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Abstract

In this paper we exploit some general results on the tensor product of free resolutions to
deduce important new algebraic properties of biregular functions on 2n quaternionic func-
tions. In particular we are able to construct a minimal resolution for the associated module
and we are able to compute all the relevant graded Betti numbers.

1 Introduction

A full theory for functions of several quaternionic variables which satisfy the Cauchy-Fueter
operator is described in [10]. We recall that the left Cauchy–Fueter operator D` acting on
differentiable functions defined on the space H of quaternions is a generalization of the Cauchy-
Riemann operator and it is defined as

D` =
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3
,

where we are denoting by i, j, k the three imaginary units of the real associative algebra of the
quaternions and a quaternion by q = x0 + ix1 + jx2 + kx3. Since the algebra of quaternions is
non commutative, it is possible to write the imaginary units on the right and to define the right
Cauchy-Fueter operator

Dr =
∂

∂x0
+

∂

∂x1
i +

∂

∂x2
j +

∂

∂x3
k.

It is well known that the theory of nullsolutions of the left or right Cauchy-Fueter operators are
completely equivalent, both in in one or several variables. In this paper, we will study functions
of an even number 2n of quaternionic variables which are simultaneously left regular in the first n
variables p1, . . . , pn and right regular in the remaining variables q1, . . . qn. These functions, which
are called biregular, are a non-trivial generalization of functions of one or several quaternionic
variables.
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During the eighties, Brackx and Pincket have intensively studied biregular functions in two
variables for Clifford valued functions, see [4], [5], [6], [7]. In other words, they were interested
in the study of functions f : Rk × Rq → Rm, 1 < k, q < m, which are left monogenic in
one variable and right monogenic in the other one. They proved many results for this class of
functions, for example the Cauchy Integral formulas, the existence of the Taylor expansion (in
terms of suitable homogeneous polynomials) and of the Laurent series, the Hartogs’ theorem on
the removability of compact singularities.

Our purpose is to generalize the study to functions which are biregular with respect to several
pairs of variables. Our techniques are more algebraic and will allow to solve, in particular, the
following problems:

a) find an explicit expression for the compatibility conditions of the system





D`1(f) = g`1

Dr1(f) = gr1

· · ·
D`n(f) = g`n

Drn(f) = grn

(1)

b) construct the free resolution for the associated module, finding the dimensions of the free
modules, the degrees of the maps and the length of the corresponding complex

c) calculate the cohomology of this complex.

As a by-product we will show that the Hartogs phenomenon holds for biregular functions in
several variables or rather we will show that more general singularities can be eliminated.

Dedication. This paper is dedicated, with friendship and admiration, to Professor Richard
Delanghe, who has done so much, as a mathematician and as a leader, to further the work on
Clifford Analysis around the world.

2 Examples of computation of the complex associated to bireg-
ular functions in low dimension

Let us give the necessary definitions and notations.

Definition 2.1. Let f : Hn ×Hn → H be a differentiable function. The function f(p1, . . . , pn,
q1, . . . , qn) is said to be biregular with respect to the pairs of variables (ps, qs), s = 1, . . . , n if and
only if it satisfies the system 




D`1(f) = 0
Dr1(f) = 0

· · ·
D`n(f) = 0
Drn(f) = 0

(2)

where ps = xs0 + ixs1 + jxs2 + kxs3, qs = ys0 + iys1 + jys2 + kys3 and

D`s =
∂

∂xs0
+ i

∂

∂xs1
+ j

∂

∂xs2
+ k

∂

∂xs3
,

Drs =
∂

∂ys0
+

∂

∂ys1
i +

∂

∂ys2
j +

∂

∂ys3
k.
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Any quaternionic equation D`sf = 0 or Drsf = 0 translates into four real equations and can be
written in matrix form as



∂xs0 −∂xs1 −∂xs2 −∂xs3

∂xs1 ∂xs0 −∂xs3 ∂xs2

∂xs2 ∂xs3 ∂xs0 −∂xs1

∂xs3 −∂xs2 ∂xs1 ∂xs0







f0

f1

f2

f3


 = 0,




∂ys0 −∂ys1 −∂ys2 −∂ys3

∂ys1 ∂ys0 ∂ys3 −∂ys2

∂ys2 −∂ys3 ∂ys0 ∂ys1

∂ys3 ∂ys2 −∂ys1 ∂ys0







f0

f1

f2

f3


 = 0

respectively, where f has been considered as a vector ~f with four real components. In the sequel,
we will denote by the symbols D`s and Drs the matrices associated to the operators D`s and
Drs. System (2) can be written in matrix form as the unique equation

Pn(D)~f = 0.

