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Standard Formulation

Nonlinear Problem

Given a semilinear form N (·; ·, ·), find u ∈ V such that

N (u; u, v) = 0 ∀v ∈ V .

Define Vh be the FE space on the mesh, then:

(Standard) Discretization Method

Find uh ∈ Vh such that

Nh(uh; uh, vh) = 0 ∀vh ∈ Vh.
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Two-Grid Methods

Create a mesh which is ‘coarser’ than the original mesh and define VH as
the FE space on this mesh, then:

Two-Grid Discretization Method

Find uH ∈ VH such that

NH(uH ; uH , vH) = 0 ∀vH ∈ VH ,

find u2G ∈ Vh such that

Nh(uH ; u2G , vh) = 0 ∀vh ∈ Vh.

Xu 1992, 1994, 1996, Xu & Zhou 1999, Axelsson & Layton 1996, Dawson, Wheeler & Woodward 1998,

Utnes 1997, Marion & Xu 1995, Wu & Allen 1999, Bi & Ginting 2007, 2011
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Second-Order Quasilinear PDEs

Quasilinear Problem

Given Ω ⊂ Rd , d = 2, 3 and f ∈ L2(Ω), find u such that

−∇ · {µ(x , |∇u|)∇u} = f in Ω,

u = 0 on ∂Ω.

Assumption

1. µ ∈ C (Ω̄× [0,∞)) and

2. there exists positive constants mµ and Mµ such that

mµ(t − s) ≤ µ(x , t)t − µ(x , s)s ≤ Mµ(t − s), t ≥ s ≥ 0, x ∈ Ω̄.
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hp-DGFEM

In this talk we interested in discontinuous Galerkin finite element methods,
where we don’t enforce continuity of the basis functions across faces.

This is results in more degrees of freedom (as no sharing between
neighbouring elements).

Allows us to handle so-called hanging nodes in the mesh easily:

Allows us to easily use different order polynomials on each element —
to that end we define a polynomial degree pκ for all κ ∈ Th.

Now we can define the (fine) hp-DG finite element space:

Vhp(Th,p) = {v ∈ L2(Ω) : v |κ ◦ Tκ ∈ Ppκ (κ̂), κ ∈ Th} 6⊂ H1
0 (Ω).

By elementwise integration by parts, and selection of suitable fluxes on
edges/faces we can derive a discontinuous Galerkin finite element method.
Scott Congreve (Charles University) Two-Grid DG + agglomerated coarse mesh MathMAC 5 / 21



hp-DGFEM

(Standard) Incomplete Interior Penalty Method

Find uhp ∈ Vhp(Th,p) such that

Ahp(uhp; uhp, vhp) = Fhp(vhp)

for all vhp ∈ Vhp(Th,p).

Ahp(ψ; u, v) =
∑
K∈Th

∫
Ω
µ(|∇hψ|)∇hu · ∇hv dx +

∑
F∈Fh

∫
F
σhp[[u]] · [[v ]] ds

−
∑
F∈Fh

∫
F
{{µ(|∇hψ|)∇hu}} · [[v ]] ds,

Fhp(v) =

∫
Ω
fv dx .

where Fh = FB
h ∪ F I

h denotes the set of all faces in the mesh Th.
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hp-DGFEM

(Standard) Incomplete Interior Penalty Method

Find uhp ∈ Vhp(Th,p) such that

Ahp(uhp; uhp, vhp) = Fhp(vhp)

for all vhp ∈ Vhp(Th,p).

Penalty parameter: σhp = γhp
p2
F

hF
,

Average: {{u}} =
1

2
(u|K+ + u|K−),

Jump: [[u]] = (u|K+ − u|K−)nK+ ,
K+K+n

where pF = max(pκ+ , pκ−), hF is the diameter of the face, and γhp is a
(sufficiently large) constant.
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hp-DGFEM

(Standard) Incomplete Interior Penalty Method

Find uhp ∈ Vhp(Th,p) such that

Ahp(uhp; uhp, vhp) = Fhp(vhp)

for all vhp ∈ Vhp(Th,p).

