Two-Grid hp-Version DGFEM for Second-Order Quasilinear Elliptic PDEs using Agglomerated Coarse Meshes

Scott Congreve

Faculty of Mathematics, University of Vienna
Joint work with
Paul Houston (University of Nottingham)

Charles University Prague, 28th February 2019

Overview

(1) Overview of Two-Grid Methods

(2) Second-Order Quasilinear PDE

■ Weak Formulation
■ Continuous Galerkin FEM

- Discontinuous Galerkin FEM
- Two-Grid Discontinuous Galerkin FEM
- A Priori Error Estimation
(3) Adaptive Mesh Refinement
- A Posteriori Error Estimation

■ Two-Grid Adaptivity

- Coarse Element Refinement
(4) Numerical Experiments

Section 1

Overview of Two-Grid Methods

Standard Formulation

Nonlinear Problem

Given a semilinear form $\mathcal{N}(\cdot ; \cdot, \cdot)$, find $u \in V$ such that

$$
\mathcal{N}(u ; u, v)=0 \quad \forall v \in V .
$$

Standard Formulation

Nonlinear Problem

Given a semilinear form $\mathcal{N}(\cdot ; \cdot, \cdot)$, find $u \in V$ such that

$$
\mathcal{N}(u ; u, v)=0 \quad \forall v \in V
$$

Define V_{h} be the FE space on the mesh, then:

(Standard) Discretization Method

Find $u_{h} \in V_{h}$ such that

$$
\mathcal{N}_{h}\left(u_{h} ; u_{h}, v_{h}\right)=0 \quad \forall v_{h} \in V_{h} .
$$

Two-Grid Methods

Create a mesh which is 'coarser' than the original mesh and define V_{H} as the FE space on this mesh, then:

Two-Grid Discretization Method

Find $u_{H} \in V_{H}$ such that

$$
\mathcal{N}_{H}\left(u_{H} ; u_{H}, v_{H}\right)=0 \quad \forall v_{H} \in V_{H}
$$

Two-Grid Methods

Create a mesh which is 'coarser' than the original mesh and define V_{H} as the FE space on this mesh, then:

Two-Grid Discretization Method

Find $u_{H} \in V_{H}$ such that

$$
\mathcal{N}_{H}\left(u_{H} ; u_{H}, v_{H}\right)=0 \quad \forall v_{H} \in V_{H},
$$

find $u_{2 G} \in V_{h}$ such that

$$
\mathcal{N}_{h}\left(u_{H} ; u_{2 G}, v_{h}\right)=0 \quad \forall v_{h} \in V_{h} .
$$

Xu 1992, 1994, 1996, Xu \& Zhou 1999, Axelsson \& Layton 1996, Dawson, Wheeler \& Woodward 1998, Utnes 1997, Marion \& Xu 1995, Wu \& Allen 1999, Bi \& Ginting 2007, 2011

Section 2

Second-Order Quasilinear PDE

Second-Order Quasilinear PDEs

Quasilinear Problem

Given $\Omega \subset \mathbb{R}^{d}, d=2,3$ and $f \in L^{2}(\Omega)$, find u such that

$$
\begin{aligned}
-\nabla \cdot\{\mu(\boldsymbol{x},|\nabla u|) \nabla u\} & =f & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Assumption

1. $\mu \in C(\bar{\Omega} \times[0, \infty))$ and
2. there exists positive constants m_{μ} and M_{μ} such that

$$
m_{\mu}(t-s) \leq \mu(\boldsymbol{x}, t) t-\mu(\boldsymbol{x}, s) s \leq M_{\mu}(t-s), \quad t \geq s \geq 0, \quad \boldsymbol{x} \in \bar{\Omega}
$$

Week Formulation

By multiplication by a test function and integrating by parts we get the weak formulation:

Weak Formulation

Find $u \in H_{0}^{1}(\Omega):=\left\{\phi \in H^{1}(\Omega): \phi=0\right.$ on $\left.\partial \Omega\right\}$ such that

$$
\int_{\Omega} \mu(|\nabla u|) \nabla u \cdot \nabla v d s=\int_{\Omega} f v d s
$$

for all $v \in H_{0}^{1}(\Omega)$.

CGFEM (Linear Basis, $p=1$)

With continuous Galerkin finite element methods we want to search for a solution in a finite dimensional subspace of $H_{0}^{1}(\Omega)$.

- Subdivide the domain Ω into a mesh \mathcal{T}_{h} of non-overlapping triangular, tetrahedral, quadrilateral, or hexehedral elements K, with size h_{K}, which are an affine map of a reference element \hat{K}; i.e., there exists an affine mapping $T_{K}: \hat{K} \rightarrow K$ such that $K=T_{K}(\hat{K})$.