For our purposes we will be interested in the symbols of the system, i.e. in the matrix Pn

obtained from Pn(D) via Fourier transform. As usual in these cases (see e.g. [10]), when we
write the entries of Pn we will neglect the imaginary unit

√−1 and we will use the same variables
instead of dual variables. The main objects of interest will be the cokernel of the map induced
by the matrix P t

n, i.e., the module Mn = R4/〈P t
n〉, and its minimal free resolution (for more

details we refer the reader to [10]). Here we are denoting by R the ring of polynomials in
8n variables R = C[x10, . . . , x13, . . . , xn0, . . . , xn3, y10, . . . , y13, . . . , yn0, . . . , yn3], and by 〈P t

n〉 the
module generated by the columns of P t

n.

Remark 2.2. We observe that the left and right operators commute with each other. This can
be easily checked directly.

In this section we will use the computer package CoCoA to carry out some computations for the
cases of 1, 2, and 3 variables. These results will be our motivation for the general results on
section 3.

Case n = 1. Let us define the two 4× 4 matrices representing the symbols of the right and left
operators, where we write p = x0 + ix1 + jx2 +kx3 and q = y0 + iy1 + jy2 +ky3, thus avoiding the
use of double indices, and we work with matrices with entries in R = C[x0, . . . , x3, y0, . . . , y3].

Dl:=Mat[ -- left operator in p
[x[0], -x[1], -x[2], -x[3]],
[x[1], x[0], -x[3], x[2]],
[x[2], x[3], x[0], -x[1]],
[x[3], -x[2], x[1], x[0]]];

Dr:=Mat[ -- right operator in q
[y[0], -y[1], -y[2], -y[3]],
[y[1], y[0], y[3], -y[2]],
[y[2], -y[3], y[0], y[1]],
[y[3], y[2], -y[1], y[0]]];

ModB:=Module(B); --resolution for biregular functions
Res(R^4/ModB);
0 --> R^4(-2) --> R^8(-1) --> R^4
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note that the exponents in the resolution are the Betti numbers while the numbers in parentheses
indicate the degrees of the associated maps. With the command Comm(Dl,Dr) we can compute
the commutator and check that it is zero. Furthermore, denoting by R the ring of coordinates,
the two matrices D` and Dr not only commute but also form a regular sequence in Mat4(R),
since the involve two different sets of variables. We can apply the results from [9] and conclude
that the syzygies associated to the module generated by the rows of the matrix P1(D) =

(
D`
Dr

)
are given by the matrix S1(D) = (−Dr, D`).

This is actually the last map of the free resolution of the module associate to biregular
functions of two quaternionic variable. The complex has a Koszul-like form both in terms of
Betti numbers and degrees.

0−→R4(−2) P1−→R8(−1) S1−→R4−→ 0.

It is possible to prove that the second cohomology module is the only nonzero one. Precisely, if
we define by M1 the module associated to P1,

Ext2R(M1, R) = R4/Im(S1).

On the other hand the first cohomology vanishes, as it can be easily checked since the maximal
minors of the matrix P1 are coprime (see [1], Lemma 1). This situation is again totally similar
to the case of holomorphic functions of two complex variables (though the real dimension in that
case would be 2 instead of 4). Because the Cauchy-Riemann operators in two complex variables
commute and form a regular sequence, the associated complex is again Koszul-like. We can
summarize these results in a proposition (note that Hartogs’ phenomenon was already proved
in [6]):

Proposition 2.3. Let D` and Dr be respectively the left and the right Cauchy-Fueter operators
acting on functions f : H×H−→H. Consider the non-homogeneous system

{ D`(f) = g`

Dr(f) = gr.

Then the only compatibility condition on the system is given by Drg` = D`gr and the associated
complex is Koszul-like, i.e. it has length two and its maps are constructed as in the Koszul
complex. The Hartogs’ phenomenon holds for the solutions of the system, while the second
cohomology module of the associated complex is nonzero.