References:
Bustinza & Gatica 2004, Gatica, Gonzáles & Meddahi 2004, Houston, Robson & Suli 2005,

Bustinza, Cockburn & Gatica 2005, Houston, Süli & Wihler 2007, Gudi, Nataraj & Pani 2008
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Polygonal Elements

For two-grid, we would like to be able to construct a coarse mesh,
where the mesh skeleton of the coarse mesh is contained within the
fine mesh skeleton.

This is fine for structured meshes, but what about unstructured?

Recent work (Cangiani, Dong, Georgoulis, & Houston 2017) has
extended DG methods to general polygonal elements (notably
deriving trace/inverse inequalities we require) — providing one of two
conditions are met:

1. A bound exists on the number of edges/faces in the elements.
2. A shape regularity type condition holds — essentially the element can

be divided into simplices, with each face of the element sharing a
complete face with one of these simplices, and a bound exists on the
ratio between this simplex and the element size.
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Two-Grid hp-DGFEM

We construct a coarse mesh TH , consisting of general polygons/polyhedra
κH by agglomerating elements in the fine mesh Th; using, for example,
METIS — Karypis & Kumar 1999.
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Two-Grid hp-DGFEM

We construct a coarse mesh TH , consisting of general polygons/polyhedra
κH by agglomerating elements in the fine mesh Th; using, for example,
METIS — Karypis & Kumar 1999.

Due to this agglomeration and adaptive refinement (see later), we cannot
guarantee any bound on the number of faces.
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Two-Grid hp-DGFEM

Define Th(κH) = {κ ∈ Th : κ ⊆ κH} for all κH ∈ TH .

Define polynomial degree PκH , for all κH ∈ TH , such that

PκH ≤ pκ for all κ ∈ Th(κH).

(Coarse) hp-DG finite element space:

VHP(TH ,P) = {v ∈ L2(Ω) : v |κ ∈ PPκ (κ), κ ∈ TH}.

VHP(TH ,P) ⊆ Vhp(Th,p)

We use a slightly different interior penalty parameter:

σHP = γHP max
κ∈{κ+,κ−}

(
CINV

P2
κ

Hκ

)
,

for an interior face F = ∂κ+ ∩ ∂κ−, where CINV is a constant from
an inverse inequality for agglomerated elements.

[Cangiani, Dong, Georgoulis, & Houston 2017]
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Two-Grid hp-DGFEM

Two-Grid Approximation

1. Construct coarse and fine FE spaces VHP(TH ,P) and Vhp(Th,p).

2. Compute the coarse grid approximation uHP ∈ VHP(TH ,P) such that

AHP(uHP ; uHP , vHP) = FHP(vHP)

for all vHP ∈ VHP(TH ,P).

3. Determine the fine grid approximation u2G ∈ Vhp(Th,p) such that

Ahp(uHP ; u2G , vhp) = Fhp(vhp)

for all vhp ∈ Vhp(Th,p).

[C., Houston, & Wihler 2013]
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Existence & Uniqueness

Theorem

Suppose that γhp and γHP are sufficiently large. Then, there exists a
unique solution u2G ∈ Vhp(Th,p) to the two-grid IIP DGFEM.

Proof.

For sufficiently large γHP , given a regularity assumption on the element
(cf., Cangiani, Dong, Georgoulis, Houston 2017) holds, we can show
Lipschitz continuity and strong monotonicity of the semi-linear form
AHP(·; ·, ·), we can follow the proof of Houston, Robson, Süli 2005
(Theorem 2.5) to show that uHP is a unique solution of the coarse
approximation.
Furthermore, as the fine grid formulation is an interior penalty
discretization of a linear elliptic PDE, where the coefficient µ(|∇huHP |) is
a known function, the existence and uniqueness of the solution u2G to this
problem follows immediately if γhp is sufficiently large.
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A Priori Error Estimation

We would like to show that the method converges as the coarse/fine
meshes are refined (or polynomial degrees are increased).

