, e.g., quadrilaterals,
curvilinear elements, etc.

1.2.1 Definition of reference elements

In these lecture notes, we consider

• the reference simplex (triangle for d = 2 and tetrahedron for d = 3)

T̂t :=

{
x̂ = (x1, . . . , xd)), xi ≥ 0, i = 1, . . . , d,

d∑

i=1

xi ≤ 1

}
(1.34)

• the reference parallelogram (square for d = 2 and cube for d = 3)

T̂q := {x̂ = (x1, . . . , xd)), 0 ≤ xi ≤ 1, i = 1, . . . , d, } . (1.35)

17

v̂1 = [0; 0] v̂2 = [1; 0]

v̂3 = [1; 1]v̂4 = [0; 1]

ê1

ê2

ê3

ê4

T̂q

v̂1 = [0; 0] v̂2 = [1; 0]

v̂3 = [0; 1]

ê1

ê2
ê3

T̂t

Figure 1.6: Two-dimensional reference elements: quadrilateral T̂q (left) and triangle T̂t
(right) with the vertices v̂i and the edges êi

For simplicity, T̂ denotes either the reference simplex or the reference hexagon based
on the context. We call T̂ the reference element.

Moreover, we denote by v̂1, . . . , v̂d+1 the vertices and by ê1, . . . , êd+1 the edges of
T̂t, similarly by v̂1, . . . , v̂2d the vertices and by ê1, . . . , ê2d the edges of T̂q. For d = 2, we
assume that the numbering is oriented counterclockwise, see Figure 1.6, which shows
the two-dimensional reference triangle and the reference quadrilateral.

We assume that for each element T ∈ Th there exist a mapping

FT = FT (x̂) = (FT,1(x̂), . . . , FT,d(x̂)) : T̂ → R
d such that FT (T̂) = T. (1.36)

If FT is an affine (linear) mapping then T is either a triangle or a parallelogram based

on the type of T̂ . Generally, the construction of the mappings FT is simple for several
types of elements:

• Triangles: Let T be a triangle defined by its vertices x1, x2 and x3. Then the
linear mapping

FT (x̂) = FT (x̂1, x̂2) = x1 + x̂1(x2 − x1) + x̂2(x3 − x1) (1.37)

maps T̂t on T and moreover, FT (0, 0) = x1, FT (1, 0) = x2 and FT (0, 1) = x3.

• Tetrahedron: Let T be a tetrahedron defined by its vertices x1, x2, x3 and x4

Then the linear mapping

FT (x̂) = FT (x̂1, x̂2, x̂3) = x1 + x̂1(x2 − x1) + x̂2(x3 − x1) + x̂3(x4 − x1) (1.38)

maps T̂q on T and moreover, FT (0, 0, 0) = x1, FT (1, 0, 0) = x2, FT (0, 1, 0) = x3

and FT (0, 0, 1) = x4.

• Quadrilaterals: Let T be a quadrilateral defined by its vertices x1, x2, x3 and x4.
Then the mapping

FT (x̂) = FT (x̂1, x̂2) = x1+x̂1(x2−x1)+x̂2(x3−x1)+x̂1x̂2(x4−x2−x3+x1) (1.39)

18

x2

x2,3

x3

x1

Figure 1.7: One-edge P 2-curvilinear triangles

maps T̂q on T and moreover, FT (0, 0) = x1, FT (1, 0) = x2, FT (0, 1) = x3 and
FT (1, 1) = x4. Let us note that if T is a parallelogram then x4−x2−x3+x1 = 0
and (1.39) is identical with (1.37).

• One-edge P 2-curvilinear triangles: This types of elements are often used for an
approximation of non-polygonal boundaries. Let T be a one-edge P 2-curvilinear
triangle, which is defined by its vertices x1, x2, x3 and the node x2,3 lying “not
far” from (x2+x3)/2. Element T is bounded by two straight lines x1x2 and x1x3

and one quadratic curve passing x2,x2,3,x3, see Figure 1.7. Then the quadratic
mapping

FT (x̂1, x̂2) = x1 + x̂1(x2 − x1) + x̂2(x3 − x1) + 4x̂1x̂2(x2,3 − (x2 + x3)/2) (1.40)

maps T̂q on T . Moreover, FT (0, 0) = x1, FT (1, 0) = x2, FT (0, 1) = x3 and
FT (1/2, 1/2) = x2,3. Let us note that if x2,3 = (x2 + x3)/2 then T is a triangle
and (1.40) is identical with (1.37).

It is possible to define mappings FK for more general elements. Let us note that in
the following sections we require that FK is invertible and continuously differentiable
on T̂ . The existence of F−1

K follows from the assumption that the Jacobi matrix

JFT
(x̂) :=

D

Dx̂
FT (x̂) (1.41)

does not change its sign on T̂ . Very often, only polynomial mappings are considered
for practical reasons.

1.2.2 Evaluation of integrals on the reference element

The concept of the reference elements is based in the Theorem of integration by sub-
stitution, which we present in the following form.

19

Theorem 1.1. Let T be the image of FT (T̂) where T̂ is the reference element and FT

is a continuously differentiable mapping. Let f(x) : T → R be an integrable function

defined on T . We define the function f̂ : T̂ → R by f̂(x̂) = f(x) where x = FT (x̂).
Then ∫

T

f(x) dx =

∫

T̂

f̂(x̂)| det JFT
(x̂)| dx̂, (1.42)

where JFT
is the Jacobi matrix of FT .

Let us note that if FT is a linear mapping (i.e., T is a simplex or a parallelogram)
then JF is a constant matrix and | det JFT

| = 2|T |, where |T | denotes the d-dimensional
Lebesgue measure of T .

Theorem 1.1 gives us a tool for the evaluation of the various type of integrals in
the implementation of finite element and discontinuous Galerkin methods. Instead of
integration over T we integrate over T̂ which is generally easier. This is demonstrated
in the following paragraphs.

Let T ∈ Th and ϕ be a function defined on T . Our aim is to compute
∫

T

∂ϕ(x)

∂xi
dx. (1.43)

Let ϕ̂ : T̂ → R be defined as usual by ϕ̂(x̂) = ϕ(x) where x = FT (x̂),

FT = (FT,1, . . . , FT,d)

and T = FT (T̂). Moreover, we have x̂ = F−1
T (x) where

F−1
T = (F−1

T,1, . . . , F
−1
T,d)

is the inverse mapping of FT . With the aid of Theorem 1.1 and the chain rule, we have
∫

T

∂

∂xi
ϕ(x) dx =

∫

T̂

∂

∂xi
ϕ̂(x̂)| det JFT

(x̂)| dx̂ (1.44)

=

∫

T̂

d∑

k=1

∂ϕ̂(x̂)

∂x̂k

∂x̂k
∂xi
| det JFT

(x̂)| dx̂ =

∫

T̂

d∑

k=1

∂ϕ̂(x̂)

∂x̂k

∂F−1
T,k

∂xi
| det JFT

(x̂)| dx̂.

Therefore, we have to evaluate the partial derivative of F−1
T . It is possible to use the

following formulas. Let i, k = 1, . . . , d, then

xk = FT,k(F
−1
T (x)), |

∂

∂xi
∂

∂xi
xk =

∂

∂xi
FT,k(F

−1
T (x)),

δik =
d∑

l=1

∂FT,k

∂x̂l

∂F−1
T,l

∂xi
,

δik =
d∑

l=1

(JFT
)kl (JF−1

T
)li, (1.45)

20

where (JFT
)kl, k, l = 1, . . . , d and (JF−1

T
)li, l, i = 1, . . . , d denote entries of the Jacobi

matrices JFT
and JF−1

T
, respectively. Relation (1.45) implies

I = JFT
JF−1

T
=⇒ JF−1

T
= (JFT

)−1, (1.46)

where I is the identity matrix. Therefore, instead of evaluation of the Jacobi matrix
of F−1

T it is sufficient to evaluate (JFT
)−1 = the inversion of JFT

. This is simple, since
JFT

is (usually) 2× 2 or 3× 3 matrix.
Therefore, from (1.44) and (1.46) we have

∫

T

∂

∂xi
ϕ(x) dx =

∫

T̂

d∑

k=1

∂ϕ̂(x̂)

∂x̂k
(JFT

(x̂)−1)ki| det JFT
(x̂)| dx̂ (1.47)

=

∫

T̂

d∑

k=1

∂ϕ̂(x̂)

∂x̂k
(JFT

(x̂)−T)ik| det JFT
(x̂)| dx̂

=

∫

T̂

(
JFT

(x̂)−T∇̂ϕ̂(x̂)
)
i
| det JFT

(x̂)| dx̂,

where J−T
FT

is the transposed matrix to J−1
FT

, (J−T
FT
∇̂ϕ̂)i denotes the i-th component

of vector J−T
FT
∇̂ϕ̂ arising from the matrix-vector product of J−T

FT
by ∇̂ϕ̂ and ∇̂ is the

reference gradient operator given by

∇̂ :=

(
∂

∂x̂1
, . . . ,

∂

∂x̂d

)
. (1.48)

In the same manner it is possible to derive, e.g.,
∫

T

∂ϕa(x)

∂xi

∂ϕb(x)

∂xj
dx =

∫

T̂

(
JFT

(x̂)−T∇̂ϕ̂a(x̂)
)
i

(
JFT

(x̂)−T∇̂ϕ̂b(x̂)
)
j
| det JFT

(x̂)| dx̂

or more simply
∫

T

∂ϕa

∂xi

∂ϕb

∂xj
dx =

∫

T̂

(
J−T
FT
∇̂ϕ̂a

)
i

(
J−T
FT
∇̂ϕ̂b

)
j
| det JFT

| dx̂, (1.49)

which is type of integral appearing in the evaluation of the stiffness matrix.

1.2.3 Grids and functional spaces

Again, we consider the model Poisson problem (1.1) – (1.2), the weak formulation
(1.3) and the finite element discretization (1.4). In contrast to Section 1.1, we consider
more general partitions of Ω and finite element spaces. Let a grid Th be a set of
non-overlapping elements T ∈ Th such that

Ω =
⋃

T∈Th

T. (1.50)

We consider two following type of grids.