Case n = 2. The situation is completely different and much more intricate when we consider
functions of four quaternionic variables (p1, p2, q1, q2) and we study functions that are left regular
in p1, p2 and right regular in q1, q2. By Remark 2.2, every left operator commutes with every right
operator, so we expect to obtain some Koszul-like syzygies associated to the pairs (D`i,Drj), for
every i, j ∈ {1, 2}. On the other hand, the two left operators do not commute with each other,
and neither do the right operators. From the two pairs (D`1,D`2) and (Dr1,Dr2) we then expect
some syzygies of the same type appearing in the complex associated to two left (resp. right)
Cauchy-Fueter operators, which are quadratic (see for example [14]).

Let P2 be the 16 × 4 matrix in R representing these 4 operators. We can compute the
resolution of the associated module M2 = Cokernel(Pt

2) using CoCoA . We obtain

0 --> R^4(-8) --> R^16(-7) --> R^16(-5)(+)R^16(-6) -->
--> R^40(-4) --> R^16(-2)(+)R^16(-3) --> R^16(-1) --> R^4
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A we can see from the Betti numbers and the degrees of the maps in the resolution, the first
syzygies consists in 16 linear relations, corresponding to 4 quaternionic syzygies, and 16 quadratic
relations, corresponding to 4 quaternionic syzygies. The explicit expression of such relations can
be computed again with CoCoA, at least in their real counterparts, and shows that the linear
conditions are exactly those coming from the commutativity and the quadratic ones are coming
from the the fact that the Laplacian is real, so it commutes with any of the operators D`i, Drj

(see [10]). Furthermore CoCoA can also help us calculate the cohomology modules: such modules
all vanish, except at the last spot of the complex where we have a nontrivial cohomology, (the
cokernel of the last map). The following proposition summarizes the results for the case n = 2.

Proposition 2.4. Consider the non-homogeneous system




D`1f = g`1

D`2f = g`2

Dr1f = gr1

Dr2f = gr2

The compatibility conditions of the system are given by the following four (linear) relations:

D`igrj = Drjg`i, i, j ∈ {1, 2}

plus the four quadratic relations

D`iD`jg`j = D2
`jg`i, i, j ∈ {1, 2}, i 6= j

DriDrjgrj = D2
rjgri, i, j ∈ {1, 2}, i 6= j.

The complex associated to the module M2 associated to the system is

0−→R4 P2−→R16 S1−→R32 S2−→R40 S3−→R32 S4−→R16 S5−→R4−→ 0

where the self-duality condition holds on the maps of the resolution, i.w. S5 = tP2, S4 = tS1

and S3 = tS2. The complex is exact except at the last spot where the cohomology module is the
Cokernel of S5.

Proof. All the statements of the theorem can be easily checked with CoCoA. It is immediate to
show that the eight relations given for the system are compatibility conditions. Their sufficiency
follows from a dimension argument. The vanishing of the Ext-modules Extj(M2, R), j = 0, . . . , 5
can be checked directly using CoCoA (see also Corollary 3.10). The last map is the only one that
gives rise to a nontrivial cohomology.

Remark 2.5. In the case of left regular functions of four variables, the compatibility conditions
are quadratic and they include the so called exceptional relations that cannot be expressed in
terms of the Cauchy-Fueter operator or variation of it (see [3]). In this case, on the other
hand, the complex for biregular functions of four quaternionic variables has a double nature: it
behaves both like the Koszul complex and the Cauchy-Fueter one. Since the number of left (or
right) operators involved is only n = 2, we do not see any exceptional syzygies. The exceptional
behavior can occur only with at least three Cauchy-Fueter operators of the same type (left or
right).
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Case n = 3. Before we generalize the results obtained so far for the case to n pairs of quater-
nionic variables, let us show the computations of the complex for the case of biregular functions
of 6 quaternionic variables, defined as the kernel of 3 left operators and 3 right operators. The
following is the minimal free resolution of the module M3 (to get the number of quaternionic
relations, it suffices to divide the Betti numbers by 4) as obtained by CoCoA:

0−→R16(−12)−→R144(−11)−→R564(−10)−→H1240(−9)−→R1620(−8)⊕R48(−7)−→ (3)

R1200(−7)⊕R232(−6)−→R400(−6)⊕R432(−5)−→R360(−4)−→
R80(−3)⊕R9(−2)−→R24(−1)−→R4−→M3−→ 0

Remark 2.6. We notice immediately that the nice property of self-duality does not hold in this
case, since the Betti numbers are not symmetric. The length of the complex is 10, i.e. exactly
the double of the length of the Cauchy-Fueter complex for 3 quaternionic variables. This was
the case even in the previous examples, and indeed we will show in the next section that that
the length of the complex of biregular functions in 2n variables is always equal to two times the
length of the complex for (left) regular functions of n quaternionic variables.