To that end we first introduce the DG-norm

‖v‖2
hp =

∑
K∈Th

‖∇hv‖2
L2(Ω) +

∑
F∈Fh

∫
F
σhp|[[v ]]|2 ds.
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A Priori Error Estimation

Theorem (Two-Grid Quasilinear Approximation)

Let T ]H = {K} be a covering of TH consisting of d-simplices. If u|κ ∈ Hkκ (κ),
kκ ≥ 2 and u|κ ∈ HKκ (κ), Kκ ≥ 3/2, for κ ∈ TH , such that Eu|K ∈ HKκ (K),

where K ∈ T ]H with κ ⊂ K; then, the solution u2G ∈ Vhp(Th,p) satisfies

‖uhp − u2G‖2
hp ≤ C3

(
C1

∑
κ∈Th

h
2sκ−2
κ

p
2kκ−3
κ

‖u‖2
Hkκ (κ)

+C2

∑
K∈TH

H
2Sκ−2
κ

P
2Kκ−2
κ

(1 + Gκ(Hκ ,Pκ))‖Eu‖2
HKκ (K)

)

‖u − u2G‖2
hp ≤ (1 + C3)C1

∑
κ∈Th

h
2sκ−2
κ

p
2kκ−3
κ

‖u‖2
Hkκ (κ)

+ C2C3

∑
K∈TH

H
2Sκ−2
κ

P
2Kκ−2
κ

(1 + Gκ(Hκ ,Pκ))‖Eu‖2
HKκ (K)

,

where GκH
(Hκ ,Pκ) := (PκH

+ P2
κH

)H−1
κH

maxF⊂∂κH
σ−1
HP |F +

HκH

PκH
maxF⊂∂κH

σHP |F
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Adaptive Mesh Refinement

It would be useful to be able to automatically adjust the coarse and fine
meshes in a way that allows us to reduce the error, ideally to point where
we can estimate that the error is below a desired tolerance.
This can be done if we have several things:

1. an error bound we can compute a posteriori based on the numerical
solution,

2. a way to estimate the elements contributing the most to the error,

3. a way to select which elements to refine based on this contribution,

4. a method for deciding whether to refine the coarse or fine element,
and

5. a method for deciding on whether to perform h– or p–refinement.

Multiple methods already exist for steps 3 and 5 (and are unimportant for
this talk).
For steps 1 and 2 we consider residual-based a posteriori error estimation,
modified for the two-grid method, and also develop an algorithm for step 4.
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A Posteriori Error Estimation

Lemma (Standard Quasilinear DGFEM)

The following bound holds:

‖u − uhp‖2
hp ≤ C1

∑
κ∈Th

(

η2
κ

+ ξ2
κ

)

.

Here the local error indicators ηκ are defined, for all κ ∈ Th, as

η2
κ = h2

κp
−2
κ ‖f +∇ · {µ(|∇uhp|)∇uhp}‖2

L2(κ)

+ hκp
−1
κ ‖[[µ(|∇uhp|)∇uhp]]‖2

L2(∂κ\Γ) + γ2
hpp

3
κh
−1
κ ‖[[uhp]]‖2

L2(∂κ)

Proof.

See Houston, Süli & Wihler 2008.
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A Posteriori Error Estimation

Lemma (Two-Grid Quasilinear Approximation)

The following bound holds:

‖u − u2G‖2
hp ≤ C2

∑
κ∈Th

(
η2
κ + ξ2

κ

)
.