■ We'll consider linear basis functions on each element for now.
■ Define the CG finite element space (continuous over Ω):

$$
V_{C G}\left(\mathcal{T}_{h}\right)=\left\{v \in H_{0}^{1}(\Omega):\left.v\right|_{K} \circ T_{K} \in \mathcal{Q}_{1}(\hat{K}), K \in \mathcal{T}_{h}\right\} \subset H_{0}^{1}(\Omega)
$$

CGFEM (Linear Basis, $p=1$)

By using the finite dimensional subspace we get a CGFEM approximation:

CGFEM

Find $u_{C G} \in V_{C G}\left(\mathcal{T}_{h}\right)$ such that

$$
\int_{\Omega} \mu\left(\left|\nabla u_{C G}\right|\right) \nabla u_{C G} \cdot \nabla v_{C G} d s=\int_{\Omega} f v_{C G} d s
$$

for all $v_{C G} \in V_{C G}\left(\mathcal{T}_{h}\right)$.
We can define $u_{C G}$ and $v_{C G}$ in terms of nodal hat basis functions (one per interior vertex of the mesh); i.e.,

$$
u_{C G}=\sum_{i \in \mathcal{N}_{h}^{I}} \alpha_{i} \varphi_{i}, \quad \text { where } \alpha_{i} \in \mathbb{R}, \text { for all } i \in \mathcal{N}_{h}^{\mathcal{I}} .
$$

From this we get a nonlinear system of equations of $\# \mathcal{N}_{h}^{\mathcal{I}}$ unknowns, which can be solved using Newton's method, solving a linear system at each iteration.

hp-DGFEM

In this talk we interested in discontinuous Galerkin finite element methods, where we don't enforce continuity of the basis functions across faces.

- This is results in more degrees of freedom (as no sharing between neighbouring elements).
- Allows us to handle so-called hanging nodes in the mesh easily:

- Allows us to easily use different order polynomials on each element to that end we define a polynomial degree p_{K} for all $K \in \mathcal{T}_{h}$.
Now we can define the (fine) $h p$-DG finite element space:

$$
V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)=\left\{v \in L^{2}(\Omega):\left.v\right|_{K} \circ T_{K} \in \mathcal{P}_{p_{K}}(\hat{K}), K \in \mathcal{T}_{h}\right\} \not \subset H_{0}^{1}(\Omega) .
$$

By elementwise integration by parts, and selection of suitable fluxes on edges/faces we can derive a discontinuous Galerkin finite element method.

$h p-$ DGFEM

(Standard) Incomplete Interior Penalty Method

Find $u_{h p} \in V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)$ such that

$$
A_{h p}\left(u_{h p} ; u_{h p}, v_{h p}\right)=F_{h p}\left(v_{h p}\right)
$$

for all $v_{h p} \in V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)$.

$$
\begin{aligned}
A_{h p}(\psi ; u, v)= & \sum_{K \in \mathcal{T}_{h}} \int_{\Omega} \mu\left(\left|\nabla_{h} \psi\right|\right) \nabla_{h} u \cdot \nabla_{h} v d \boldsymbol{x}+\sum_{F \in \mathcal{F}_{h}} \int_{F} \sigma_{h p} \llbracket u \rrbracket \cdot \llbracket v \rrbracket d s \\
& \left.-\sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\mu\left(\left|\nabla_{h} \psi\right|\right) \nabla_{h} u\right\}\right\} \cdot \llbracket v \rrbracket d s, \\
F_{h p}(v)= & \int_{\Omega} f v d \boldsymbol{x} .
\end{aligned}
$$

where $\mathcal{F}_{h}=\mathcal{F}_{h}^{B} \cup \mathcal{F}_{h}^{\prime}$ denotes the set of all faces in the mesh \mathcal{T}_{h}.

(Standard) Incomplete Interior Penalty Method

Find $u_{h p} \in V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)$ such that

$$
A_{h p}\left(u_{h p} ; u_{h p}, v_{h p}\right)=F_{h p}\left(v_{h p}\right)
$$

for all $v_{h p} \in V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)$.

Penalty parameter: $\quad \sigma_{h p}=\gamma_{h p} \frac{p_{F}^{2}}{h_{F}}$,

$$
\begin{aligned}
\text { Average: } & \{\{u\} & =\frac{1}{2}\left(\left.u\right|_{K^{+}}+\left.u\right|_{K^{-}}\right), \\
\text {Jump: } & \llbracket u \rrbracket & =\left(\left.u\right|_{K^{+}}-\left.u\right|_{K^{-}}\right) \boldsymbol{n}_{K^{+}},
\end{aligned}
$$

where $p_{F}=\max \left(p_{K^{+}}, p_{K^{-}}\right), h_{F}$ is the diameter of the face, and $\gamma_{h p}$ is a (sufficiently large) constant.

