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Partial differential equations

Why partial differential equations?

I many processes can be described (approximately) by PDEs
I fluid dynamics, hydrology, heat and mass transfer, medicine,

environmental protection, financial mathematics, etc.
I these PDEs represent a mathematical description of physical,

chemical, biological, etc. rules and/or laws

I some simplification usually necessary =⇒ model error

I these PDEs are usually too complicated for an exact solution

Numerical solution of PDEs
I we solve PDEs approximately (numerically)

I we define new simplified (finite dimensional, solvable) problem
=⇒ discretization error
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Exact and approximate problems

Abstract problem described by PDEs

I let V be a functional space, we seek u ∈ V such that
(EP) Lu = f

I L is a differential operator, f is a right-hand side,

I let solution of (EP) exists and is unique

Abstract numerical method
I let Vh be a space, dim(Vh) <∞, Vh ⊂ V or Vh 6⊂ V ,

I we seek uh ∈ Vh such that
(AP) Lhuh = fh,

I Lh is a discrete operator, fh is an approximation of f .

I problem (AP) has to be quickly solvable
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Goals of the numerical solution of PDEs

Numerical analysis

I existence and uniqueness of uh
I stability ‖uh‖ <∞
I convergence: uh → u if dof = dim(Vh)→∞
I estimate ‖u − uh‖ in terms of dof (a priori estimate)

I estimate ‖u − uh‖ based on uh (a posteriori estimate)

I robustness: validity of previous items for large range of data

Numerical realization
I algorithm for fast evaluation of uh (efficiency)

I stability of the method in the finite precision arithmetic

I adaptive strategies = adaptive changes of Vh
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Numerical method

Numerical method in practise

I finite sequence of mathematical operations

I output is the approximate solution uh

Construction of a numerical method for the given PDE

I discretization (space, time)

I setting of arising algebraic systems (numerical quadratures)

I (iterative) solution of nonlinear algebraic systems

I solution of linear algebraic systems

Type of discretizations

finite difference method, finite element method, finite volume
method, spectral method, wavelets method, etc.
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Choice of the numerical method

Which numerical method is the best one?
Depends on many aspects of the PDE considered

I physical background of the PDE

I expected regularity of the unknown exact solution

I presence of local phenomena
I outputs of interest

I usual condition ‖u − uh‖ ≤ TOL is not always practical
I goal is the quantity of interest J(uh),

⇒ error: |J(u)− J(uh)| ≤ TOL

Example

I conservation laws should be discretized by a conservative
numerical method
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Two basic physical processes

Diffusion
I ∂u

∂t −∇ · (a(u)∇u) = g

I parabolic (elliptic) equation

I quantity is spread in all directions

I influence is decreasing for increasing distance of the source

Convection
I ∂u

∂t −∇ · ~f (u) = g

I hyperbolic equation

I quantity is spread only in the direction of convection ~f (u)

I influence is (almost) independent w.r.t. the distance of the
source
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Examples of physical features (1)
Only diffusion

∂u

∂t
− ε∆u = 0
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Examples of physical features (2)
Only convection:

∂u

∂t
+∇ · (~f (u)) = 0, ~f (u) = (1, 0)T
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Examples of physical features (3)
Convection + small diffusion

∂u

∂t
+∇ · (~f (u))− ε∆u = 0, ~f (u) = (1, 0)T
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Elliptic and parabolic PDE vs. hyperbolic PDE
Cauchy problem

u(x , t) : R× (0,T )→ R :
∂u

∂t
+
∂u

∂x
= ε

∂2u

∂x2

u(x , 0) = exp[(x − 1/4)2]

ε = 0 =⇒ u(x , t) = exp[(x − 1/4− t)2]

ε > 0 =⇒ solution is smeared
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Importance of the character of PDE

Why is important to know the previous properties?

I numerical solution is a kind of approximation
I many sources of inaccuracies:

I discretization errors (finite dimensional approximation)
I iterative errors (approximate solution of algebraic systems)
I rounding errors (finite precision arithmetic)

I these inaccuracies are propagated by PDEs

Linear convection problem (no diffusion)

I exact solution: a simple propagation of the initial solution

I numerical solution: initial solution is propagated but smeared

I numerical solution corresponds to convection+diffusion

I this effect is called numerical diffusion
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Possible pitfalls

Effect of numerical diffusion
I zero diffusion does not exist in reality

I if numerical diffusion larger than physical one
=⇒ numerical solution can be completely wrong

I e.g., numerical solution is steady whereas reality is unsteady

Effect of “finite h”
I we can prove that the proposed method is convergent

I approximate solution contains unphysical effects, e.g.,
spurious oscillations, negative temperature, etc.