Remark 2.7. Let us look now at the compatibility conditions. In the case of three left operators
and three right operators we have 9 linear quaternionic syzygies and 10 quadratic ones. This
makes us think that we can repeat the argument provided in the case of 4 variables in order to
count the first syzygies. Indeed, the 9 pairs of operators (D`i,Drj) commute and hence give rise
to the 9 Koszul-type relations. The triple of left operators generates 10 = 2

(
3
2

)
+ 4

(
3
3

)
quadratic

relations, of which 2 are exceptional and 8 are radial, as described for example in [14]. The same
holds for the set of right operators, for a total of 20 quadratic relations. The relations described
so far are obviously syzygies, and it could be shown that they are independent exactly as it has
been done for the case of 3 Cauchy-Fueter operators and for the Koszul complex. Therefore, for
dimension reasons, they are all the syzygies and the only ones. We will show in the next section
that the complex is exact except at the last point.

3 Algebraic analysis of the module associated to biregular func-
tions

We present some preliminary lemmas that will lead to the proof of our results for the general
case of the module associated to n left and n right operators.

Lemma 3.1. Let A1, . . . , An and B be square matrices representing n+1 linear constant coeffi-
cient differential operators. Let us suppose that AiB = BAi for every i = 1 . . . n and suppose that
they form a left regular sequence in the ring of matrices. Let S = {(Sj1, . . . , Sjn)| j = 1 . . . t} be
a set of generators for the module of left syzygies of the n-tuple (A1, . . . , An). Then the module
Syz(A1, . . . , An, B) is generated by the set S ′ = {(Sj1, . . . , Sjn, 0)| j = 1 . . . t} together with the
set K = {(0, . . . ,−B, . . . , 0, Ai)| i = 1 . . . n}.
Proof. It is immediate to see that the elements of S ′ and K are syzygies. Let us now show they
are sufficient to generate all of the syzygies. Let C1, . . . , Cn, D be n + 1 matrices such that

C1A1 + · · ·+ CnAn + DB = 0.
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Then from C1A1+· · ·+CnAn = −DB and the fact that (A1, . . . , An, B) is a left regular sequence
it follows that D = T1A1+· · ·TnAn for some matrices T1, . . . , Tn. By substituting this expression
of D and by using the commutativity we have that

(C1 + T1B)A1 + · · ·+ (Cn + TnB)An = 0

and so Ci + TiB = P1S1i + · · ·PtSti for every i = 1 . . . n and so we get that the (n + 1)-tuple
(C1, . . . , Cn, D) is of the desired form.

The following lemma exploits the computation of the Gröbner Basis of the module associated
to biregular functions for small n to infer the general case. We always assume that the default
term ordering on the ring of 4n variables C[xi0, . . . , xi3, yi0, . . . , yi3] is DegRevLex.

Lemma 3.2. Let D`1, . . . , D`n be the symbols matrices associated to n left Cauchy-Fueter op-
erators and let Dr1, . . . , Drn be the symbols of n right Cauchy–Fueter operators. Let Bn be the
module generated by the rows of such matrices. The reduced Gröbner Basis for Bn is given by
the rows of the matrices D`s and Drs, i = 1, . . . , n together with the rows of the matrices

Bks = D`kD`s −D`sD`k and Cks = DrkDrs −DrsDrk, 1 ≤ r < s ≤ n.