$h p-$ DGFEM

(Standard) Incomplete Interior Penalty Method

Find $u_{h p} \in V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)$ such that

$$
A_{h p}\left(u_{h p} ; u_{h p}, v_{h p}\right)=F_{h p}\left(v_{h p}\right)
$$

for all $v_{h p} \in V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)$.
References:
Bustinza \& Gatica 2004, Gatica, Gonzáles \& Meddahi 2004, Houston, Robson \& Suli 2005, Bustinza, Cockburn \& Gatica 2005, Houston, Süli \& Wihler 2007, Gudi, Nataraj \& Pani 2008

■ For two-grid, we would like to be able to construct a coarse mesh, where the mesh skeleton of the coarse mesh is contained within the fine mesh skeleton.

Polygonal Elements

■ For two-grid, we would like to be able to construct a coarse mesh, where the mesh skeleton of the coarse mesh is contained within the fine mesh skeleton.

- This is fine for structured meshes, but what about unstructured?

Polygonal Elements

- For two-grid, we would like to be able to construct a coarse mesh, where the mesh skeleton of the coarse mesh is contained within the fine mesh skeleton.
- This is fine for structured meshes, but what about unstructured?

■ Recent work (Cangiani, Dong, Georgoulis, \& Houston 2017) has extended DG methods to general polygonal elements (notable deriving trace/inverse inequalities we require) - providing one of two conditions are met:

1. A bound exists on the number of edges/faces in the elements.
2. A shape regularity type condition holds - essentially the element can be divided into simplices, with each face of the element sharing a complete face with one of these simplices, and a bound exists on the ratio between this simplex and the element size.

Two-Grid hp-DGFEM

We construct a coarse mesh \mathcal{T}_{H}, consisting of general polygons/polyhedra K_{H} by agglomerating elements in the fine mesh \mathcal{T}_{h}; using, for example, METIS — Karypis \& Kumar 1999.

Two-Grid hp-DGFEM

We construct a coarse mesh \mathcal{T}_{H}, consisting of general polygons/polyhedra K_{H} by agglomerating elements in the fine mesh \mathcal{T}_{h}; using, for example, METIS - Karypis \& Kumar 1999.

Two-Grid hp-DGFEM

universität wien

We construct a coarse mesh \mathcal{T}_{H}, consisting of general polygons/polyhedra K_{H} by agglomerating elements in the fine mesh \mathcal{T}_{h}; using, for example, METIS — Karypis \& Kumar 1999.

Two-Grid hp-DGFEM

We construct a coarse mesh \mathcal{T}_{H}, consisting of general polygons/polyhedra K_{H} by agglomerating elements in the fine mesh \mathcal{T}_{h}; using, for example, METIS — Karypis \& Kumar 1999.

Due to this agglomeration and adaptive refinement (see later), we cannot guarantee any bound on the number of faces.
\square Define $\mathcal{T}_{h}\left(K_{H}\right)=\left\{K \in \mathcal{T}_{h}: K \subseteq K_{H}\right\}$ for all $K_{H} \in \mathcal{T}_{H}$.
■ Define polynomial degree $P_{K_{H}}$, for all $K_{H} \in \mathcal{T}_{H}$, such that

$$
P_{K_{H}} \leq p_{K} \text { for all } K \in \mathcal{T}_{h}\left(K_{H}\right)
$$

■ (Coarse) $h p$-DG finite element space:

$$
V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right)=\left\{v \in L^{2}(\Omega):\left.v\right|_{K} \in \mathcal{P}_{P_{K}}(K), K \in \mathcal{T}_{H}\right\} .
$$

\square Define $\mathcal{T}_{h}\left(K_{H}\right)=\left\{K \in \mathcal{T}_{h}: K \subseteq K_{H}\right\}$ for all $K_{H} \in \mathcal{T}_{H}$.
■ Define polynomial degree $P_{K_{H}}$, for all $K_{H} \in \mathcal{T}_{H}$, such that

$$
P_{K_{H}} \leq p_{K} \text { for all } K \in \mathcal{T}_{h}\left(K_{H}\right)
$$

■ (Coarse) $h p$-DG finite element space:

$$
V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right)=\left\{v \in L^{2}(\Omega):\left.v\right|_{K} \in \mathcal{P}_{P_{K}}(K), K \in \mathcal{T}_{H}\right\} .
$$

■ $V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right) \subseteq V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)$

Two-Grid hp-DGFEM

■ Define $\mathcal{T}_{h}\left(K_{H}\right)=\left\{K \in \mathcal{T}_{h}: K \subseteq K_{H}\right\}$ for all $K_{H} \in \mathcal{T}_{H}$.
■ Define polynomial degree $P_{K_{H}}$, for all $K_{H} \in \mathcal{T}_{H}$, such that

$$
P_{K_{H}} \leq p_{K} \text { for all } K \in \mathcal{T}_{h}\left(K_{H}\right) .
$$