21

Triangular grid

Each element T ∈ Th is an image of the reference triangle (for d = 2) or the reference

tetrahedron (for d = 3) given by a polynomial mapping FT : T̂t → R, T ∈ Th. If FT is
a linear mapping then T is a triangle (for d = 2) or a tetrahedron (for d = 3). If FT

has the form (1.40) then T is an one-edge P 2-curvilinear triangle. The approximate
solution is sought in the functional space

V t,p
h := {vh, vh ∈ C(Ω) ∩H

1
0 (Ω), vh|T ◦ FT ∈ P

t,p(T̂t) ∀T ∈ Th}, (1.51)

P t,p(ω) := {ẑ : ω → R, ẑ(x̂1, . . . , x̂d) =

i1+···+id≤p∑

i1,...,id=0

ai1,...,id x̂
i1
1 . . . x̂

id
d , ai1,...,id ∈ R},

where ω ⊂ R
d is an arbitrary domain. Let us note that the notation vh|T ◦FT ∈ P

t,p(T̂t)

means that there exists a function v̂h ∈ P
t,p(T̂t) such that

vh(x) = vh(FT (x̂)) = v̂h(x̂) ∀x̂ ∈ T̂t. (1.52)

Obviously, if FT is a linear mapping then vh|T ∈ P t,p(T). Otherwise, (e.g., T is a
curvilinear triangle), vh|T 6∈ P

t,p(T).

The spaces P t,p(T̂t), p = 1, 2, 3 can be expressed (for d = 2) as

P t,1(T̂t) = span{1, x̂1, x̂2}, (1.53)

P t,2(T̂t) = span{1, x̂1, x̂2, x̂
2
1, x̂1x̂2, x̂

2
2},

P t,3(T̂t) = span{1, x̂1, x̂2, x̂
2
1, x̂1x̂2, x̂

2
2, x̂

3
1, x̂

2
1x̂2, x̂1x̂

2
2, x̂

3
2},

where span{S} is the linear hull of the set {S}. Obviously, N̂ t,p := dimP t,p(T̂t) =

(p+ 1)(p+ 2)/2 for d = 2 and N̂ t,p := dimP t,p(T̂t) = (p+ 1)(p+ 2)(p+ 3)/6 for d = 3.

Quadrilateral grids

Each element T ∈ Th is an image of the reference square (for d = 2) or the reference

cube (for d = 3) given by a polynomial mapping FT : T̂q → R, T ∈ Th. If FT is a
linear mapping then T is a parallelogram. The approximate solution is sought in the
functional space

V q,p
h := {vh, vh ∈ C(Ω) ∩H

1
0 (Ω), vh|T ◦ FT ∈ P

q,p(T̂q) ∀T ∈ Th}, (1.54)

P q,p(ω) := { ẑ : ω → R, ẑ(x1, . . . , xd) =

p∑

i1,...,id=0

ai1,...,idx
i1
1 . . . x

id
d , ai1,...,id ∈ R},

where ω ⊂ R
d is an arbitrary domain.

The spaces P q,p(T̂q), p = 1, 2, 3 can be expressed (for d = 2) as

P q,1(T̂q) = span{1, x̂1, x̂2, x̂1x̂2}, (1.55)

P q,2(T̂q) = span{1, x̂1, x̂2, x̂1x̂2, x̂
2
1, x̂

2
1x̂2, x̂

2
1x̂

2
2, x̂1x̂

2
2, x̂

2
2},

P q,3(T̂q) = span{1, x̂1, x̂2, x̂1x̂2, x̂
2
1, x̂

2
1x̂2, x̂

2
1x̂

2
2, x̂1x̂

2
2, x̂

2
2,

x̂31, x̂
3
1x̂2, x̂

3
1x̂

2
2, x̂

3
1x̂

3
2, x̂

2
1x̂

3
2, x̂1x̂

3
2, x̂

3
2}.

22

Obviously, N̂ q,p := dimP q,p(T̂q) = (p+ 1)d for d = 2, 3.

Since most of the following considerations are valid for triangular as well as quadri-
lateral grids we call Th a triangulation in both cases. Moreover, the corresponding
reference element is denoted by T̂ , P p(T̂) the corresponding space of polynomial func-

tions on T̂ with the dimension N̂ and the corresponding finite element space is denoted
by Vh.

1.2.4 Implementation

Basis of Vh

Let N denote the dimension of the space Vh and Bh := {ϕi(x)}
N
i=1 be its basis. The

construction of Bh will be discussed in Section 1.3. Here we only note that we construct
the set of reference shape functions B̂ := {ϕ̂j , ϕ̂j : T̂ → R}N̂j=1 such that

• ϕ̂j(x̂) ∈ P
p(T̂), j = 1, . . . , N̂ , N̂ is the dimension of P p(T̂).

• ϕ̂j(x̂), j = 1, . . . , N̂ are linearly independent,

• span(B̂) = P p(T̂).

We call B̂ the reference basis.

Moreover, in virtue of (1.51) or (1.54), the basis functions ϕi ∈ Bh satisfy: for each
T ∈ Th, T ⊂ supp(ϕi) there exists a function ϕ̂i,T ∈ B̂ such that

ϕi(x)|T = ϕi(FT (x̂))|T = ϕ̂i,T (x̂) ∀x̂ ∈ T̂ , i = 1, . . . , N. (1.56)

More details are given in Section 1.3.

Use of the concept of the reference elements

Our aim is to evaluate integrals of the type

∫

T

∂ϕi

∂xk

∂ϕj

∂xl
dx, i, j = 1, . . . , N, k, l = 1, . . . , d, T ∈ Th, (1.57)

which appears, e.g., in the definition of the stiffness matrix.

The use of the approach from Section 1.1 requires an evaluation (and storing) of
∇ϕi|T for all i = 1, . . . , N and all T ∈ Th. Let us note, that ∇ϕi|T = 0 for a lot of
T ∈ Th since supports of test functions contain only a few elements from Th.

It is more efficient to employ the concept of the reference elements, namely relation
(1.49), where the integration is carried out on the reference element T̂ .

Therefore, using (1.49), we can evaluate (1.57) with the aid of

∫

T

∂ϕi

∂xk

∂ϕj

∂xl
dx =

∫

T̂

(
J−T
FT
∇̂ϕ̂i,T

)
k

(
J−T
FT
∇̂ϕ̂j,T

)
l
| det JFT

| dx̂. (1.58)

23

Data structures

In order to evaluate the right-hand side of (1.58) for all i, j = 1, . . . , N, k, l =
1, . . . , d, T ∈ Th it is enough to evaluate and store the following data.

(S1) for each T ∈ Th, the determinant of the Jacobi matrix det JFT
and the transposed

matrix of the inversion of the Jacobi matrix J−T
FT

,

(S2) for each ϕ̂i, i = 1, . . . N̂ , the gradient ∇̂ϕ̂i on T̂ ,

(S3) for each pair (ϕi, T), T ∈ Th, T ⊂ supp(ϕi), i = 1, . . . , N , an index j ∈
{1, . . . , N̂} such that ϕi(FT (x̂))|T = ϕ̂j(x̂).

Let us note that (S1) is given by the geometry of the mesh, (S2) by the reference shape
functions and (S3) by a combination of both. However, in (S3) we have to store only
one integer index for any acceptable pair (ϕi, T).

1.3 Basis and shape functions

In this section, we describe two possible ways (among others) of the construction of the
basis of spaces V t,p

h and V q,p
h given by (1.51) and (1.54), respectively. In Section 1.3.1,

we describe the construction of Lagrangian basis, which is easy for determination and
also for implementation. However, in the case when we use, e.g., different degrees of
polynomial approximations at different elements (hp-methods), the efficiency of this
approach is low. Therefore, in Section 1.3.2 we present the construction of the Lobatto
basis, which is generally more efficient.

We have already mentioned in Section 1.2.4 that we define the reference shape
functions B̂ := {ϕ̂j}

N̂
j=1 defined on the reference element T̂ . Then the basis of Vh is

generated by B̂. We present the construction of the shape functions for d = 2. For
d = 3, it is possible to use a similar (but technically more complicated) approach.

1.3.1 The reference Lagrangian shape functions

The reference Lagrangian shape functions are defined with the aid of a set of the
reference Lagrangian nodes ẑi = (ẑi,1, ẑi,2), i = 1, . . . , N̂ within the reference element.

Then we simply put ϕ̂i(ẑk) = δij, i, j = 1, . . . , N̂ . In the following, we introduce
the reference Lagrangian nodes and the reference Lagrangian shape function for the
reference triangle and the reference square separately.

The reference Lagrangian shape functions on the square

Definition 1.2. (Lagrangian nodes) Let p ≥ 1, then the Lagrangian nodes on the

reference square T̂q corresponding to the polynomial degree p are the set of nodes

{ẑq,pk }
N̂q,p

k=1 , ẑq,pk = (ẑq,pk,1, ẑ
q,p
k,2) (1.59)

24

ẑ
q,1
1

ẑ
q,1
2

ẑ
q,1
3

ẑ
q,1
4

ẑ
q,2
1

ẑ
q,2
2

ẑ
q,2
3

ẑ
q,2
4

ẑ
q,2
5

ẑ
q,2
6

ẑ
q,2
7

ẑ
q,2
8

ẑ
q,2
9

ẑ
q,3
1

ẑ
q,3
2

ẑ
q,3
3

ẑ
q,3
4

ẑ
q,3
5

ẑ
q,3
6

ẑ
q,3
7

ẑ
q,3
8

ẑ
q,3
9

ẑ
q,3
10

ẑ
q,3
11

ẑ
q,3
12

ẑ
q,3
13

ẑ
q,3
14

ẑ
q,3
15

ẑ
q,3
16

Figure 1.8: The reference Lagrangian nodes on the reference square T̂q, p = 1 (left),
p = 2 (center) and p = 3 (right)

where
ẑq,pj(p+1)+i+1,1 = i/p, ẑq,pj(p+1)+i+1,2 = j/p, i, j = 0, . . . , p. (1.60)

Obviously, N̂ q,p = (p+ 1)2.