Proof. The statement can be verified directly with CoCoA for n ≤ 4. For the general case, we
can see that the S-polynomials generated by any two rows of D`i give rise to the rows of Brs and
the S-polynomials of two rows of Dri generate the rows of Crs. If we pick a row of a D`i and
a row of a Drj , their S-polynomial reduces to zero due to the commutativity D`iDrj = DrjD`i.
Therefore, considering Buchberger’s algorithms for the computation of a reduced Gröbner Basis,
we have so far generated elements of the Gröbner Basis of Bn by adding the rows of Brs and
Crs. To prove that they are the only elements of the reduced Gröbner Basis, we need to show
that all their S-polynomials reduce to zero. An S-polynomial generated by a row of D`i and
a row of Brs is computed and reduced to zero as in the case n = 2 or n = 3, depending on
the number of different indices in the triple (i, r, s). The same holds for Dri and Crs. An S-
polynomial generated by two rows of Brs is computed and reduced as in the case n = 2, n = 3
or n = 4 depending on the number of different indices. The same holds for two rows of Crs.
When choosing a row of D`i and a row of Crs, or a row of Dri and a row of Brs, or a row of Brs

and a row of Ct`, the commutativity implies that the S-polynomials are identically zero.

In order to be able to describe the cohomology and the length of the resolution of the
module associated to biregular function we need the Hilbert-Poincaré series. The following
lemma provides the series for the general case.

Proposition 3.3. Let R = C[xi0, . . . , xi3, yi0, . . . , yi3] and let Mn be the R-module associated to
n left Cauchy-Fueter operators and n right Cauchy-Fueter operators. Then the Hilbert series of
the module Mn is given by

HMn(t) = 4
(1 + (n− 1)t)2

(1− t)4n+2
.

Moreover, the module is Cohen-Macaulay.

Proof. Let us first calculate the monomial module LT(Mn). Computations with CoCoA in the
case n = 3 and n = 4 show that it is generated by the set {xi0et, yi0et, xh2xk1et, yh2yk1et | i =
1 . . . n, t = 1 . . . 4, 1 ≤ h < k ≤ n}, where et is the t-element of the canonical basis of R4. The
same argument as in Lemma 3.2 show that this is sufficient to characterize the module. Let In

be the ideal Ix +Iy = {xi0, xh2xk1 | i = 1 . . . n, 1 ≤ h < k ≤ n}+{yi0, yh2yk1 | i = 1 . . . n, 1 ≤ h <
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k ≤ n}. Then obviously HMn(t) = 4HIn(t). Since Ix and Iy involve a different set of variables,
we can use the isomorphism

R/In ' R/Ix ⊗R/Iy

and conclude that HIn(t) = HIx · HIy . Since HIx = HIy = 1+(n−1)t
(1−t)2n+1 as calculated in [2], we

find the final form of the series. It follows that the dimension of the module Mn is 4n + 2 and
to prove that it is Cohen-Macaulay we have to show that depth(Mn) =dim(Mn). A maximal
regular sequence for Mn can be constructed as a maximal regular sequence in In. The latter has
obviously twice the number of elements than the one constructed in [2] for Ix, which has length
2n + 1, so the statement follows.

Being able to calculate the monomial module LT(Mn), as in the proof of the above propo-
sition, allows to give an explicit formula for the Betti numbers of the minimal free resolution
of Mn. Note that LT(Mn) is ”diagonal” in the sense specified below. The property of LT(Mn)
being diagonal translates into the fact the the Betti numbers of Mn are exactly the ones of the
ideal In multiplied by 4. Moreover, In splits into Ix + Iy, which are the ideals in the diagonal of
Mx and My (with obvious meaning of the symbols). Then the resolution of Mn is the ”product”
of the resolutions of Mx and My, in the following sense:

Definition 3.4. Let R be a ring and I and J two ideals of R. Let {(Fi, φi)}i and {(Gj , ψj)}j

be the two minimal free resolutions of R/I and R/J respectively. In view of the R-modules
isomorphism

R/(I + J) ' R/I ⊗R/J (4)

we can define the tensor product resolution of R/(I + J) as the complex {(Td, τd)}d where

Td =
⊕

i+j=d

Fi ⊗Gj , τd =
∑

i+j=d

φi ⊗ ψj .

In view of the isomorphism (4) the tensor product resolution is indeed a free resolution for
the quotient R/(I + J). Its minimality follows from the definition of the maps τd and form the
fact that the matrices in the free resolutions of R/I and R/J do not have nonzero constant
entries. Let us now state a proposition that generalizes, under suitable hypotheses that can be
easily checked, the construction of a tensor product resolution to the case of modules. Given an
ideal I of R, we denote by ∆s(I) the diagonal submodule of Rs given by Ie1 + · · ·+ Ies where
ei is the i-element of the canonical basis of Rs.