- (Coarse) $h p$-DG finite element space:

$$
V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right)=\left\{v \in L^{2}(\Omega):\left.v\right|_{K} \in \mathcal{P}_{P_{K}}(K), K \in \mathcal{T}_{H}\right\} .
$$

■ $V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right) \subseteq V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)$
■ We use a slightly different interior penalty parameter:

$$
\sigma_{H P}=\gamma_{H P} \max _{K \in\left\{K^{+}, K^{-}\right\}}\left(C_{\mathrm{INV}} \frac{P_{K}^{2}}{H_{K}}\right),
$$

for an interior face $F=\partial K^{+} \cap \partial K^{-}$, where $C_{\text {INV }}$ is a constant from an inverse inequality for agglomerated elements.
[Cangiani, Dong, Georgoulis, \& Houston 2017]

Two-Grid hp-DGFEM

Two-Grid Approximation

1. Construct coarse and fine FE spaces $V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right)$ and $V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)$.
2. Compute the coarse grid approximation $u_{H P} \in V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right)$ such that

$$
A_{H P}\left(u_{H P} ; u_{H P}, v_{H P}\right)=F_{H P}\left(v_{H P}\right)
$$

for all $v_{H P} \in V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right)$.
3. Determine the fine grid approximation $u_{2 G} \in V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)$ such that

$$
A_{h p}\left(u_{H P} ; u_{2 G}, v_{h p}\right)=F_{h p}\left(v_{h p}\right)
$$

for all $v_{h p} \in V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)$.
[C., Houston, \& Wihler 2013]

Existence \& Uniqueness

We define the following extension of the form $A_{H P}(\cdot ; \cdot, \cdot)$, to $\mathcal{V} \times \mathcal{V}$, where $\mathcal{V}=H^{1}(\Omega)+V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right)$.

$$
\begin{aligned}
\widetilde{A}_{H P}(u, v)= & \sum_{K \in \mathcal{T}_{h}} \int_{K} \mu\left(\left|\nabla_{h} u\right|\right) \nabla_{h} u \cdot \nabla_{h} v d \boldsymbol{x} \\
& -\sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\mu\left(\left|\boldsymbol{\Pi}_{L^{2}}\left(\nabla_{h} u\right)\right|\right) \Pi_{L^{2}}\left(\nabla_{h} u\right)\right\} \cdot \llbracket v \rrbracket d s \\
& +\sum_{F \in \mathcal{F}_{h}} \int_{F} \sigma_{H P} \llbracket u \rrbracket \cdot \llbracket v \rrbracket d s,
\end{aligned}
$$

Here, $\boldsymbol{\Pi}_{L^{2}}:\left[L^{2}(\Omega)\right]^{d} \rightarrow\left[V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right)\right]^{d}$ denotes the orthogonal L^{2}-projection onto the finite element space $\left[V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right)\right]^{d}$.

Existence \& Uniqueness

We define the following extension of the form $A_{H P}(\cdot ; \cdot, \cdot)$, to $\mathcal{V} \times \mathcal{V}$, where $\mathcal{V}=H^{1}(\Omega)+V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right)$.

$$
\begin{aligned}
\tilde{A}_{H P}(u, v)= & \sum_{K \in \mathcal{T}_{h}} \int_{K} \mu\left(\left|\nabla_{h} u\right|\right) \nabla_{h} u \cdot \nabla_{h} v d \boldsymbol{x} \\
& -\sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\mu\left(\left|\boldsymbol{\Pi}_{L^{2}}\left(\nabla_{h} u\right)\right|\right) \Pi_{L^{2}}\left(\nabla_{h} u\right)\right\} \cdot \llbracket v \rrbracket d s \\
& +\sum_{F \in \mathcal{F}_{h}} \int_{F} \sigma_{H P} \llbracket u \rrbracket \cdot \llbracket v \rrbracket d s,
\end{aligned}
$$

Here, $\boldsymbol{\Pi}_{L^{2}}:\left[L^{2}(\Omega)\right]^{d} \rightarrow\left[V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right)\right]^{d}$ denotes the orthogonal L^{2}-projection onto the finite element space $\left[V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right)\right]^{d}$. We note, that

$$
\widetilde{A}_{H P}(u, v)=A_{H P}(u ; u, v), \quad \text { for all } u, v \in V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right)
$$