Figure 1.8 shows the Lagrangian nodes for p = 1, 2, 3. We define the reference
Lagrangian shape functions {ϕ̂q,p

l }
N̂q,p

l=1 for p ≥ 1 on the reference square T̂q by the
relation

ϕ̂q,p
l ∈ P

q,p(T̂q), ϕ̂
q,p
l (ẑq,pk) = δlk, l, k = 1, . . . , N̂ q,p. (1.61)

It is possible to derive the following explicit relations for the Lagrangian shape functions
on the reference square T̂q

p = 1 ϕ̂q,1
1 = (1− λ1)(1− λ2), ϕ̂

q,1
2 = λ1(1− λ2), (1.62)

ϕ̂q,1
3 = λ2(1− λ1), ϕ̂

q,1
4 = λ1λ2

p = 2 ϕ̂q,2
1 = 4(1− λ1)(

1

2
− λ1)(1− λ2)(

1

2
− λ2),

ϕ̂q,2
2 = 8λ1(1− λ1)(1− λ2)(

1

2
− λ2),

ϕ̂q,2
3 = −4λ1(

1

2
− λ1)(1− λ2)(

1

2
− λ2),

ϕ̂q,2
4 = 8(1− λ1)(

1

2
− λ1)λ2(1− λ2),

ϕ̂q,2
5 = 16λ1(1− λ1)λ2(1− λ2),

ϕ̂q,2
6 = −8λ1(

1

2
− λ1)λ2(1− λ2),

ϕ̂q,2
7 = −4(1− λ1)(

1

2
− λ1)λ2(

1

2
− λ2),

ϕ̂q,2
8 = −8λ1(1− λ1)λ2(

1

2
− λ2),

ϕ̂q,2
9 = 4λ1(

1

2
− λ1)λ2(

1

2
− λ2),

where λ1 = x̂1 and λ2 = x̂2 are the barycentric coordinates on T̂q.

25

ẑ
t,1
1

ẑ
t,1
2

ẑ
t,1
3

ẑ
t,2
1

ẑ
t,2
2

ẑ
t,2
3

ẑ
t,2
4

ẑ
t,2
5

ẑ
t,2
6

ẑ
t,3
1

ẑ
t,3
2

ẑ
t,3
3

ẑ
t,3
4

ẑ
t,3
5

ẑ
t,3
6

ẑ
t,3
7

ẑ
t,3
8

ẑ
t,3
9

ẑ
t,3
10

Figure 1.9: Lagrangian nodes on the reference triangle T̂t, p = 1 (left), p = 2 (center)
and p = 3 (right)

The reference Lagrangian shape functions on the triangle

Definition 1.3. (Lagrangian nodes) Let p ≥ 1, then the reference Lagrangian nodes on

the reference triangle T̂t corresponding to the polynomial degree p are the set of nodes

{ẑt,pk }
N̂t,p

k=1 , ẑt,pk = (ẑt,pk,1, ẑ
t,p
k,2) (1.63)

generated by the following algorithm

k := 0
for i = 0, . . . , p
for j = 0, . . . , p− i
k := k + 1
ẑt,pk,1 = j/p,

ẑt,pk,2 = i/p.

(1.64)

Obviously, N̂ t,p = (p+ 1)(p+ 2)/2.

Figure 1.9 shows the Lagrangian nodes for p = 1, 2, 3. We define the reference
Lagrangian shape functions {ϕ̂t,p

l }
N̂t,p

l=1 by the relation

ϕ̂t,p
l ∈ P

t,p(T̂t), ϕ̂
t,p
l (ẑt,pk) = δlk, l, k = 1, . . . , N̂ t,p. (1.65)

It is possible to derive the following explicit relation for the Lagrangian shape functions

26

on the reference triangle T̂t

p = 1 ϕ̂t,1
1 = λ1, ϕ̂

t,1
2 = λ2, ϕ̂

t,1
3 = λ3, (1.66)

p = 2 ϕ̂t,2
2 = λ1(2λ1 − 1), ϕ̂t,2

2 = 4λ1λ2, ϕ̂
t,2
3 = λ2(2λ2 − 1),

ϕ̂t,2
4 = 4λ2λ3, ϕ̂

t,2
5 = λ3(2λ3 − 1), ϕ̂t,2

6 = 4λ3λ1,

p = 3 ϕ̂t,3
1 = λ1(3λ1 − 1)(3λ1 − 2)/2, ϕ̂t,3

2 = 9λ1λ2(3λ1 − 1)/2,

ϕ̂t,3
3 = 9λ1λ2(3λ2 − 1)/2, ϕ̂t,3

4 = λ2(3λ2 − 1)(3λ2 − 2)/2,

ϕ̂t,3
5 = 9λ3λ1(3λ1 − 2)/2, ϕ̂t,3

6 = 27λ1λ2λ3,

ϕ̂t,3
7 = 9λ2λ3(3λ2 − 1)/2, ϕ̂t,3

8 = 9λ3λ1(3λ2 − 1)/2,

ϕ̂t,3
9 = 9λ2λ3(3λ2 − 2)/2, ϕ̂t,3

10 = λ3(3λ3 − 1)(3λ3 − 2),

p = 4 ϕ̂t,4
1 = 6λ1(4λ1 − 1)(4λ1 − 2)(4λ1 − 3),

ϕ̂t,4
2 = 8λ1λ2(4λ1 − 1)(4λ1 − 2)/3,

ϕ̂t,4
3 = 4λ1λ2(4λ1 − 1)(4λ2 − 1),

ϕ̂t,4
4 = 8λ1λ2(4λ2 − 1)(4λ2 − 2)/3,

ϕ̂t,4
5 = 6λ2(4λ2 − 1)(4λ2 − 2)(4λ2 − 3),

ϕ̂t,4
6 = 8λ3λ1(4λ1 − 1)(4λ3 − 2)/3,

ϕ̂t,4
7 = 32λ1λ2λ3(4λ1 − 1),

ϕ̂t,4
8 = 32λ1λ2λ3(4λ2 − 1),

ϕ̂t,4
9 = 8λ2λ3(4λ2 − 1)(4λ2 − 2)/3,

ϕ̂t,4
10 = 4λ3λ1(4λ3 − 1)(4λ1 − 1),

ϕ̂t,4
11 = 32λ1λ2λ3(4λ3 − 1),

ϕ̂t,4
12 = 4λ2λ3(4λ2 − 1)(4λ3 − 1),

ϕ̂t,4
13 = 8λ3λ1(4λ3 − 1)(4λ3 − 2)/3,

ϕ̂t,4
14 = 8λ2λ3(4λ3 − 1)(4λ3 − 2)/3,

ϕ̂t,4
15 = 6λ3(4λ3 − 1)(4λ3 − 2)(4λ3 − 3).

Here λ1 = x̂1, λ2 = x̂2 and λ3 = 1− x̂1 − x̂2 are the barycentric coordinates on T̂t.

1.3.2 The reference Lobatto shape functions

The disadvantage of the Lagrangian shape functions is that they are not hierarchical,
which means that

{ϕ̂q,p
k }

N̂q,p

k=1 6⊂ {ϕ̂
q,p+1
k }N̂

q,p+1

k=1 and {ϕ̂t,p
k }

N̂t,p

k=1 6⊂ {ϕ̂
t,p+1
k }N̂

t,p+1

k=1 , p = 1, 2, (1.67)

This causes no trouble in the case when our aim is to implement FEM for one given
degree of polynomial approximation only. In the case, when we need to implement

27

several degrees of polynomial approximation (e.g., hp-FEM), then the use of the La-
grangian shape functions requires an evaluation and storing data structure (S2) for a
lot of test functions.

Therefore, it is more efficient to use, e.g., Lobatto shape functions, which are hier-
archical, since they satisfy the conditions

{ϕ̂q,p
k }

N̂q,p

k=1 ⊂ {ϕ̂
q,p+1
k }N̂

q,p+1

k=1 and {ϕ̂t,p
k }

N̂t,p

k=1 ⊂ {ϕ̂
t,p+1
k }N̂

t,p+1

k=1 , p = 1, 2, . . . , (1.68)

for quadrilaterals and triangles, respectively.
Now, we recall two well-known sets of functions.

Definition 1.4. (Legendre polynomials) Legendre polynomials Ln(x), n = 0, 1, . . . are
eigenvectors of the Legendre operator,

−
d

dx

[
(1− x2)

d

dx
Ln(x)

]
= n(n+ 1)Ln, x ∈ (−1, 1). (1.69)

Legendre polynomials can be evaluated using the recursive formula

L0(x) = 1,

L1(x) = x,

Lk(x) =
2k − 1

k
xLk−1(x)−

k − 1

k
Lk−2(x), k = 2, 3,

Legendre polynomials form an orthogonal basis of the space L2(−1, 1), namely

∫ 1

−1

Lk(x)Lm(x) dx =

{
2

2k+1
for k = m,

0 otherwise.
(1.70)

Definition 1.5. (Lobatto functions on (−1, 1)) Let us define functions

ℓ̃0(x) =
1− x

2
, (1.71)

ℓ̃1(x) =
x+ 1

2
,

ℓ̃k(x) =
1

‖Lk−1‖2

∫ x

−1

Lk−1(ξ)dξ, k = 2, 3,

From (1.70) we have ‖Lk−1‖2 =
√
2/(2k − 1). Obviously ℓ̃k(−1) = 0 and ℓ̃k(1) = 0

for k ≥ 2 since Lk−1, k ≥ 2 are orthogonal to L0 = 1, i.e.,

∫ 1

−1

Lk(x) dx =

∫ 1

−1

Lk(x)L0(x) dx = 0, k = 2, 3, (1.72)

Therefore, the Lobatto functions ℓ̃k, k = 0, . . . , p form a basis of the space Pp(−1, 1).
For the purposes of our reference elements, we have to transform the Lobatto func-

tions from the interval (−1, 1) onto (0, 1).

28

Definition 1.6. (Lobatto functions on (0, 1)) Let us define the functions

ℓk(x) = ℓ̃k

(
x+ 1

2

)
, k = 0, 1, . . . , (1.73)

where ℓ̃k, k = 0, 1, . . . , are given by (1.71).

Obviously ℓk(0) = 0, ℓk(1) = 0 for k ≥ 2 and the Lobatto functions ℓk, k = 0, . . . , p
form a basis of the space Pp(0, 1).

For the definition of the shape function on triangles, it is convenient to decompose
the higher-order Lobatto functions ℓk, k ≥ 2 from Definition 1.6 into products of the
form

ℓk(x) = ℓ0(x)ℓ1(x)ϕk−2(x), k = 2, 3, . . . , (1.74)

where ϕk−2 ∈ P
k−2([0, 1]), k = 2, 3, . . . are the kernel functions.

Let us recall that we denote by {v̂i} the vertices and by {êi} the edges of the

reference element T̂ .