Proposition 3.5. Let s be an integer, let R be a polynomial ring and let M1, M2 and M =
M1 + M2 be finitely generated submodules of the free module Rs. Let I1 and I2 be two ideals in
R such that:

1) LT(M) =LT(M1)+LT(M2),

2) LT(Mi) = ∆s(Ii), i = 1, 2

and let αi and βj be the Betti numbers associated to M1 and M2 respectively. Then the Betti
numbers of the module M are given by

γd =
1
s

∑

i+j=d

αiβj . (5)
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Proof. Let α′i and β′j be the Betti numbers of the resolutions associated to R/I1 and R/I2. From
condition 1) and 2) it follows that LT(M) = ∆s(I), where I = I1 + I2, so if γ′d are the Betti
numbers of R/I, we have that

γd = sγ′d, αi = sα′i, βj = sβ′j , for all i, j, d.

By definition of tensor product resolution, we obtain the Betti numbers associated to R/I via
the formula γ′d =

∑
i+j=d α′iβ

′
j so substituting in the formula for γd we get the statement.

Remark 3.6. The expression for the Betti numbers given in (5) does not take into account
the degrees of the maps involved in the resolution. However, one could extend the results from
proposition 3.5 giving a formula for the graded Betti numbers. This requires the tensor product
resolution to be endowed with the natural grading arising form the tensor products. Denoting
by γd(λ) the d-th Betti number in degree λ of the module M , formula (5) becomes, with obvious
meaning of symbols

γd(λ) =
1
s

∑

i+j=d, ρ+σ=λ

αi(ρ)βj(σ).

We can now state all the principal results for the analysis of the module Mn in a Theorem:

Theorem 3.7. Let R = C[xi0, . . . , xi3, yi0, . . . , yi3 | i = 1 . . . n] and consider the system as-
sociated to n left Cauchy-Fueter operators D`1, . . . ,D`n and n right Cauchy-Fueter operators
Dr1, . . . ,Drn. Let Mn be the R-module associated to map given by all the 2n operators. Then
the length of the minimal free resolution of Mn is 4n− 2. The Betti numbers associated to Mn

are γ0 = 4, γ1 = 8n and

γd = 4n2
∑

i+j=d

(
2n− 1

i

)(
2n− 1

j

)
ij + 1− d

ij + 1 + d
, d > 1. (6)

Furthermore, if we consider the inhomogeneous system




D`1(f) = g`1

Dr1(f) = gr1

· · ·
D`n(f) = g`n

Drn(f) = grn

(7)

the compatibility conditions are given by the n2 linear relations

D`igrj = Drjg`i, i, j ∈ {1, . . . , n} (8)

and the 4
(
n
2

)
+ 4

(
n
3

)
relations given by the following

DsiDsjgsj = D2
sjgsi, i, j ∈ {1, . . . , n}, i 6= j (9)

DsiDsjgsk +DsjDsigsk = DskDsigsk +DskDsjgsi, i, j ∈ {1, . . . , n}, i 6= j

and finally the 2
(
n
3

)
exceptional relations

(D′siDsj −D′sjDsi)gsk + (D′sjDsk −D′skDsj)gsi + (D′skDsi −D′siDsk)gsj = 0, 1 ≤ 1 < j < k ≤ n
(10)

(D′′siDsj −D′′sjDsi)gsk + (D′′sjDsk −D′′skDsj)gsi + (D′′skDsi −D′′siDsk)gsj = 0, 1 ≤ 1 < j < k ≤ n

where in each line Ds stands for either the left operator of the right operator, and the operators
D′s and D′′s are Cauchy-Riemann like operators involving only two of the four real variables
corresponding to the quaternionic variable given by the index (see [14] for their explicit form).
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Proof. The length of the resolution follows form the Auslander-Buchsbaum formula and the fact
that the module Mn has dimension 4n + 2 by Proposition 3.3:

pd(Mn) = 8n− depth(Mn) = 4n− 2.

