GACR project 2020-22, first meeting

February 11, 2020

GACR project 2020-22, first meeting

February 11, 2020 1 / 9

Adaptive methods for the numerical solution of partial differential equations: analysis, error estimates and iterative solvers

Main goal

Reliable and efficient numerical solution for PDEs (including eigenvalue problems)

Our aims

not only publish quality papers, but try to fulfil the main goal

• communications & meetings necessary

Adaptive methods for the numerical solution of partial differential equations: analysis, error estimates and iterative solvers

Main goal

Reliable and efficient numerical solution for PDEs (including eigenvalue problems)

Our aims

not only publish quality papers, but try to fulfil the main goal

• communications & meetings necessary

Adaptive methods for the numerical solution of partial differential equations: analysis, error estimates and iterative solvers

Main goal

Reliable and efficient numerical solution for PDEs (including eigenvalue problems)

Our aims

• not only publish quality papers, but try to fulfil the main goal

• communications & meetings necessary

Adaptive methods for the numerical solution of partial differential equations: analysis, error estimates and iterative solvers

Main goal

Reliable and efficient numerical solution for PDEs (including eigenvalue problems)

Our aims

- not only publish quality papers, but try to fulfil the main goal
- communications & meetings necessary

First meeting

- presentation of research plans and interest of team members
- finding possible colaborators (different forms of colaboration)
- 10 minutes presentations

Progress meetings

- 1-2 per year
- information about the progress
- possible coordination of the work

First meeting

- presentation of research plans and interest of team members
- finding possible colaborators (different forms of colaboration)
- 10 minutes presentations

Progress meetings

- 1-2 per year
- information about the progress
- possible coordination of the work

First meeting

- presentation of research plans and interest of team members
- finding possible colaborators (different forms of colaboration)
- 10 minutes presentations

Progress meetings

- 1-2 per year
- information about the progress
- possible coordination of the work

• FMP CUNI

Vít Dolejší Miloslav Feistauer Petr Knobloch Petr Tichý Václav Kučera Miloslav Vlasák Scott Congreve Filip Roskovec Lukáš Vacek Ondřej Bartoš

• IM CAS

Tomáš Vejchodský Michal Křížek Miroslav Rozložník Jakub Šístek Pavel Kůs Bangwei She Jan Papež

$$\partial_t \theta(w) + \nabla \cdot f(w) - \nabla \cdot (K(w, \nabla w) \nabla w) + S(w) = g,$$
 (1)

Find
$$\lambda \in \mathbb{C}$$
 and $u \neq 0$: $\mathscr{L}u = \lambda u$. (2)

- WP1 time-independent problems: analysis and error estimates of problem (1) with $\partial_t \theta(w) = 0$,
- WP2 time-dependent problems: analysis and error estimates of problem (1) with $\partial_t \theta(w) \neq 0$,
- WP3 *eigenvalue problems:* error estimates for problem (2) for a linear and symmetric operator \mathcal{L} ,
- WP4 *solution strategies:* including algebraic iterative solvers and adaptive methods.

Work Package 1 (WP1): Time-independent problems

- Task 1.1: Analysis of nonlinear elliptic problems (M. Feistauer, M. Křížek, M. Vlasák, S. Congreve)
- Task 1.2: Goal-oriented error estimates including algebraic errors (V. Dolejší, P. Tichý, J. Papež, O. Bartoš)
- Task 1.3: Goal-oriented error estimates including mesh anisotropy (V. Dolejší, F. Roskovec, M. Křížek)
- Task 1.4: Error estimation for convection-diffusion problems (P. Knobloch, T. Vejchodský, B. She)

Work Package 2 (WP2): Time-dependent problems

- Task 2.1: Nonlinear parabolic problems with singular solutions (M. Feistauer, M. Vlasák, S. Congreve)
- Task 2.2: Nonlinear reaction-diffusion problems (M. Feistauer, M. Vlasák, B. She)
- Task 2.3: Coupled nonlinear hyperbolic conservation laws (V. Kučera, L. Vacek)
- Task 2.4: Nonlinear convection-diffusion-reaction problems (V. Kučera, L. Vacek, P. Knobloch)
- Task 2.5: Analysis of degenerate parabolic problems (V. Dolejší, M. Vlasák, S. Congreve, O. Bartoš, student 1)
- Task 2.6: Error estimates for degenerate parabolic problems (V. Dolejší, S. Congreve, F. Roskovec, student 1)

Work Package 3 (WP3): Eigenvalue problems

- Task 3.1: Guaranteed error bounds for eigenfunctions (T. Vejchodský, P. Tichý, J. Papež)
- Task 3.2: Lower bounds on eigenvalues by DGM (T. Vejchodský, V. Dolejší, J. Papež)
- Task 3.3: Adaptivity for eigenvalue problems (T. Vejchodský, P. Kůs, J. Šístek, M. Křížek)

Work Package 4 (WP4): Solution strategies

- Task 4.1: Anisotropic mesh adaptation (V. Dolejší, S. Congreve, O. Bartoš, F. Roskovec, student 1)
- Task 4.2: Algebraic solvers for anisotropic meshes (M. Rozložník, P. Tichý, J. Papež)
- Task 4.3: Algebraic error estimation (P. Tichý, M. Rozložník, J. Papež)
- Task 4.4: Numerical behaviour of (inexact) iterative methods (M. Rozložník, P. Tichý, J. Papež)
- Task 4.5: Domain decomposition methods for adaptively refined meshes (J. Šístek, P. Kůs)
- Task 4.6: Synergy and assessment of the results (all team members)