Existence \& Uniqueness

Lemma

Let $\gamma_{H P}>\gamma_{\text {min }} \epsilon$, where $\epsilon>1 / 4$ and $\gamma_{\text {min }}$ is a positive constant; then, given the regularity assumption on the element (cf., Cangiani, Dong, Georgoulis, Houston 2017) holds, we have that the semi-linear form $A_{H P}(\cdot, \cdot)$ is strongly monotone in the sense that

$$
\tilde{A}_{H P}\left(v_{1}, v_{1}-v_{2}\right)-\widetilde{A}_{H P}\left(v_{2}, v_{1}-v_{2}\right) \geq C_{\text {mono }}\left\|v_{1}-v_{2}\right\|_{H P}^{2},
$$

and Lipschitz continuous in the sense that

$$
\left|\widetilde{A}_{H P}\left(v_{1}, w\right)-\widetilde{A}_{H P}\left(v_{2}, w\right)\right| \leq C_{\text {cont }}\left\|v_{1}-v_{2}\right\|_{H P}\|w\|_{H P}
$$

for all $v_{1}, v_{2}, w \in \mathcal{V}$, where $C_{\text {mono }}$ and $C_{\text {cont }}$ are positive constants independent of the discretization parameters.

Proof.

Application of the bounds of the non-linearity, along with standard arguments, prove these bounds. [C., Houston (In Prep.)]

Existence \& Uniqueness

Theorem

Suppose that $\gamma_{h p}$ and $\gamma_{H P}$ are sufficiently large. Then, there exists a unique solution $u_{2 G} \in V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)$ to the two-grid IIP DGFEM.

Existence \& Uniqueness

Theorem

Suppose that $\gamma_{h p}$ and $\gamma_{H P}$ are sufficiently large. Then, there exists a unique solution $u_{2 G} \in V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)$ to the two-grid IIP DGFEM.

Proof.

As from the previous lemma we have Lipschitz continuity and strong monotonicity of the semi-linear form $\widetilde{A}_{H P}(\cdot, \cdot)$ and

$$
\tilde{A}_{H P}\left(u_{H P}, v_{H P}\right)=A_{H P}\left(u_{H P} ; u_{H P}, v_{H P}\right)=F_{H P}\left(v_{H P}\right),
$$

for all $v_{H P} \in V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right)$, we can follow the proof of Houston, Robson, Süli 2005 (Theorem 2.5) to show that $u_{H P}$ is a unique solution of the coarse approximation. Furthermore, as the fine grid formulation is an interior penalty discretization of a linear elliptic PDE, where the coefficient $\mu\left(\left|\nabla_{h} u_{H P}\right|\right)$ is a known function, the existence and uniqueness of the solution $u_{2 G}$ to this problem follows immediately.

A Priori Error Estimation

We would like to show that the method converges as the coarse/fine meshes are refined (or polynomial degrees are increased).

To that end we first introduce the DG-norm

$$
\|v\|_{h p}^{2}=\sum_{K \in \mathcal{T}_{h}}\left\|\nabla_{h} v\right\|_{L^{2}(\Omega)}^{2}+\sum_{F \in \mathcal{F}_{h}} \int_{F} \sigma_{h p}|\llbracket v \rrbracket|^{2} d s
$$

A Priori Error Estimation

Lemma (Standard Qualilinear DGFEM)

Assuming that $u \in C^{1}(\Omega)$ and $\left.u\right|_{K} \in H^{k_{K}}(K), k_{K} \geq 2$, for $K \in \mathcal{T}_{h}$ then the solution $u_{h p} \in V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)$ of the standard DGFEM satisfies the error bound

$$
\left\|u-u_{h p}\right\|_{h p}^{2} \leq C_{1} \sum_{K \in \mathcal{T}_{h}} \frac{h_{K}^{2 s_{K}-2}}{p_{K}^{2 k_{K}-3}}\|u\|_{H^{k} K(K)}^{2}
$$

with $s_{K}=\min \left(p_{K}+1, k_{K}\right)$.

Proof.

See Houston, Robson, \& Süli 2005.

A Priori Error Estimation

Theorem (Coarse Mesh Approximation)

Let $\mathcal{T}_{H}^{\sharp}=\{\mathcal{K}\}$ be a covering of \mathcal{T}_{H} consisting of d-simplices and $u_{H P} \in V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right)$ be the coarse mesh approximation. If $\left.u\right|_{K} \in H^{K_{K}}(K)$, $K_{K} \geq 3 / 2$, for $K \in \mathcal{T}_{H}$, such that $\left.\mathfrak{E} u\right|_{\mathcal{K}} \in H^{K_{K}}(\mathcal{K})$, where \mathfrak{E} is an extension operator and $\mathcal{K} \in \mathcal{T}_{H}^{\sharp}$ with $K \subset \mathcal{K}$; then,

$$
\left\|u-u_{H P}\right\|_{H P}^{2} \leq C_{2} \sum_{K \in \mathcal{T}_{H}} \frac{H_{K}^{2 S_{K}-2}}{P_{K}^{2 K_{K}-2}}\left(1+\mathcal{G}_{K}\left(H_{K}, P_{K}\right)\right)\|\mathfrak{E} u\|_{H^{\kappa_{K}(\mathcal{K})}}^{2}
$$

where $S_{K}=\min \left(P_{K}+1, K_{K}\right)$ and

$$
\mathcal{G}_{K}\left(H_{K}, P_{K}\right):=\left.\left(P_{K}+P_{K}^{2}\right) H_{K}^{-1} \max _{F \subset \partial K} \sigma_{H P}^{-1}\right|_{F}+\left.H_{K} P_{K}^{-1} \max _{F \subset \partial K} \sigma_{H P}\right|_{F} .
$$

Proof.