The reference Lobatto shape functions on the square

The Lobatto shape functions on the quadrilateral T̂q are constructed as tensor products
of the one dimensional Lobatto functions. They are grouped into 3 subsets according
to which node they belong.

The Lobatto vertex functions ϕ̂q,p
v̂l
, l = 1, . . . , 4 assigned to vertices v̂l, l = 1, . . . , 4

are equal to one at v̂l and vanishing at all remaining vertices. They are chosen bilinear,
defined via products of Lobatto functions as follows

ϕ̂q,p
v̂1
(x̂1, x̂2) = ℓ0(x̂1)ℓ0(x̂2), (1.75)

ϕ̂q,p
v̂2
(x̂1, x̂2) = ℓ1(x̂1)ℓ0(x̂2),

ϕ̂q,p
v̂3
(x̂1, x̂2) = ℓ1(x̂1)ℓ1(x̂2),

ϕ̂q,p
v̂4
(x̂1, x̂2) = ℓ0(x̂1)ℓ1(x̂2),

for (x̂1, x̂2) ∈ T̂q.
For p ≥ 2, the Lobatto edge functions ϕ̂q,p

êj ,k
, k = 2, . . . , p, j = 1, . . . , 4 are associated

with the corresponding edge êj. Their trace on êj coincides with the Lobatto functions
ℓk and their trace vanishes on all remaining edges:

ϕ̂q,p
ê1,k

(x̂1, x̂2) = ℓk(x̂1)ℓ0(x̂2), 2 ≤ k ≤ p, (1.76)

ϕ̂q,p
ê2,k

(x̂1, x̂2) = ℓ1(x̂1)ℓk(x̂2), 2 ≤ k ≤ p,

ϕ̂q,p
ê3,k

(x̂1, x̂2) = ℓk(x̂1)ℓ1(x̂2), 2 ≤ k ≤ p,

ϕ̂q,p
ê4,k

(x̂1, x̂2) = ℓ0(x̂1)ℓk(x̂2), 2 ≤ k ≤ p,

for (x̂1, x̂2) ∈ T̂q. Therefore, p− 2 shape functions correspond to each edge of T̂q.
For p ≥ 3, the shape functions are completed by Lobatto bubble functions ϕ̂q,p

b,n1,n2,

which vanish everywhere on the boundary of T̂q

ϕ̂q,p
b,n1,n2,

(x̂1, x̂2) = ℓn1
(x̂1)ℓn2

(x̂2), 2 ≤ n1 ≤ p, 2 ≤ n2 ≤ p, (1.77)

for (x̂1, x̂2) ∈ T̂q. The total number of the Lobatto shape functions on T̂q is summarized
in Table 1.1.

29

Node type Pol. degree # of shape functions # of objects
Vertex p ≥ 1 1 4
Edge p ≥ 2 p− 1 4
Bubble p ≥ 3 (p− 1)2 1

Table 1.1: Lobatto shape functions on T̂q
.

The reference Lobatto shape functions on the triangle

The Lobatto basis of the space Vh consists again of vertex, edge and bubble shape
functions defined on T̂t.

The Lobatto vertex functions ϕ̂t,p
v̂1
, ϕ̂t,p

v̂2
, ϕ̂t,p

v̂3
, are assigned to vertices v̂1, v̂2, v̂3. Each

function is equal to one at the corresponding vertex and vanishes at the remaining two
vertices. Vertex functions are linear, defined by following formulas

ϕ̂t,p
v̂k
(x̂1, x̂2) = λk, k = 1, 2, 3, (1.78)

where λ1 = x̂1, λ2 = x̂2 and λ3 = 1− x̂1 − x̂2 are the barycentric coordinates on T̂t.

For p ≥ 2, the Lobatto edge functions ϕ̂t,p
êj ,k

, k = 2, . . . , p, j = 1, 2, 3 coincide with
one-dimensional Lobatto functions on corresponding edges and vanish on all remaining
edges. They can be written using the kernel functions ϕk−2, defined by (1.74), in the
form

ϕ̂t,p
ê1,k

(x̂1, x̂2) = λ1λ2ϕk−2(λ2 − λ1), 2 ≤ k ≤ p, (1.79)

ϕ̂t,p
ê2,k

(x̂1, x̂2) = λ2λ3ϕk−2(λ3 − λ2), 2 ≤ k ≤ p,

ϕ̂t,p
ê3,k

(x̂1, x̂2) = λ3λ1ϕk−2(λ1 − λ3), 2 ≤ k ≤ p.

For p ≥ 3, the Lobatto bubble shape functions ϕ̂t,p
b,n1,n2

complete the basis on T̂t.
These functions vanish on the whole element boundary. They will be defined using
affine coordinates and kernel functions as follows

ϕ̂t,p
b,n1,n2

= λ1λ2λ3ϕn1−1(λ3−λ2)ϕn2−1(λ2−λ1), 1 ≤ n1, 1 ≤ n2, n1+n2 ≤ p−1, (1.80)

where ϕn1−1, ϕn2−1 are the kernel functions defined by (1.74). The total number of
Lobatto shape functions on a triangular reference element is summarized in Table 1.2.

Remark 1.2. On both reference domains T̂q, T̂t shape functions coincide on edges with
Lobatto functions ℓk, k = 0, 1, Moreover, the bubble shape functions do not affect
a possible compatibility between quadrilateral and triangular meshes. This allows us to
combine triangular and quadrilateral elements in one hybrid mesh, see [1], [3].

30

Node type Pol. degree # of shape functions # of objects
Vertex p ≥ 1 1 3
Edge p ≥ 2 p− 1 3
Bubble p ≥ 3 (p− 1)(p− 2)/2 1

Table 1.2: Lobatto shape functions on T̂t
.

1.3.3 Global basis functions on Vh

In Sections 1.3.1 – 1.3.2 we introduced two possible sets of shape functions defined on
the reference element T̂ .

Here we describe the construction of a global basis of the finite-dimensional space
Vh, which is carried out by gluing together reference shape functions (transformed to
the physical element by the mapping FT). This is done in such a way, that the resulting
basis functions satisfy conformity requirements of the space Vh ⊂ H1(Ω).

Remark 1.3. In order to fulfill the conformity requirement of global continuity of
basis functions, the orientation of physical mesh edges has to be taken into account.
For two-dimensional problems, it is possible to index edges of the reference element
as well as physical elements counterclockwise. Then the orientation of the reference
element edge ê = v̂iv̂j ⊂ ∂T̂ coincides with the orientation of the edge e = vivj ⊂ ∂T
such that vi = FT (v̂i) and vj = FT (v̂j). In other case, when the orientations differ, all
reference edge functions have to be transformed by a suitable mapping, which inverts
the parameterization of the edge ê.

In order to avoid a complication with a notation, we assume that Th is a triangular
grid. All statements are valid also for quadrilateral grid, only the superscript t has to
be replaced by the superscript q and the number of vertices and edges of T ∈ Th has
to be increased from 3 to 4.

Global Lagrangian shape functions

Let p ≥ 1 be a given degree of polynomial approximation and ẑt,pi , i = 1, . . . , N̂ be the
reference Lagrangian nodes defined by (1.64). For each T ∈ Th, we define the nodes

zt,pT,i = FT (ẑ
t,p
i), i = 1, . . . , N̂ , (1.81)

where FT maps T̂t onto T . Let us note that some of these nodes coincide, namely
zt,pT,i = zt,pT ′,i′ for T 6= T ′ sharing a vertex or an edge.

Moreover, we define the set of Lagrangian nodes

L
t,p :=

{
z ∈ Ω such that ∃(T, i) ∈ Th × {1, . . . , N̂} satisfying z = zt,pT,i

}
. (1.82)

This means that L t,p contains all zt,pT,i, i = 1, . . . , N̂ , T ∈ Th lying inside of Ω (we
exclude nodes lying on ∂Ω) and each node appears in L t,p only one time. We index
the set L t,p by L t,p = {zt,pj , j = 1, . . . , NL}.

31

The global Lagrangian basis functions ϕt,p
i , i = 1, . . . , NL are defined by

ϕt,p
i (x) ∈ Vh, ϕ

t,p
i (zt,pj) = δij, i, j = 1, . . . , NL. (1.83)

Let us note that each global Lagrangian basis function ϕt,p
i , i = 1, . . . , NL can be,

due to (1.83), classified as

• vertex basis function if the corresponding Lagrangian node is a vertex of Th, its
support is formed by a patch of elements T ∈ Th having this vertex in common,

• edge basis function if the corresponding Lagrangian node lies on an edge of Th,
its support is formed by a patch of two elements T ∈ Th sharing this edge,

• bubble basis function if the corresponding Lagrangian node lies in the interior of
T ∈ Th, which is also its support.

The global Lagrangian basis functions are defined in the following way.

Definition 1.7. (Vertex basis function) Let zt,pi be a Lagrangian node which is identified
with the vertex vl of Th. Then the corresponding vertex Lagrangian basis function ϕt,p

i

is a continuous function defined on Ω which equals to one at vl and vanishes outside
of the patch Sl formed by all elements T ∈ Th sharing the vertex vl. For each element
Tj ∈ Sl,

ϕt,p
i (x)|Tj

= ϕ̂t,p
k (x̂), x = FT (x̂), (1.84)

where ϕ̂t,p
k is the reference Lagrangian shape function such that ẑk = F−1

T (zt,pi).

Definition 1.8. (Edge basis function) Let zt,pi be a Lagrangian node which lies on
an edge el of Th. Then the corresponding edge Lagrangian basis function ϕt,p

i is a
continuous function defined on Ω which vanishes outside of the patch Sl formed by all
elements sharing the edge el. For each element Tj ∈ Sl,

ϕt,p
i (x)|Tj

= ϕ̂t,p
k (x̂), x = FT (x̂), (1.85)

where ϕ̂t,p
k is the reference Lagrangian shape function such that ẑk = F−1

T (zt,pi).

Definition 1.9. (Bubble basis function) Let zt,pi be a Lagrangian node which lies in
the interior of an element T ∈ Th. Then the corresponding bubble Lagrangian basis
function ϕt,p

i is a continuous function defined on Ω which vanishes outside of T and

ϕt,p
i (x)|T = ϕ̂t,p

k (x̂), x = FT (x̂), (1.86)

where ϕ̂t,p
k is the reference Lagrangian shape function such that ẑk = F−1

T (zt,pi).