Consider the sum Mn = Mx + My, where Mx is the module associated to the left operators
and My to the right operators. From the calculation of the leading term module done in
Proposition 3.3 we have that ∆(In) =LT(Mn) =LT(Mx)+LT(My) = ∆(Ix) + ∆(Iy) so we can
apply Proposition 3.5 to calculate the Betti numbers for Mn. Mx and My have the same Betti
numbers, as calculated in [2]: αi = βi = 4

(
2n−1

i

)n(i−1)
i+1 so formula (6) follows from the expression

of the Betti numbers given in 3.5. Let us now focus on the computation of syzygies. Let us
denote by D`i the symbol of the operator D`i and by Dri the symbol of Dri. Using Lemma 3.2
we know that the reduced Gröbner Basis of the module associated to the system (7) consists of
vectors of degree at most two, involving two different sets of variables xi or yi at a time. The
algorithm to compute the syzygies of the module (see [12]) consists in the computation of the
S-polynomials and then a reduction step using the division algorithm. Since this last step cannot
involve variables not already in the S-polynomial, each syzygy will contain at most 4 different
variables, hence will involve at most four different operators. Direct computations for the case
n = 4 show that in reality the number of operators involved in each syzygy is at most three. Let
us then consider three operators (A1, A2, B) among those appearing in the system. If they are
all left Cauchy-Fueter or all right Cauchy-Fueter, the syzygies arising will be of type (9) or (10).
If A1 and A2 are left operators and B is a right operator (or viceversa), we can apply Lemma
3.1 because the three operators involve different variables and Ai commutes with B. We then
conclude that the syzygies are either of the ”Koszul type” (8) or of the ”Cauchy-Fueter” types
(9) or (10).

Remark 3.8. It is possible to calculate the graded Betti numbers using the formula of Remark
3.6 and the graded Betti numbers of the Cauchy–Fueter complex. For the sake of brevity, we
refer the reader to our webpage [11] where an explicit expression is given

The exactness of the complex associated to biregular functions in 2n quaternionic variables
depends on the vanishing of the Ext-modules Extj(M, R). To show that those modules vanish for
j = 0, 1, . . . , 4n+1 we use the fact that the characteristic variety associated to Mn (essentially the
affine variety of points in which the rank of the matrix Pn is strictly less than 4) has dimension
4n− 2 and a well known result in [13] (Proposition 2, p. 139).

Theorem 3.9. The characteristic variety Vn associated to Mn has dimension 4n + 2.

Proof. Let us consider the complexified algebra of quaternions HC = H ⊗ C. A quaternion
ξi = ξi0 + ξi1i + ξi2j + ξi3k will also be denoted as a column vector in C4: ξi = (ξi0, ξi1, ξi2, ξi3)t.
The conjugate of a quaternion ξi will be the element ξ∗i = ξi0 − ξi1i − ξi2j − ξi3k and will be
associated to the column vector ξi = (ξi0,−ξi1,−ξi2,−ξi3)t. We will show that the algebraic set
Vn has dimension 4n + 2 in a neighborhood of an arbitrary point in Vn. An element in Vn is
ζ = (p1, . . . , pn, q1, . . . , qn) where pi, qi ∈ C4n, i = 1, . . . , n. Note that the columns of the matrix
P t

n correspond to the quaternions (cfr. [3] and [10])

p∗1, p
∗
1i, p

∗
1j, p

∗
1k, . . . , p∗n, p∗ni, p

∗
nj, p

∗
nk, q∗1, iq

∗
1, jq

∗
1,kq∗1, . . . , q

∗
n, iq∗n, jq∗n,kq∗n.

The determinant of the i-th 4×4 block in P t
n is equal to (p∗i pi)2 if i ≤ n or to (q∗j qj)2 if i = n+j.

The equation ξ∗i ξi = 0 defines a quadratic cone V of dimension three in C4. Now for ξ ∈ HC, we
define four complex subspaces of HC as follows:

Lξ = {ξq | q ∈ HC}, L⊥ξ = {q ∈ HC | : ξq = 0}
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and
Rξ = {qξ | q ∈ HC}, R⊥

ξ = {q ∈ HC | qξ = 0}.
The spaces Lξ and Rξ are the image of left and right multiplication by ξ respectively, while the
other two spaces are the kernels of these maps. By consequence

dimC Lξ + dimC L⊥ξ = dimCRξ + dimCR⊥
ξ = 4.