Due to Lipschitz continuity and monotonicity the prove follows almost identically to Cangiani, Dong, Georgoulis, \& Houston 2017.

A Priori Error Estimation

Theorem (Two-Grid Quasilinear Approximation)

Let $\mathcal{T}_{H}^{\sharp}=\{\mathcal{K}\}$ be a covering of \mathcal{T}_{H} consisting of d-simplices. If $\left.u\right|_{K} \in H^{k_{K}}(K), k_{K} \geq 2$ and $\left.u\right|_{K} \in H^{K_{K}}(K), K_{K} \geq 3 / 2$, for $K \in \mathcal{T}_{H}$, such that $\left.\mathfrak{E} u\right|_{\mathcal{K}} \in H^{K_{K}}(\mathcal{K})$, where $\mathcal{K} \in \mathcal{T}_{H}^{\sharp}$ with $K \subset \mathcal{K}$; then, the solution $u_{2 G} \in V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)$ of the two-grid DGFEM satisfies the error bounds

$$
\begin{aligned}
& \left\|u_{h p}-u_{2 G}\right\|_{h p}^{2} \leq C_{3}\left(C_{1} \sum_{K \in \mathcal{T}_{h}} \frac{h_{K}^{2 s_{K}-2}}{p_{K}^{2 k_{K}-3}}\|u\|_{H^{k_{K}}(K)}^{2}\right. \\
& \left.\quad+C_{2} \sum_{K \in \mathcal{T}_{H}} \frac{H_{K}^{2 S_{K}-2}}{P_{K}^{2 K_{K}-2}}\left(1+\mathcal{G}_{K}\left(H_{K}, P_{K}\right)\right)\|\mathfrak{E} u\|_{H^{K_{K}}(\mathcal{K})}^{2}\right) \\
& \left\|u-u_{2 G}\right\|_{h p}^{2} \leq\left(1+C_{3}\right) C_{1} \sum_{K \in \mathcal{T}_{h}} \frac{h_{K}^{2 s_{K}-2}}{p_{K}^{2 k_{K}-3}}\|u\|_{H^{k_{K}}(K)}^{2} \\
& \\
& \quad+C_{2} C_{3} \sum_{K \in \mathcal{T}_{H}} \frac{H_{K}^{2 S_{K}-2}}{P_{K}^{2 K_{K}-2}}\left(1+\mathcal{G}_{K}\left(H_{K}, P_{K}\right)\right)\|\mathfrak{E} u\|_{H^{K_{K}(\mathcal{K})}}^{2}
\end{aligned}
$$

Proof.

Defining $\phi=u_{2 G}-u_{h p}$; then,

$$
\begin{aligned}
C_{c}\|\phi\|_{h p}^{2} \leq & A_{h p}\left(u_{H P} ; u_{2 G}, \phi\right)-A_{h p}\left(u_{H P} ; u_{h p}, \phi\right) \\
= & A_{h p}\left(u_{h p} ; u_{h p}, \phi\right)-A_{h p}\left(u_{H P} ; u_{h p}, \phi\right) \\
\leq & \sum_{K \in \mathcal{T}_{h}} \int_{K}\left|\left(\mu\left(\left|\nabla u_{h p}\right|\right)-\mu\left(\left|\nabla u_{H P}\right|\right)\right) \nabla u_{h p}\right||\nabla \phi| d x \\
& +\sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\left\{\left|\left(\mu\left(\left|\nabla u_{h p}\right|\right)-\mu\left(\left|\nabla u_{H P}\right|\right)\right) \nabla u_{h p}\right|\right\}|\llbracket| \llbracket \| \mid d s\right. \\
\leq & C\left(\sum_{K \in \mathcal{T}_{h}} \int_{K}\left|\nabla\left(u_{h p}-u_{H P}\right) \| \nabla \phi\right| d x\right. \\
& \left.+\sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\left|\nabla\left(u_{h p}-u_{H P}\right)\right|\right\}|\llbracket \phi \rrbracket| d s\right) \\
\leq & C\left(\left\|\nabla_{h}\left(u-u_{h p}\right)\right\|_{L^{2}(\Omega)}+\left\|\nabla_{h}\left(u-u_{H P}\right)\right\|_{L^{2}(\Omega)}\right)\|\phi\|_{h p} .
\end{aligned}
$$