Global Lobatto shape functions

Let p ≥ 1 be a given degree of polynomial approximation and the global basis B of Vh
consists of three types of basis functions:

32

• Vertex basis functions ϕt,p
vl
, l = 1, . . . , N , which are associated to each inner

vertex vl, l = 1, . . . , N of Th. The support of ϕt,p
vl

is formed by a patch of
elements T ∈ Th having vl as a vertex.

• Edge basis functions ϕt,p
el,k
, 2 ≤ k ≤ p, l = 1, . . . , E, which are associated to each

inner edge el, l = 1, . . . , E of Th. The support of ϕt,p
el,k
, 2 ≤ k ≤ p is formed by

the patch of two elements from T ∈ Th sharing the face el.

• Bubble basis functions ϕt,p
T,n1,n2

, 1 ≤ n1, 1 ≤ n2, n1 + n2 ≤ p− 1, T ∈ Th, which
are associated to each element T ∈ Th. Their support consists only of the one
element T .

The global Lobatto basis functions are defined in the following way.

Definition 1.10. (Vertex basis function) The vertex basis function ϕt,p
vl

associated with
a mesh vertex vl, l = 1, . . . , N is a continuous function defined on Ω which equals to
one at vl and vanishes outside of the patch Sl formed by all elements T ∈ Th sharing
the vertex vl. For each element Ti ∈ Sl,

ϕt,p
vl
(x)|Ti

= ϕ̂t,p
v̂k
(x̂), x = FT (x̂), (1.87)

where ϕ̂t,p
v̂k

is the reference vertex shape function associated to the vertex v̂k of T̂t such

that v̂k = F−1
T (vl).

Definition 1.11. (Edge basis function) The edge basis function ϕt,p
el,k

associated with a
mesh edge el and k = 2, . . . , p, is a continuous function defined on Ω, which vanishes
outside of the patch Sl formed by all elements sharing the edge el. For each element
T ∈ Sl,

ϕt,p
el,k

(x)|Ti
= ϕ̂t,p

êj ,k
(x̂), x = FT (x̂), (1.88)

where ϕ̂t,p
êj ,k

is the reference edge shape function associated to the edge êj of T̂t such that

êj = F−1
T (el).

Definition 1.12. (Bubble basis function) The bubble basis function ϕt,p
T,n1,n2

associated
with T ∈ Th and 1 ≤ n1, 1 ≤ n2, n1 + n2 ≤ p − 1, k = 2, . . . , p, is a continuous
function defined on Ω which vanishes outside of T ,

ϕt,p
T,n1,n2

(x)|T = ϕ̂t,p
b,n1,n2

(x̂), x = FT (x̂), (1.89)

where ϕ̂t,p
b,n1,n2

is the reference bubble shape function associated to T̂t.

Remark 1.4. We already mentioned that the use of hierarchical finite elements is
advantageous in the case where different degrees of polynomial approximation are used
on different elements. However, in the case of conforming finite element methods,
the basis functions have to be continuous. Therefore, it is necessary to construct a
transition from one degree of polynomial approximation to the another, see [1].

33

1.4 Discontinuous finite elements

In the previous sections of this chapter, we discussed implementations of conforming
finite elements methods, where the finite element spaces consist of continuous functions.
In this section we focus on an implementation of methods based on discontinuous
approximations, namely the discontinuous Galerkin (DG) method.

Although the DG formulation is more complicated than for the conforming FEM
since additional terms appear there, its implementation is usually simpler since the
test functions are chosen separately for each T ∈ Th.

1.4.1 DG discretization of the model problem

In the following we recall the DG discretization of the model problem (1.1) – (1.2). We
consider here the IIPG variant of the DG method since it has the simplest formulation.

Let Th (h > 0) be a partition of the closure Ω of the domain Ω into a finite number
of closed d-dimensional elements, where we admit a combination of triangular and
quadrilateral elements including hanging nodes. For simplicity, we write again,

Ω =
⋃

T∈Th

T. (1.90)

Moreover, Fh denotes the set of all edges (faces) of Th.
We assume that for each element T ∈ Th there exists a mapping

FT = FT (x̂) = (FT,1(x̂), . . . , FT,d(x̂)) : T̂ → R
d such that FT (T̂) = T, (1.91)

where T̂ is either the reference triangle T̂t or the reference quadrilateral T̂q given by
(1.34) or (1.35), respectively.

We define the space of discontinuous piecewise polynomial functions Shp by

Shp = {vh, vh ∈ L
2(Ω), vh|T ◦ FT ∈ P

p(T̂) ∀T ∈ Th}, (1.92)

where T̂ denotes either T̂t or T̂q depending on the type of T . Furthermore, P p is the

space of polynomials of degree ≤ p on T̂ defined by (1.51) and/or (1.54).
Since DG methods use a discontinuous approximation, it is possible to define the

space P p(T̂) in (1.92) in several manners, namely

• P t,p(T̂t) for triangles and P
t,p(T̂q) for quadrilaterals,

• P q,p(T̂t) for triangles and P
q,p(T̂q) for quadrilaterals,

• P t,p(T̂t) for triangles and P
q,p(T̂q) for quadrilaterals,

In this text we consider the first variant, the others can be obtain with only a small
modification.

Moreover, ne denotes a unit normal vector to e ∈ Fh, its orientation is arbitrary
but fixed. Furthermore, the symbols 〈vh〉e and [|vh|]Ee denote the mean value and the

34

jump in direction of ne of vh ∈ Shp on inner face e ∈ Fh (e ⊂ Ω). For e ⊂ ∂Ω,
we put [|vh|]Ee = 〈vh〉e = vh|e. Finally, if ne or [| · |]Ee or 〈·〉e are arguments of∫
e
. . . dσ, e ∈ Fh, we omit very often the subscript e and write simply n or [| · |]E or

〈·〉, respectively.
Now, we are ready to introduce the DG approximation of the model problem.

Definition 1.13. We say that uh ∈ Shp is the approximate DG solution of (1.1) –
(1.2) if

∑

T∈Th

∫

T

∇uh · ∇vh dx −
∑

e∈Fh

∫

e

〈∇uh〉 · n[|vh|]E dσ (1.93)

+
∑

e∈Fh

∫

e

ρ[|uh|]E[|vh|]E dσ =

∫

Ω

g vh dx ∀vh ∈ Shp,

where ρ denotes the penalty parameter.

1.4.2 The hp-discontinuous Galerkin method

Let us assume that the elements of Th are indexed by

Th = {Tµ, µ = 1, . . . ,M}. (1.94)

DGM allows the use of different polynomial degrees over different elements without
the necessity to construct a cross-edge transition from one degree of polynomial ap-
proximation to the another. In this section, we will consider this general case since
its treatment is relatively simple. We assign a positive integer pµ (local polynomial
degree) to each Tµ ∈ Th. In the case when one uses the same degree of polynomial
approximation in the whole Ω, we have pµ = p ∀Tµ ∈ Th. We define the set

p = {pµ, Tµ ∈ Th}. (1.95)

Over the triangulation Th, we define the finite dimensional space of discontinuous
piecewise polynomial functions associated with the vector p by

Shp = {v; v ∈ L
2(Ω), v|Tµ

◦ FK ∈ Ppµ(T̂) ∀µ = 1, . . . ,M}, (1.96)

where P pµ(T̂) denotes the space of all polynomials on T̂ of degree ≤ pµ.
Now we can simply formulate the hp-approximation of the model problem.

Definition 1.14. We say that uh ∈ Shp is the hp-approximate DG solution of (1.1) –
(1.2) if

∑

T∈Th

∫

T

∇uh · ∇vh dx −
∑

e∈Fh

∫

e

〈∇uh〉 · n[|vh|]E dσ (1.97)

+
∑

e∈Fh

∫

e

ρ[|uh|]E[|vh|]E dσ =

∫

Ω

g vh dx ∀vh ∈ Shp,

where ρ denotes the penalty parameter.

35

pµ 1 2 3 4 5
d = 2 3 6 10 15 21
d = 3 4 10 20 35 56

Table 1.3: Values of dofµ for pµ = 1, . . . , 5 and d = 2, 3

In comparison with (1.4), the face integrals have to be implemented. On the other
hand, the implementation of DGM is easier since a discontinuous approximation is
used. Therefore, it is possible to construct basis functions with a support consisting of
one T ∈ Th.

In the following we describe the construction of basis functions of Shp. First, we in-
troduce a (global) basis of the space Shp as a composition of local shapes constructed for
each T ∈ Th separately. Then, we introduce the construction of local shape functions.
Finally, we explain the evaluation of the face integrals.

1.4.3 Definition of the DG basis

Since Shp is the space of discontinuous piecewise polynomial functions, it is possible to
consider a set of linearly independent polynomial functions on Tµ for each Tµ ∈ Th

Bµ =
{
ϕµ,j; ϕµ,j ∈ Shp, supp(ϕµ,j) ⊆ Tµ, (1.98)

ϕµ,j are linearly independent for j = 1, . . . , dofµ

}
,

where

dofµ =

1
2

∏2
j=1(pµ + j) for d = 2

1
6

∏3
j=1(pµ + j) for d = 3

, µ = 1, . . . ,M, (1.99)

denotes the number of local degrees of freedom for each element Tµ ∈ Th. The values
of dofµ are shown in Table 1.3 for pµ = 1, . . . , 5 and d = 2, 3. We call Bµ the local basis
on Tµ. For the construction of the basis Bµ, µ = 1, . . . ,M , see Section 1.4.4.

A composition of the local bases Bµ, µ = 1, . . . ,M defines a basis of Shp, i.e.,

B = {ϕj; ϕj ∈ Shp, j = 1, . . . , dof}. (1.100)

By dof (i.e. degrees of freedom), we denote the dimension of Shp (=number of elements
of the basis B) which is equal to

dof =
M∑

µ=1

dofµ, (1.101)

where dofµ is given by (1.99).
Therefore, a function uh ∈ Shp can be written in the form

uh(x) =
M∑

µ=1

dofµ∑

j=1

uµ,jϕµ,j(x), x ∈ Ω, (1.102)

36

where uµ,j ∈ R, j = 1, . . . , dofµ, µ = 1, . . . ,M . Moreover, for uh ∈ Shp, we define the
vector of its basis coefficients by

u = {uµ,j}
µ=1,...,M
j=1,...,dofµ

∈ R
dof . (1.103)

Therefore, using (1.102) – (1.103) we have an isomorphism

uh ∈ Shp ←→ u ∈ R
dof . (1.104)

1.4.4 Construction of the DG basis functions

In order to achieve reasonable efficiency, hierarchical basis functions should be em-
ployed. We put

p̄ = max
µ=1,...,M

pµ.

