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Many times in mathematics we begin to study a problem, just to then discover that it is
related to many other ones in various different fields, which we did not suspect to be related to
the original one at all. The starting problem that I will present is a very well known one (to
those who know it, at least...). Given a map representing countries which border each other,
it asks how to color the different regions such that no two adjacent countries have the same
color. Of course, with enough colors we can easily succeed! What if we have only four crayons?
Somebody has shown [Appel and Haken, 1976] that this is enough. But it took more than 100
years to mathematicians to achieve such result: the many attempts that started in 1852 all
revealed some fundamental flaws.

In my seminars, I will not attempt to present the proof of such Theorem (for many reasons
that will be clear from the discussion) but I will use its intuitive formulation as an excuse to talk
about... other things! In fact, there are at least two very nice reformulations of such problem
which make use of precise mathematical objects: respectively graphs and the vector product
a ∧ b of two vectors in R3 (sometimes also called cross product and written as a× b). This last
formulation has been explored by Kauffmann in 1988. Basically it is just a statement about the
non associativity of the vector product, i.e. the fact that if we pick three random vectors a, b
and c in R3, we unfortunately have that

(a ∧ b) ∧ c 6= a ∧ (b ∧ c).

However, sometimes it happens that this is true, for a particular choice of a, b, c. It is fascinating
that this corresponds to the possibility of coloring maps with only four colors. If someone still

Figure 1: A map of Europe with several adjacent regions and countries. How many colors do
we need?
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Figure 2: A planar simple undirected graph with 25 vertices. Can we label them with only three
letters?

does not find it fascinating enough, still it will be hopefully interesting to see how naturally
graphs come into the picture even in this description using the vector product. I will then talk
a little bit about graphs and their beautiful geometric properties. The theory of graphs leads to
application to computer science, for instance, but could also be presented in a purely algebraic
way using quadratic monomials xixj and the polynomials that they generate, and forgetting
about the pictures. I will only mention this briefly because it would take us too far (although
recently my research interests have lead me to this fascinating problem of representing graphs
and hypergraphs using polynomials, and making calculations with them).

Instead, I will try to keep the geometry running, leaving the cold algebra on the side. Graphs,
in fact, have natural generalizations which are simply called links or knots. Knots are nothing
but a manipulation of a circular rubber-band, twisted in a way that it also shows intersections
when drawn on a piece of paper. Links are collection of knots. If we take a link and decide to
cut each of its components we obtain basically a set of strings, some of which are ”free”, but
some of which actually cross each other, exactly where the original knot had an intersection
point. The reason why we are interested in such tied and untied strings is that they give birth
to some fundamental algebraic objects (yes, algebra always comes back to us when we try to
get rid of it!) called Braid groups. Again, rather than describing such groups formally, I prefer
to talk about them using pictures, so we will learn how to make operations with the elements of
this group and their basic properties only playing with the strings, crossing them, pulling them
and connecting them again so to form knots and links.

As always when we study objects in mathematics, we want to associate to them some simple
numbers to ”label” them, namely their invariants. What are the invariants of maps, graphs,
product of vectors and knots? in some cases, it is not so easy to answer (maybe for maps we could
think of 4 being the invariant?), but for some other rich structures there is a handful of invariants
we can pin on the board. Graphs have many, and I do not plan to give an exhaustive list, maybe
just some examples. A course in algebraic topology will probably cover them properly. Knots are
more mysterious. Their invariants come under the shape of polynomials. The Jones polynomial,
a strange animal with a not very intuitive definition, was studied in 1983, and we will learn how
to calculate it at least on some easy examples.
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