Section 3

Adaptive Mesh Refinement

Adaptive Mesh Refinement

It would be useful to be able to automatically adjust the coarse and fine meshes in a way that allows us to reduce the error, ideally to point where we can estimate that the error is below a desired tolerance.
This can be done if we have several things:

1. an error bound we can compute a posteriori based on the numerical solution,
2. a way to estimate the elements contributing the most to the error,
3. a way to select which elements to refine based on this contribution,
4. a method for deciding whether to refine the coarse or fine element, and
5. a method for deciding on whether to perform h - or p-refinement.

Multiple methods already exist for steps 3 and 5 (and are unimportant for this talk).
For steps 1 and 2 we consider residual-based a posteriori error estimation, modified for the two-grid method, and also develop an algorithm for step 4.

A Posteriori Error Estimation

Lemma (Standard Quasilinear DGFEM)

The following bound holds:

$$
\left\|u-u_{h p}\right\|_{h p}^{2} \leq C_{1} \sum_{K \in \mathcal{T}_{h}} \eta_{K}^{2}
$$

Here the local error indicators η_{K} are defined, for all $K \in \mathcal{T}_{h}$, as

$$
\begin{aligned}
\eta_{K}^{2} & =h_{K}^{2} p_{K}^{-2}\left\|f+\nabla \cdot\left\{\mu\left(\left|\nabla u_{h p}\right|\right) \nabla u_{h p}\right\}\right\|_{L^{2}(K)}^{2} \\
& +h_{K} p_{K}^{-1}\left\|\llbracket \mu\left(\left|\nabla u_{h p}\right|\right) \nabla u_{h p} \rrbracket\right\|_{L^{2}(\partial K \backslash \Gamma)}^{2}+\gamma_{h p}^{2} p_{K}^{3} h_{K}^{-1}\left\|\llbracket u_{h p} \rrbracket\right\|_{L^{2}(\partial K)}^{2}
\end{aligned}
$$

Proof.

See Houston, Süli \& Wihler 2008.

A Posteriori Error Estimation

Lemma (Two-Grid Quasilinear Approximation)

The following bound holds:

$$
\left\|u-u_{2 G}\right\|_{h p}^{2} \leq C_{2} \sum_{K \in \mathcal{T}_{h}}\left(\eta_{K}^{2}+\xi_{K}^{2}\right)
$$

Here the local error indicators η_{K} are defined, for all $K \in \mathcal{T}_{h}$, as

$$
\begin{aligned}
\eta_{K}^{2} & =h_{K}^{2} p_{K}^{-2}\left\|f+\nabla \cdot\left\{\mu\left(\left|\nabla u_{H P}\right|\right) \nabla u_{2 G}\right\}\right\|_{L^{2}(K)}^{2} \\
& +h_{K} p_{K}^{-1}\left\|\llbracket \mu\left(\left|\nabla u_{H P}\right|\right) \nabla u_{2 G} \rrbracket\right\|_{L^{2}(\partial K \backslash \Gamma)}^{2}+\gamma_{h p}^{2} p_{K}^{3} h_{K}^{-1}\left\|\llbracket u_{2 G} \rrbracket\right\|_{L^{2}(\partial K)}^{2}
\end{aligned}
$$

and the local two-grid error indicators are defined, for all $K \in \mathcal{T}_{h}$, as

$$
\xi_{K}^{2}=\left\|\left(\mu\left(\left|\nabla u_{H P}\right|\right)-\mu\left(\left|\nabla u_{2 G}\right|\right)\right) \nabla u_{2 G}\right\|_{L^{2}(K)}^{2} .
$$

Proof.

See C., Houston, \& Wihler 2013 for the case of a normal coarse mesh. This analysis is performed on the fine mesh and the only requirement on the coarse mesh is that $V_{H P}\left(\mathcal{T}_{H}, \boldsymbol{P}\right) \subseteq V_{h p}\left(\mathcal{T}_{h}, \boldsymbol{p}\right)$, which still holds.

hp-Mesh Adaptation

Two-Grid Adaptivity

1. Construct initial coarse and fine FE spaces, with coarse mesh created by agglomerating the fine mesh.
2. Compute the coarse grid approximation and two-grid solution.
3. Select elements for refinement based on η_{K} and ξ_{K} :
3.1 Use $\sqrt{\eta_{K}^{2}+\xi_{K}^{2}}$ to determine set $\mathfrak{R}\left(\mathcal{T}_{h}\right) \subseteq \mathcal{T}_{h}$ of elements to refine.
3.2 Choose fine or coarse mesh refinement. For all $K \in \mathfrak{R}\left(\mathcal{T}_{h}\right)$

- if $\lambda_{F} \xi_{K} \leq \eta_{K}$ refine the fine element K, and
- if $\lambda_{C} \eta_{K} \leq \xi_{K}$ refine the coarse element $K_{H} \in \mathcal{T}_{H}$, where $K \in \mathcal{T}_{h}\left(K_{H}\right)$.