Let P p̄(T̂) denote the space of all polynomials on T̂ of degree ≤ pp̄. Let Ŝp̄ be a

hierarchical basis of P p̄(T̂) which will be specified later. We call Ŝp̄ the reference basis
and its elements the reference shape functions.

Furthermore, let Fµ := FTµ
, µ = 1, . . . ,M , be the mapping introduced by (1.91)

such that Fµ(T̂) = Tµ. We put

Bµ := {ϕµ,j ; ϕµ,j(x) = ϕµ,j(Fµ(x̂)) = ϕ̂j(x̂), x̂ ∈ T̂ , j = 1, . . . , dofµ}, (1.105)

which defines a basis Bµ introduced in (1.98) for each element Tµ ∈ Th separately.
Finally, (1.100) defines the global basis of Shp.

Reference shape functions

It is possible to use an arbitrary set of (hierarchical or non-hierarchical) shape functions
for the definition of Ŝp̄. An example are the Lagrangian and Lobatto shape functions
introduced in Sections 1.3.1 and 1.3.2, respectively. However, since Shp is the space
of discontinuous functions, it is not necessary to construct vertex, edge and bubble
functions in order to fulfil the continuity of the basis functions.

Therefore, it is possible to use the Taylor shape functions given by

{
ϕ̂i1,...,id(x̂1, . . . , x̂d) = Πd

j=1(x̂j − x̂
c
j)

ij ; i1, . . . , id ≥ 0,
d∑

j=1

ij ≤ p̄

}
, (1.106)

where (x̂c1, . . . , x̂
c
d) is the barycentre of T̂ . (It is possible to use also x̂c1 = · · · = x̂cd = 0).

The advantage of Taylor shape functions is a simpler implementation since we need not
distinguish among the vertex, edge and bubble functions, one subroutine is sufficient.

However, a direct use of the Taylor shape functions is not too practical, since
these functions are not normalized which can cause problems in the solution of the
corresponding linear algebraic systems. Moreover, in many application, namely in
evolution problems, it is advantageous to employ an L2-orthonormal basis because the
corresponding linear systems have favorable computational properties. Let us note that

37

a suitable preconditioning can reduce many drawbacks following from the possible use
of non-normalized shape functions.

Therefore, we employ the local character of the shape functions and construct a
basis of Ŝp̄ which is orthonormal with respect to the L2-scalar product. The simplest
way how to obtain a L2-orthonormal basis is the performance of the Gram-Schmidt
orthogonalization process applied to the functions from (1.106). Then we obtain the
orthonormal set of the reference shape functions

Ŝp̄ := {ϕ̂j, j = 1, . . . , dof µ̄}, (1.107)

where dof µ̄ is given by (1.99) with pµ̄ := p̄.

It is a well known fact that the Gram-Schmidt orthogonalization is an unstable
algorithm. However, in practice, this approach works, since dof µ̄ is usually not too
large a number (between 10 and 200) and moreover, the instability of the Gram-
Schmidt process causes a small violation of the L2-orthogonality of the reference shape
functions which do not affect good computational properties of the corresponding linear
algebraic systems.

The Gram-Schmidt orthogonalization on the reference element can be carried out
symbolically by some suitable software (e.g., Maple) or numerically. Our numerical
experiments based on the numerical realization of the Gram-Schmidt orthogonalization
work with success for p̄ = 10 ⇒ dof µ̄ = 45 (for d = 2).

Finally, let us note that the global basis of Shp obtained from (1.100), (1.105) and
(1.107) is orthonormal if the mappings Fµ := FTµ

, µ = 1, . . . ,M are linear. Otherwise,
some violations of the L2-orthogonality are present. However, the mappings Fµ, µ =
1, . . . ,M are close to linear mappings, hence these violations are small and (again) do
not affect good computational properties of the corresponding linear algebraic systems.

1.4.5 Evaluation of volume integrals

The evaluation of the volume integrals in (1.97) is very simple. Similarly as in the
conforming FEM, we have to compute the terms

∑

T∈Th

∫

T

∇ϕµ,i ·∇ϕν,j dx, i = 1, . . . , dofµ, j = 1, . . . , dofν , µ, ν = 1, . . . ,M, (1.108)

where ϕµ,i, ϕν,j ∈ B (= basis of Shp). Since each ϕµ,i vanishes outside of Tµ, we have

∑

T∈Th

∫

T

∇ϕµ,i · ∇ϕν,j dx,= δµ,ν

∫

Tµ

∇ϕµ,i · ∇ϕµ,j dx, (1.109)

for all i = 1, . . . , dofµ, j = 1, . . . , dofν , µ, ν = 1, . . . ,M . Therefore, the stiffness matrix
S is block diagonal with blocks Sµ, µ = 1, . . . ,M given by

Sµ = {Sµ,i,j}
dofµ
i,j=1, Sµ,i,j =

∫

Tµ

∇ϕµ,i · ∇ϕµ,j dx, i, j = 1, . . . , dofµ. (1.110)

38

These integrals can be simply evaluated wit the aid of (1.58), namely

∫

Tµ

∇ϕµ,i · ∇ϕµ,j dx =

∫

T̂

d∑

l=1

(
J−T
FTµ
∇̂ϕ̂i

)
l

(
J−T
FTµ
∇̂ϕ̂j

)
l
| det JFTµ

| dx̂, (1.111)

where ϕ̂i, ϕ̂j are the reference shape functions from Ŝp̄ given by (1.107). In comparison
to the conforming FEM, the situation is simpler, since we know that ϕµ,i corresponds
to ϕ̂i, i = 1, . . . , dofµ, compare with (1.56).

1.4.6 Evaluation of face integrals

In this section we deal with the evaluation of the face integrals in (1.97). Let us note
that the necessity to evaluate face integrals appears also in the conforming finite element
method, e.g., for the implementation of general boundary conditions, see Section 1.1.5.
For simplicity, we restrict only to the case d = 2.

Let e ∈ Fh be an edge of T ∈ Th. We call e a physical edge. Our aim is to evaluate
the integrals ∫

e

f(x) dσ,

∫

e

f(x) · n dσ, (1.112)

where n is the normal vector to e and f : e → R, f : e → R
2 are given functions.

Let us recall the definition of the face integral. Let ψ = (ψ1, ψ2) : [0, 1] → e be a
parameterization of the edge e. Then

∫

e

f(x) dσ =

∫ 1

0

f(ψ(t))

√(
ψ1(t)

′
)2

+
(
ψ2(t)

′
)2
dt, (1.113)

where ψi(t)
′, i = 1, 2 denotes the derivative of ψi(t) with respect to t.

In order to evaluate the integrals (1.112), we use the approach based on the reference

element. Let ê be an edge of the reference element T̂ such that T = FT (T̂) and
e = FT (ê). We call ê the reference edge. Let

x̂ê(t) = (x̂ê,1(t), x̂ê,2(t)) : [0, 1]→ ê (1.114)

be a parameterization of the reference edge ê preserving the counterclockwise orienta-
tion of the element. Namely, using the notation from Figure 1.6, we have

if T̂ = T̂t then x̂ê1(t) := (t, 0), t ∈ (0, 1), (1.115)

x̂ê2(t) := (1− t, t), t ∈ (0, 1),

x̂ê3(t) := (0, 1− t), t ∈ (0, 1),

if T̂ = T̂q then x̂ê1(t) := (t, 0), t ∈ (0, 1),

x̂ê2(t) := (1, t), t ∈ (0, 1),

x̂ê3(t) := (1− t, 1), t ∈ (0, 1),

x̂ê4(t) := (0, 1− t), t ∈ (0, 1).

39

Moreover, we define the infinitesimal increase of x̂ by

dx̂ê(t) :=
d

dt
x̂ê(t) ∈ R

2, (1.116)

namely

if T̂ = T̂t then dx̂ê1 := (1, 0), t ∈ (0, 1), (1.117)

dx̂ê2 := (−1, 1), t ∈ (0, 1),

dx̂ê3 := (0,−1), t ∈ (0, 1),

if T̂ = T̂q then dx̂ê1 := (1, 0), t ∈ (0, 1),

dx̂ê2 := (0, 1), t ∈ (0, 1),

dx̂ê3 := (−1, 0), t ∈ (0, 1),

dx̂ê4 := (0,−1), t ∈ (0, 1).

Therefore, the physical edge e is parameterized by

e : x = FT (x̂ê(t)) = (FT,1(x̂ê(t)), FT,2(x̂ê(t))) (1.118)

= (FT,1(x̂ê,1(t), x̂ê,2(t)), FT,2(x̂ê,1(t), x̂ê,2(t))) , t ∈ [0, 1].

The first integral from (1.112) is given by

∫

e

f(x) dσ =

∫ 1

0

f(FT (x̂ê(t)))

(
2∑

i=1

d

dt
FT,i(x̂ê(t))

)1/2

dt (1.119)

=

∫ 1

0

f(FT (x̂ê(t)))

(
2∑

i,j=1

∂FT,i(x̂ê(t))

∂x̂j

d

dt
x̂e,j(t)

)1/2

dt

=

∫ 1

0

f(FT (x̂ê(t))) |JFT
(x̂ê(t))dx̂ê| dt,

where JFT
is the Jacobian matrix of the mapping FT multiplied by the vector dx̂e given

by (1.116) and | · | is the Euclidean norm of the vector. Let us note that if FT is a
linear mapping then e is a straight edge and |JFT

(x̂ê(t))dx̂ê(t)| is equal to its length.
Now, we focus on the second integral from (1.112). Let re be the tangential vector

to e (if e is a straight line then re = e). Using (1.118) and (1.119), we evaluate re at
x(t) = FT (x̂ê(t)), t ∈ [0, 1] by

re(x(t)) = (re,1(x(t)), re,2(x(t))) (1.120)

:=
d

dt
FT (x̂ê(t)) =

(
JFT,1

(x̂ê(t))dx̂ê, JFT,2
(x̂ê(t))dx̂ê

)
.