Here the local error indicators ηκ are defined, for all κ ∈ Th, as

η2
κ = h2

κp
−2
κ ‖f +∇ · {µ(|∇uHP |)∇u2G}‖2

L2(κ)

+ hκp
−1
κ ‖[[µ(|∇uHP |)∇u2G ]]‖2

L2(∂κ\Γ) + γ2
hpp

3
κh
−1
κ ‖[[u2G ]]‖2

L2(∂κ)

and the local two-grid error indicators are defined, for all κ ∈ Th, as

ξ2
κ = ‖(µ(|∇uHP |)− µ(|∇u2G |))∇u2G‖2

L2(κ).

Proof.

See C., Houston, & Wihler 2013 for the case of a normal coarse mesh.
This analysis is performed on the fine mesh and the only requirement on
the coarse mesh is that VHP(TH ,P) ⊆ Vhp(Th,p), which still holds.
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hp-Mesh Adaptation

Two-Grid Adaptivity

1. Construct initial coarse and fine FE spaces, with coarse mesh created
by agglomerating the fine mesh.

2. Compute the coarse grid approximation and two-grid solution.

3. Select elements for refinement based on ηκ and ξκ :

3.1 Use
√
η2
K + ξ2

K to determine set R(Th) ⊆ Th of elements to refine.
3.2 Choose fine or coarse mesh refinement. For all κ ∈ R(Th)

if λF ξκ ≤ ηκ refine the fine element κ, and
if λCηκ ≤ ξκ refine the coarse element κH ∈ TH , where κ ∈ Th(κH).

4. Perform h-/hp-mesh refinement of the fine space.

5. Select h- or p-refinement for each coarse element to refine.

6. Perform mesh smoothing to ensure any coarse element marked for
refinement has at least 2d child fine elements.

7. Perform h-/hp-refinement of the coarse space.

8. Goto 2.

The constants λF and λC are steering parameters.
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Coarse Element h-Refinement

Fine Element Refine:

Coarse Element Refine — Partition patch of fine elements into 2d elements
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Coarse Element h-Refinement

Using a standard graph partition algorithm will attempt to create
agglomerated elements with the same number of child fine elements,
minimising the number of edge cuts.

However, we have information about the error for each fine element — can
we distribute the agglomeration using this information?

Possible to assign weights to each vertex and use a graph partitioning
algorithm that balances these weights, rather than the number of
elements. [Karypis & Kumar 1998]

We set the weight to the total local error indicator: η2
κ + ξ2

κ

The coarse element refinement uses the fine elements after refinement;
therefore, we divide the (square) of each error indicator equally between
the new fine elements; i.e., ηκs = ηκ/

√
N and ξκs = ξK/

√
N, for

s = 1, . . . ,N, if κ is divided into N children κ1, . . . , κN .
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Quasilinear PDE: Smooth Solution

We let Ω = (0, 1)2, µ(x , |∇u|) = 2 + 1
1+|∇u|2 and select f so that

u(x , y) = x(1− x)y(1− y)(1− 2y)e−20(2x−1)2
.

0
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1
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xy
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Quasilinear PDE: Smooth Solution
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Quasilinear PDE: Smooth Solution
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Quasilinear PDE: Singular Solution

We let Ω be the Fichera corner (−1, 1)3 \ [0, 1)3, µ(x , |∇u|) = 2 + 1
1+|∇u|2

and select f so that

u(x) = (x2 + y2 + z2)q/2, q ∈ R;

for q > −1/2, u ∈ H1(Ω). Here, we select q = −1/4.
Beilina, Korotov & Kř́ıžek 2005
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Quasilinear PDE: Singular Solution
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Quasilinear PDE: Singular Solution
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Conclusion

Summary:

Derived a priori error estimates for agglomerated coarse meshes.

Two-Grid DG a posteriori error estimates still hold for agglomerated
coarse mesh of polygons and fine mesh of simplices.

We can adaptively refine the coarse mesh based on the error
estimates.

Future Aims:

Extend to general nonlinearities.

Non-Newtonian fluids.
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