4. Perform h-/hp-mesh refinement of the fine space.
5. Select h - or p-refinement for each coarse element to refine.
6. Perform mesh smoothing to ensure any coarse element marked for refinement has at least 2^{d} child fine elements.
7. Perform h-/hp-refinement of the coarse space.
8. Goto 2.

Coarse Element h-Refinement

Fine Element Refine:

Coarse Element h-Refinement

Fine Element Refine:

Coarse Element Refine - Partition patch of fine elements into 2^{d} elements

[Collis \& Houston, 2016]

Coarse Element h-Refinement

Using a standard graph partition algorithm will attempt to create agglomerated elements with the same number of child fine elements, minimising the number of edge cuts.

However, we have information about the error for each fine element - can we distribute the agglomeration using this information?

Coarse Element h-Refinement

Using a standard graph partition algorithm will attempt to create agglomerated elements with the same number of child fine elements, minimising the number of edge cuts.

However, we have information about the error for each fine element - can we distribute the agglomeration using this information?

Possible to assign weights to each vertex and use a graph partitioning algorithm that balances these weights, rather than the number of elements.
[Karypis \& Kumar 1998]
We set the weight to the total local error indicator: $\eta_{K}^{2}+\xi_{K}^{2}$

Coarse Element h-Refinement

Using a standard graph partition algorithm will attempt to create agglomerated elements with the same number of child fine elements, minimising the number of edge cuts.

However, we have information about the error for each fine element - can we distribute the agglomeration using this information?

Possible to assign weights to each vertex and use a graph partitioning algorithm that balances these weights, rather than the number of elements.
[Karypis \& Kumar 1998]
We set the weight to the total local error indicator: $\eta_{K}^{2}+\xi_{K}^{2}$
The coarse element refinement uses the fine elements after refinement; therefore, we divide the (square) of each error indicator equally between the new fine elements; i.e., $\eta_{K_{s}}=\eta_{K} / \sqrt{N}$ and $\xi_{K_{s}}=\xi_{K} / \sqrt{N}$, for $s=1, \ldots, N$, if K is divided into N children K_{1}, \ldots, K_{N}.

Section 4

Numerical Experiments

Quasilinear PDE: Smooth Solution

We let $\Omega=(0,1)^{2}, \mu(\boldsymbol{x},|\nabla u|)=2+\frac{1}{1+|\nabla u|^{2}}$ and select f so that

$$
u(x, y)=x(1-x) y(1-y)(1-2 y) \mathrm{e}^{-20(2 x-1)^{2}}
$$

Quasilinear PDE: Smooth Solution

Error vs. \#DoFs

Effectivity Indices

Quasilinear PDE: Smooth Solution

Quasilinear PDE: Smooth Solution

Quasilinear PDE: Singular Solution

We let $\Omega=(-1,1)^{2} \backslash[0,1) \times(-1,0], \mu(\boldsymbol{x},|\nabla u|)=1+\mathrm{e}^{-|\nabla u|^{2}}$ and select f so that

$$
u(r, \phi)=r^{2 / 3} \sin \left(\frac{2}{3} \varphi\right) .
$$

Note that u in analytic in $\bar{\Omega} \backslash\{\mathbf{0}\}$, but ∇u is singular at the origin.

Quasilinear PDE: Singular Solution

Effectivity Indices

Quasilinear PDE: Singular Solution

Quasilinear PDE: Singular Solution

Quasilinear PDE: Singular Solution

We let Ω be the Fichera corner $(-1,1)^{3} \backslash[0,1)^{3}, \mu(\boldsymbol{x},|\nabla u|)=2+\frac{1}{1+|\nabla u|^{2}}$ and select f so that

$$
u(\boldsymbol{x})=\left(x^{2}+y^{2}+z^{2}\right)^{q / 2}, \quad q \in \mathbb{R} ;
$$

for $q>-1 / 2, u \in H^{1}(\Omega)$. Here, we select $q=-1 / 4$.

Quasilinear PDE: Singular Solution

Error vs. \#DoFs

Effectivity Indices

Quasilinear PDE: Singular Solution

Conclusion

Summary:
■ Derived a priori error estimates for agglomerated coarse meshes.
■ Two-Grid DG a posteriori error estimates still hold for agglomerated coarse mesh of polygons and fine mesh of simplices.
■ We can adaptively refine the coarse mesh based on the error estimates.

Future Aims:

- Extend to general nonlinearities.