Now, by rotation we obtain the normal vector ne pointing outside of T , namely

ne(x(t)) = (ne,1(x(t)), ne,2(x(t))) : (1.121)

ne,1(x(t)) = re,2(x(t)), ne,2(x(t)) = −re,1(x(t)),

40

where (re,1, re,2) is the tangential vector to e given by (1.120). Here it is important that
the counterclockwise orientation of the elements is considered. Therefore, from (1.120)
and (1.121), we have

ne(x(t)) =
(
JFT,2

(x̂ê(t))dx̂ê,−JFT,1
(x̂ê(t))dx̂ê

)
. (1.122)

Let us note that ne(x(t)) is not normalized, it is necessary to divide it by |ne(x(t))| =
|JFT

(x̂ê(t))dx̂ê|. Finally, similarly as in (1.119), we obtain

∫

e

f(x) · n dσ =

∫ 1

0

f(FT (x̂ê(t))) ·
ne(x(t))

|ne(x(t))|
|JFT

(x̂ê(t))dx̂ê| dt, (1.123)

=

∫ 1

0

f(FT (x̂ê(t))) · ne(x(t)) dt,

where ne(x(t)) is given by (1.122). Let us note that if FT is a linear mapping then e
is a straight edge and |ne(x(t))| is equal to its length.

1.4.7 Data structures

In order to evaluate the integrals (1.111), (1.119) and (1.123), it is enough to evaluate
and store the following data.

(S1) for each T ∈ Th, the determinant of the Jacobi matrix det JFT
and the transposed

matrix of the inversion of the Jacobi matrix JFT
,

(S2) the shape functions ϕ̂i, i = 1, . . . N̂ with the gradients ∇̂ϕ̂i, i = 1, . . . N̂ on T̂ .

Comparison with the data structures of the FEM implementation, we see that (S1)
and (S2) are in fact the same, but (S3) is missing. This is caused by the fact that we
have a direct connection between basis functions and corresponding shape functions,
see relation (1.105).

1.5 Numerical quadratures

In the previous sections we assumed that we are able to evaluate all integrals (over the
reference element or the reference edge) exactly. This is true for the model problem
which is linear and therefore all integrands are polynomial functions. However, when a
problem is nonlinear, it is necessary to use an approximation, namely suitable numerical
quadratures. Even in the case when the problem is linear, the implementation with
numerical quadratures is simpler.

There exist many numerical quadrature rules with many advantages and disadvan-
tages. In the following we exhibit some basic quadrature rules for edge integrals and
volume integrals over the reference square and over the reference triangle, which exhibit
a reasonable compromise between accuracy and implementational complexity.

41

1.5.1 Edge quadratures

We consider the Gauss quadrature rules given by

∫ 1

0

f(x) dx ≈ Gk(f) :=
k∑

i=1

wif(xi), (1.124)

where wi, i = 1, . . . , k and xi, i = 1, . . . , k are the Gauss weights and Gauss nodes,
respectively. Their values can be found in many textbooks, e.g., in [3]. Table 1.4 gives
these values for Gk, k = 1, . . . , 12.

1.5.2 Quadratures on quadrilaterals

In order to integrate over the reference square T̂q, we employ the bi-Gauss quadrature
rules given by ∫

T̂q

f(x) dx ≈ Gbi
k (f) :=

k∑

i=1

k∑

j=1

wiwjf(xij), (1.125)

where wi, i = 1, . . . , k are the Gauss weights introduced in (1.124) and

xij = (xi, xj), i, j = 1, . . . , k, (1.126)

where xi, i = 1, . . . , k are the Gauss nodes introduced in (1.124). Obviously, the bi-
Gauss quadrature rules are derived by integration with respect to the first variable and
then with respect to the second one. Similarly, it is possible to derive a quadrature
rule for the reference cube for d = 3.

1.5.3 Quadratures on triangles

In order to integrate over the reference triangle T̂t, we employ the Dunavant quadrature
rules given by ∫

T̂t

f(x) dx ≈ Dk(f) :=

mk∑

i=1

wif(xi), (1.127)

wheremk is the number of integration nodes, wi, i = 1, . . . , k are the Dunavant weights
and xi = (λi,1, λi,2, λi,3), i = 1, . . . ,mk, are the Dunavant integration nodes. Their
values can be found, e.g., in [2], Table 1.5 shows these values for Dk, k = 1, . . . , 7.

1.5.4 Data structure

If the integrals appearing in FEM and/or DGM are evaluated with the aid of numerical
quadratures, we should revise the data structures (S1), (S2), (S3) introduced in Sections
1.2.4 and 1.4.7. Therefore, instead of (S1) and (S2), it is enough to evaluate and store
the following data.

(D1) for each T ∈ Th, the determinant of the Jacobi matrix det JFT
and the transposed

matrix of the inversion of the Jacobi matrix JFT
in the edge and volume quadrature