I analysis is wrong?

I No, it converges for h→ 0, the solution is bad for finite h

V. Doleǰśı Numerical solution of PDE DGM 13 / 23



1D convection-diffusion equation

u : (0, 1)→ R : − εu′′ + u′ = f , u(0) = u(1) = 0, ε > 0.

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation
u ∈ H1

0 ((0, 1)):
∫ 1

0 (εu′v ′ + u′v) dx =
∫ 1

0 f v dx ∀v ∈ H1
0 ((0, 1))

Partition of domain
0 = x 1

2
< x 3

2
< . . . xN+ 1

2
= 1, Ki := [xi− 1

2
, xi+ 1

2
], i = 1, . . . ,N

xi−3/2 xi−1/2 xi+1/2 xi+3/2

Ki−1 Ki Ki+1
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Finite element method

xi−3/2 xi−1/2 xi+1/2 xi+3/2

Ki−1 Ki Ki+1

uk
i− 3

2

uk
i− 1

2 uk
i+ 1

2

uk
i+ 3

2

FEM solution
I Vh = {vh ∈ C0([0, 1]); vh|Ki

= P1(Ki ), i = 1, . . . ,N}
I uh ∈ Vh:∫ 1

0
(εu′hv

′
h + u′hvh)dx =

∫ 1

0
f vh dx ∀vh ∈ Vh

I reasonable discretization of diffusion ⇒ we prove convergence

I discretization of convective term “does not respect physics”
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Finite element method
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I Solution suffers from spurious oscillations for small ε

I A stabilization is a possible remedy
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Finite volume method

xi−3/2 xi−1/2 xi+1/2 xi+3/2

Ki−1 Ki Ki+1

ui−1

ui

ui+1

Piecewise constant approximation

I Vh = {vh ∈ L2([0, 1]); vh|Ki
= P0(Ki ), i = 1, . . . ,N}

I we integrate −εu′′ + au′ = 1 over Ki and use Gauss theorem

−ε[u′(·)]
xi+1/2
xi−1/2

+ a[u(·)]
xi+1/2
xi−1/2

= |Ki |

I u|x
i+ 1

2

= ?? upwinding: a > 0 ⇒ u|x
i+ 1

2

:= ui
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Finite volume method
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I Oscillations free approximation

I Low accuracy for larger ε

I A higher order reconstruction is a possible remedy
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Comparison of FEM and FVM

comparison of FEM and FVM for time-independent convective problem

Finite element method
I continuous approximation

I high order of accuracy

I many theoretical results

I fine for diffusive problems

Finite volume method
I discontinuous approximation

I low order of accuracy

I lack of theory

I fine for convective problems

Discontinuous Galerkin method
I piecewise polynomial discontinuous approximation

I theoretical justification

I higher freedom (adaptation, parallelization, etc.)
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Discontinuous Galerkin method
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(P4-approximation, same number of DoF)

I not ideal but works very well for both ε

I additional techniques (remedies) are possible
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Overview of DGM (1)

Basic properties – positive

I efficient method for the numerical solution of various PDEs

I piecewise polynomial BUT discontinuous approximation
I suitable for very large range of problems

I elliptic, parabolic, hyperbolic
I linear, nonlinear, degenerate

I space-time DGMs are available
I flexibility in the mesh design

I non-matching and non-uniform grids
I anisotropic grids
I varying polynomial approximation degrees

I (nice) block structure of arising algebraic systems

I easy paralelization
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Overview of DGM (2)

Basic properties – theoretical

I formulation of the method is more complicated

I numerical analysis of the method is more complicated

Basic properties – practical

I more degrees of freedom ⇒ larger algebraic systems
I it can be compensated by mesh adaptation

I less of available “standard” libraries,
I multi-level preconditioners
I domain decomposition preconditioners

A lot of work to do!
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Plan of the course

Outline
I Abstract error analysis

I DGM for the Laplace problem: complete error analysis

I numerical approximation based on upwinding

I DGM for the nonlinear convection-diffusion equation

I DGM for time dependent problems

I DGM for compressible flow problems and other applications

Organization issues

I standard lectures (lecture notes are available)

I 3 quizes during the semestr

I oral exam
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