It is known (see [3] and [10]) that if ξ ∈ V and ξ 6= 0 then ξ∗ξ = 0 and dimC Lξ + dimC L⊥ξ = 2,
(in fact the map of the left multiplication by ξ corresponds to the first four columns of P t

n with
ξ∗ substituted in it). It is easy to verify, for example using CoCoA, that the 3× 3 minors of this
matrix are multiples of ξ∗ξ and the fact that ξ 6= 0 implies that not all the 2×2 minors are zero.
Since Lξ ⊆ L⊥ξ∗ , as a consequence of the dimension we get Lξ = L⊥ξ∗ and similarly dimCRξ = 2
and Rξ = R⊥

ξ∗ .
We now prove the following:

ζ ∈ V (Mn) ⇐⇒ p1, q1 ∈ V and pj ∈ Rp1 , qj ∈ Lq1 , j = 2, . . . n.

Let us prove the implication ⇐. If p1 ∈ V and pj ∈ Rp1 for j = 2, . . . n then pj = p′jp1 for a
suitable p′j ∈ HC, therefore p∗je ∈ Lp∗1 where e = 1, i, j, k so that the space generated by the first
n columns is contained in the two dimensional space Lp∗1 . In an analogue way, if q1 ∈ V and
qj ∈ Lq1 then the space generated by the last n columns is contained in the two dimensional
space Rq∗1 . The rank of P t

n is not maximum and so ζ ∈ Vn.
Let us prove the converse. Let us suppose that ζ ∈ Vn. Then the matrix P t

n is not of maximal
rank and, by consequence the determinant of the first 4× 4 block is zero. This corresponds to
p1 ∈ V and since dimC Lp∗1 = 2 we may assume that p∗1 and p∗1i form a basis for Lp∗1 . Moreover,
the hypothesis on the rank implies that, for any fixed `, the elements p∗1, p

∗
1i, p

∗
` , p

∗
` i are linearly

dependent. Reasoning as in [3], we deduce that

p∗` ∈ L⊥p1
= Lp∗1 .

We conclude that p∗` = p∗1p
′ for some p′ ∈ HC thus p` ∈ Rp1 . We now look at the last n blocks

of the matrix P t
n. It is obvious that q∗1 ∈ V . Note that by adding the columns corresponding to

the quaternions qj to columns corresponding to quaternions pi it is not anymore true that the
space of the columns has dimension two. For example, if we consider the elements p∗1, p

∗
1i, q

∗
1, iq

∗
1

we have that they are linearly dependent, but iq∗1 does not belong to the subspace generated by
p∗1, p

∗
1i and so the rank of the 4×4 matrix they form is three. Neverthless, we have that if q1 ∈ V

then dimCRq∗1 = 2 and we may assume that q∗1 and iq∗1 form a basis for Rq∗1 . Moreover, for any
fixed `, the elements q∗1, iq

∗
1, q

∗
` , iq

∗
` are linearly dependent and, arguing as before, we deduce that

q∗` ∈ R⊥
q1

= Rq∗1 .

We conclude that, for any choice of `, we still have that the columns of the last n blocks form a
two dimensional subspace Rq∗1 . It follows immediately that

dim (V (Mn)) = 2dimC V + (n− 1) dimCRp1 + (n− 1) dimC Lq1

= 6 + 4(n− 1) = 4n + 2.

As a consequence of the theorem we obtain
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Corollary 3.10. If Mn is as above, then we have

Exti(Mn, R) = 0, for all i = 0, . . . , 4n− 3

and
Ext4n−2(Mn, R) 6= 0.

The complex associated to the biregular functions in 2n variables is exact, except at the last spot.

Proof. Since the characteristic variety V (Mn) has dimension 4n+2, we immediately obtain that
Exti(Mn, R) = 0, for all i = 0, . . . , 8n− (4n + 2)− 1.

Remark 3.11. Note that all the examples in section 2 are an immediate consequence of Theorem
3.7 and Corollary 3.10.

Remark 3.12. As we have widely discussed in [10], Theorem 3.7 and Corollary 3.10 have a
significant number of analytical consequences. In particular they allow an immediate proof of
the Hartogs’ phenomenon for biregular functions in 2n quaternionic variables (the case n = 1
had already been proved in [6]). They also allow the construction of a hyperfunction like theory
for boundary values of such functions. We may return to some of these questions in a subsequent
paper.
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