nodes used,

42

Gk j wj xj j wj xj

G1 1 1.00000000000000 0.50000000000000

G2 1 0.50000000000000 0.21132486540519 2 0.50000000000000 0.78867513459481

G3 1 0.27777777777778 0.11270166537926 2 0.44444444444444 0.50000000000000

G3 3 0.27777777777778 0.88729833462074

G4 1 0.17392742256873 0.06943184420297 2 0.32607257743127 0.33000947820757

G4 3 0.32607257743127 0.66999052179243 4 0.17392742256873 0.93056815579703

G5 1 0.11846344252809 0.04691007703067 2 0.23931433524968 0.23076534494716

G5 3 0.28444444444444 0.50000000000000 4 0.23931433524968 0.76923465505284

G5 5 0.11846344252809 0.95308992296933

G6 1 0.08566224618959 0.03376524289842 2 0.18038078652407 0.16939530676687

G6 3 0.23395696728635 0.38069040695840 4 0.23395696728635 0.61930959304160

G6 5 0.18038078652407 0.83060469323313 6 0.08566224618959 0.96623475710158

G7 1 0.06474248308443 0.02544604382862 2 0.13985269574464 0.12923440720030

G7 3 0.19091502525256 0.29707742431130 4 0.20897959183673 0.50000000000000

G7 5 0.19091502525256 0.70292257568870 6 0.13985269574464 0.87076559279970

G7 7 0.06474248308443 0.97455395617138

G8 1 0.05061426814519 0.01985507175123 2 0.11119051722669 0.10166676129319

G8 3 0.15685332293894 0.23723379504184 4 0.18134189168918 0.40828267875218

G8 5 0.18134189168918 0.59171732124782 6 0.15685332293894 0.76276620495816

G8 7 0.11119051722669 0.89833323870681 8 0.05061426814519 0.98014492824877

G9 1 0.04063719418079 0.01591988024619 2 0.09032408034743 0.08198444633668

G9 3 0.13030534820147 0.19331428364970 4 0.15617353852000 0.33787328829810

G9 5 0.16511967750063 0.50000000000000 6 0.15617353852000 0.66212671170190

G9 7 0.13030534820147 0.80668571635030 8 0.09032408034743 0.91801555366332

G9 9 0.04063719418079 0.98408011975381

G10 1 0.03333567215434 0.01304673574141 2 0.07472567457529 0.06746831665551

G10 3 0.10954318125799 0.16029521585049 4 0.13463335965500 0.28330230293538

G10 5 0.14776211235738 0.42556283050918 6 0.14776211235738 0.57443716949082

G10 7 0.13463335965500 0.71669769706462 8 0.10954318125799 0.83970478414951

G10 9 0.07472567457529 0.93253168334449 10 0.03333567215434 0.98695326425859

G11 1 0.02783428355809 0.01088567092697 2 0.06279018473245 0.05646870011595

G11 3 0.09314510546387 0.13492399721298 4 0.11659688229600 0.24045193539659

G11 5 0.13140227225512 0.36522842202383 6 0.13646254338895 0.50000000000000

G11 7 0.13140227225512 0.63477157797617 8 0.11659688229600 0.75954806460341

G11 9 0.09314510546387 0.86507600278702 10 0.06279018473245 0.94353129988405

G11 11 0.02783428355809 0.98911432907303

G12 1 0.02358766819326 0.00921968287664 2 0.05346966299766 0.04794137181476

G12 3 0.08003916427167 0.11504866290285 4 0.10158371336153 0.20634102285669

G12 5 0.11674626826918 0.31608425050091 6 0.12457352290670 0.43738329574427

G12 7 0.12457352290670 0.56261670425573 8 0.11674626826918 0.68391574949909

G12 9 0.10158371336153 0.79365897714331 10 0.08003916427167 0.88495133709715

G12 11 0.05346966299766 0.95205862818524 12 0.02358766819326 0.99078031712336

Table 1.4: Gauss quadratures Gk, k = 1, . . . , 12 with weights wi and nodes xi

43

Dk j wj λj,1 λj,2 λj,3

D1 1 1.00000000000000 0.33333333333333 0.33333333333333 0.33333333333333

D2 1 0.33333333333333 0.66666666666667 0.16666666666667 0.16666666666667

D2 2 0.33333333333333 0.16666666666667 0.16666666666667 0.66666666666667

D2 3 0.33333333333333 0.16666666666667 0.66666666666667 0.16666666666667

D3 1 -.56250000000000 0.33333333333333 0.33333333333333 0.33333333333333

D3 2 0.52083333333333 0.60000000000000 0.20000000000000 0.20000000000000

D3 3 0.52083333333333 0.20000000000000 0.20000000000000 0.60000000000000

D3 4 0.52083333333333 0.20000000000000 0.60000000000000 0.20000000000000

D4 1 0.22338158967801 0.10810301816807 0.44594849091597 0.44594849091597

D4 2 0.22338158967801 0.44594849091597 0.44594849091597 0.10810301816807

D4 3 0.22338158967801 0.44594849091597 0.10810301816807 0.44594849091597

D4 4 0.10995174365532 0.81684757298046 0.09157621350977 0.09157621350977

D4 5 0.10995174365532 0.09157621350977 0.09157621350977 0.81684757298046

D4 6 0.10995174365532 0.09157621350977 0.81684757298046 0.09157621350977

D5 1 0.22500000000000 0.33333333333333 0.33333333333333 0.33333333333333

D5 2 0.13239415278851 0.05971587178977 0.47014206410511 0.47014206410511

D5 3 0.13239415278851 0.47014206410511 0.47014206410511 0.05971587178977

D5 4 0.13239415278851 0.47014206410511 0.05971587178977 0.47014206410511

D5 5 0.12593918054483 0.79742698535309 0.10128650732346 0.10128650732346

D5 6 0.12593918054483 0.10128650732346 0.10128650732346 0.79742698535309

D5 7 0.12593918054483 0.10128650732346 0.79742698535309 0.10128650732346

D6 1 0.11678627572638 0.50142650965818 0.24928674517091 0.24928674517091

D6 2 0.11678627572638 0.24928674517091 0.24928674517091 0.50142650965818

D6 3 0.11678627572638 0.24928674517091 0.50142650965818 0.24928674517091

D6 4 0.05084490637021 0.87382197101700 0.06308901449150 0.06308901449150

D6 5 0.05084490637021 0.06308901449150 0.06308901449150 0.87382197101700

D6 6 0.05084490637021 0.06308901449150 0.87382197101700 0.06308901449150

D6 7 0.08285107561837 0.05314504984482 0.31035245103378 0.63650249912140

D6 8 0.08285107561837 0.31035245103378 0.63650249912140 0.05314504984482

D6 9 0.08285107561837 0.63650249912140 0.05314504984482 0.31035245103378

D6 10 0.08285107561837 0.31035245103378 0.05314504984482 0.63650249912140

D6 11 0.08285107561837 0.63650249912140 0.31035245103378 0.05314504984482

D6 12 0.08285107561837 0.05314504984482 0.63650249912140 0.31035245103378

D7 1 -.14957004446768 0.33333333333333 0.33333333333333 0.33333333333333

D7 2 0.17561525743321 0.47930806784192 0.26034596607904 0.26034596607904

D7 3 0.17561525743321 0.26034596607904 0.26034596607904 0.47930806784192

D7 4 0.17561525743321 0.26034596607904 0.47930806784192 0.26034596607904

D7 5 0.05334723560884 0.86973979419557 0.06513010290222 0.06513010290222

D7 6 0.05334723560884 0.06513010290222 0.06513010290222 0.86973979419557

D7 7 0.05334723560884 0.06513010290222 0.86973979419557 0.06513010290222

D7 8 0.07711376089026 0.04869031542532 0.31286549600487 0.63844418856981

D7 9 0.07711376089026 0.31286549600487 0.63844418856981 0.04869031542532

D7 10 0.07711376089026 0.63844418856981 0.04869031542532 0.31286549600487

D7 11 0.07711376089026 0.31286549600487 0.04869031542532 0.63844418856981

D7 12 0.07711376089026 0.63844418856981 0.31286549600487 0.04869031542532

D7 13 0.07711376089026 0.04869031542532 0.63844418856981 0.31286549600487

Table 1.5: Dunavant quadratures Dk, k = 1, . . . , 7 with weights wi and nodes xi

44

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 1.10: Basic graphical output: isolines, coarse grid (left) and fine grid (right)

(D2) the shape functions ϕ̂i, i = 1, . . . N̂ with the gradients ∇̂ϕ̂i, i = 1, . . . N̂ on T̂ in
the edge and volume quadrature nodes used.

However, there is a natural question which quadrature rules should be employed.
For linear or nearly linear problem, it is sufficient to use quadrature rules such that
integrate exactly polynomials of the degrees which appear in the volume and edge
integrals. For strongly nonlinear problems, more accurate quadrature rule should be
used, their degrees can be found empirically.

1.6 Basic visualization techniques

The result of a finite element computation is a (continuous or discontinuous) piecewise
polynomial function uh ∈ Vh. Usually, we are not interested of its analytical expression
but we need its visualization. In this section, we discuss these aspects.

1.6.1 Types of visualization

There are several usual graphical outputs, which can be required based on the consid-
ered problem. Namely

• isolines/isosurfaces of the solutions are the lines (for d = 2) or surfaces (for
d = 3) consisting of points of the computational domains where the approximate
solution is equal to a given value, i.e., the set {x ∈ Ω; uh(x) = g} is the isoline
(isosurface) corresponding to the value g. Figure 1.10 shows the isolines of the
piecewise linear approximation of the function

u(x1, x2) = 2(x21+x
2
2)

−1/4x1x2(1−x1)(1−x2), (x1, x2) ∈ (0, 1)×(0, 1) (1.128)

for the values g = 0.01n, n = 0, 1, . . . , 18.

45

Figure 1.11: Basic graphical output: color maps, coarse grid (left) and fine grid (right)

• color maps of the solution is the visualization technique where each element of
the mesh is drawn by a color which corresponds to a given value. Figure 1.11
shows the color maps of the function (1.128). Let us note that color maps very
ofter smear details of approximate solution.

• 3D plot of the solution (only for d = 2) is the graph of the surface

{(x1, x2, x3); x3 = uh(x1, x2), (x1, x2) ∈ Ω}.

Figure 1.12 shows the 3D plots of the function (1.128). This graphical output
contains the whole information of the approximate solution. On the other hand
if the approximate solution is very complex this type of output is hard to see.

• visualization on boundaries is important, e.g., in aerodynamics, when we need to
know a pressure distribution on the airplane surface.

• cuts of the solution help to see the solution inside of the computational domain,
Figure 1.13 shows the diagonal cuts from the lower-left to upper-right corner of
the function (1.128).

1.6.2 Software for visualization

Within this section we briefly describe types of software which can be used for the
visualization of finite element solutions. Our aim is not to give a complete list of all
available software but give to the readers an overview of some possibilities.

We suppose that the software for the visualization can be split into the following
groups.

• Commercial graphical software usually represent a complete tool for visualization.
Let us mention as an example the code Techplot which is able to draw a continuous
piecewise linear or piecewise constant approximate solution for d = 2 as well as

46

 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

-0.02
 0

 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16

 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

-0.02
 0

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

Figure 1.12: Basic graphical output: 3D plots, coarse grid (left) and fine grid (right)

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.2 0.4 0.6 0.8 1
-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.2 0.4 0.6 0.8 1

Figure 1.13: Basic graphical output: diagonal cuts, coarse grid (left) and fine grid
(right)

47

d = 3. It allows a wide range of graphical tools, e.g., slices, isosurfaces, cuts,
animations etc. However, Techplot uses some postprocessing procedures which
smooths the given approximate solution. This is advantageous for the effect of
visualization but it introduces some additional perturbations and/or “errors”.
The use of commercial software does not require any pre-computing, in generally.
However, most of the commercial software does not allow a visualization of higher
order approximations. In this case, some additional technique has to be used, see
Section 1.6.3.

• Free graphical libraries represented, e.g., by PGPLOT, which is a set of Fortran
77 subroutines which are able to draw a given line, to fill a given polygon by a
given color, etc. Therefore, the use of this library requires the creation of code
calling the PGPLOT subroutines. This represents additional work but you can
draw exactly what you want, no postprocessing perturbs the results. Figure 1.10,
right, was obtained by PGPLOT.

• Basic graphical code as, e.g., gnuplot, is able to carried out basic graphical tasks as
connecting a given set of nodes. This type of software can be used with success
for wall distribution, cuts and isolines. However, a visualization of isolines on
unstructured grids requires their pre-computing by some additional code. Figures
1.10, left, and 1.12 were created by gnuplot.

1.6.3 Visualization of higher order polynomial functions

In this section we discuss some possibilities how to visualize a higher order piecewise
polynomial solution uh of an abstract problem. These visualization techniques are in
fact independent of whether uh ∈ Vh is continuous or uh ∈ Shp is discontinuous.

In order to visualize a piecewise polynomial function, we need to evaluate its value
in given nodes from Ω. If we use the data structure introduced in Section 1.5.4, we can
simply evaluate the solution in integrations nodes. However, it is not usually enough,
since the Gauss and Dunavant quadrature nodes do not lay at end points of (0, 1) or
at the boundary of the reference triangle. Therefore, for the purposes of visualization
it is suitable to evaluate the solution at the Lagrangian nodes introduced in Section
1.3.1. This means that we have to evaluate and store also

(D2a) the shape functions ϕ̂i, i = 1, . . . N̂ on T̂ in the nodes used for a visualization.

All graphical codes are able to draw a line between two nodes. Therefore, it is
possible to visualize without problems a piecewise linear approximate solution. A
visualization of higher order approximation is more complicated. It is possible to
calculate exactly the corresponding solution dot per dot, but it is usually very time
consuming.

A more efficient and sufficiently accurate approach is the following. Let T ∈ Th be
an element and uh|T a polynomial function of degree p. Then we split T into several
sub-elements by connecting the Lagrangian nodes FT (ẑ

p
i), i = 1, . . . , N̂p, see Figure

1.14. We evaluate uh|T at each of the Lagrangian nodes FT (ẑ
p
i), i = 1, . . . , N̂p and

carry out a piecewise linear visualization over this sub-grid.

48

Figure 1.14: The sub-grids for the visualization on a triangle T for p = 2 (left), p = 3
(center) and p = 4 (right)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

-0.02
 0

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

Figure 1.15: The visualization of the given function, isolines (left) and 3D plot (right)

Figure 1.15 shows the exact solution of a given problem which is visualized by
isolines and a 3D plot. This problem was solved on a mesh consisting of four triangles
(arising by splitting the square by its diagonals) using Pk, k = 1, . . . , 7 approximations.
Figures 1.16 – 1.22 show these approximate solutions using the visualization on the
corresponding subgrids.

49

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

Figure 1.16: Visualization of the P1 approximation, isolines (left) and 3D plot (right)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

-0.1
-0.05

 0
 0.05

 0.1
 0.15

 0.2

Figure 1.17: Visualization of the P2 approximation, isolines (left) and 3D plot (right)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

Figure 1.18: Visualization of the P3 approximation, isolines (left) and 3D plot (right)

50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

-0.02
 0

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

Figure 1.19: Visualization of the P4 approximation, isolines (left) and 3D plot (right)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

-0.02
 0

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

Figure 1.20: Visualization of the P5 approximation, isolines (left) and 3D plot (right)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

-0.02
 0

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

Figure 1.21: Visualization of the P6 approximation, isolines (left) and 3D plot (right)

51

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

-0.02
 0

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

Figure 1.22: Visualization of the P7 approximation, isolines (left) and 3D plot (right)

52

Bibliography

[1] L. Dubcová. hp-FEM for coupled problems in fluid mechanics. PhD thesis, Charles
University Prague, 2010.

[2] D. A. Dunavant. High degree efficient symmetrical gaussian quadrature rules for
the triangle. Int. J. Numer. Methods Eng., 21:1129–1148, 1985.

[3] P. Šoĺın, K. Segeth, and I. Doležel. Higher-Order Finite Element Methods. Chapman
& Hall/CRC Press, 2003.

53

