Two-Grid *hp*-Version DDGFEM for Second-Order Quasilinear Elliptic PDEs using Agglomerated Coarse Meshes

Scott Congreve

Faculty of Mathematics, University of Vienna

Joint work with Paul Houston (University of Nottingham)

90th GAMM Annual Meeting 2019, Vienna

Nonlinear Problem

Given a semilinear form $\mathcal{N}(\cdot; \cdot, \cdot)$, find $u \in V$ such that

$$\mathcal{N}(u; u, v) = 0 \qquad \forall v \in V.$$

Nonlinear Problem

Given a semilinear form $\mathcal{N}(\cdot;\cdot,\cdot)$, find $u \in V$ such that

$$\mathcal{N}(u; u, v) = 0 \qquad \forall v \in V.$$

Define V_h be the FE space on the mesh, then:

(Standard) Discretization Method

Find $u_h \in V_h$ such that

$$\mathcal{N}_h(u_h; u_h, v_h) = 0 \qquad \forall v_h \in V_h.$$

Two-Grid Methods

Create a mesh which is 'coarser' than the original mesh and define V_H as the FE space on this mesh, then:

Two-Grid Discretization Method

Find $u_H \in V_H$ such that

$$\mathcal{N}_H(u_H; u_H, v_H) = 0 \qquad \forall v_H \in V_H,$$

Two-Grid Methods

3 / 24

Create a mesh which is 'coarser' than the original mesh and define V_H as the FE space on this mesh, then:

Two-Grid Discretization Method

Find $u_H \in V_H$ such that

$$\mathcal{N}_H(u_H; u_H, v_H) = 0 \qquad \forall v_H \in V_H,$$

find $u_{2G} \in V_h$ such that

$$\mathcal{N}_h(u_H; u_{2G}, v_h) = 0 \qquad \forall v_h \in V_h.$$

Xu 1992, 1994, 1996, Xu & Zhou 1999, Axelsson & Layton 1996, Dawson, Wheeler & Woodward 1998, Utnes 1997, Marion & Xu 1995, Wu & Allen 1999, Bi & Ginting 2007, 2011

Quasilinear Problem

Given $\Omega \subset \mathbb{R}^d$, d = 2, 3 and $f \in L^2(\Omega)$, find u such that

$$-\nabla \cdot \{\mu(\mathbf{x}, |\nabla u|) \nabla u\} = f \qquad \text{in } \Omega, \\ u = 0 \qquad \text{on } \Gamma.$$

Assumption

1. $\mu \in C(\bar{\Omega} \times [0,\infty))$ and

2. there exists positive constants m_{μ} and M_{μ} such that

$$M_\mu(t-s) \leq \mu(oldsymbol{x},t)t - \mu(oldsymbol{x},s)s \leq M_\mu(t-s), \quad t \geq s \geq 0, \quad oldsymbol{x} \in ar{\Omega}.$$

- \mathcal{T}_h is a mesh consisting of triangles/tetrahedrons elements κ of granularity h, which are an affine map of a reference element $\hat{\kappa}$; i.e., there exists an affine mapping $\mathcal{T}_{\kappa} : \hat{\kappa} \to \kappa$ such that $\kappa = \mathcal{T}_{\kappa}(\hat{\kappa})$.
- Define polynomial degree p_{κ} for all $\kappa \in \mathcal{T}_h$
- (Fine) *hp*-DG finite element space:

$$\mathcal{V}_{hp}(\mathcal{T}_h, \boldsymbol{p}) = \{ v \in L^2(\Omega) : v|_\kappa \circ \mathcal{T}_\kappa \in \mathcal{P}_{p_\kappa}(\hat{\kappa}), \kappa \in \mathcal{T}_h \}.$$

- 𝓕_h = 𝓕_h^𝔅 ∪ 𝓕_h^𝔅 denotes the set of all faces in the mesh 𝓕_h.
 Trace operators
 - $\{\!\!\{\cdot\}\!\!\}$: Average Operator $\ensuremath{\llbracket}\cdot\ensuremath{\rrbracket}$: Jump Operator.

6 / 24

(Standard) Incomplete Interior Penalty Method

Find $u_{hp} \in V_{hp}(\mathcal{T}_h, \boldsymbol{p})$ such that

$$A_{hp}(u_{hp};u_{hp},v_{hp})=F_{hp}(v_{hp})$$

for all $v_{hp} \in V_{hp}(\mathcal{T}_h, \boldsymbol{p})$.

(Standard) Incomplete Interior Penalty Method

Find $u_{hp} \in V_{hp}(\mathcal{T}_h, \boldsymbol{p})$ such that

$$A_{hp}(u_{hp};u_{hp},v_{hp})=F_{hp}(v_{hp})$$

for all $v_{hp} \in V_{hp}(\mathcal{T}_h, \boldsymbol{p})$.

$$\begin{aligned} \mathcal{A}_{hp}(\psi; u, v) &= \int_{\Omega} \mu(|\nabla_{h}\psi|) \nabla_{h}u \cdot \nabla_{h}v \, d\boldsymbol{x} + \int_{\mathcal{F}_{h}} \sigma_{hp}\llbracket u \rrbracket \cdot \llbracket v \rrbracket \, ds \\ &- \int_{\mathcal{F}_{h}} \left\{ \mu(|\nabla_{h}\psi|) \nabla_{h}u \right\} \cdot \llbracket v \rrbracket \, ds, \\ \mathcal{F}_{hp}(v) &= \int_{\Omega} fv \, d\boldsymbol{x}. \end{aligned}$$

(Standard) Incomplete Interior Penalty Method

Find $u_{hp} \in V_{hp}(\mathcal{T}_h, \boldsymbol{p})$ such that

$$A_{hp}(u_{hp};u_{hp},v_{hp})=F_{hp}(v_{hp})$$

for all $v_{hp} \in V_{hp}(\mathcal{T}_h, \boldsymbol{p})$.

Interior penalty parameter:

$$\sigma_{hp} = \gamma_{hp} \frac{p_F^2}{h_F},$$

where $p_F = \max(p_{\kappa_1}, p_{\kappa_2})$ and h_F is the diameter of the face.

(Standard) Incomplete Interior Penalty Method

Find $u_{hp} \in V_{hp}(\mathcal{T}_h, \boldsymbol{p})$ such that

$$A_{hp}(u_{hp};u_{hp},v_{hp})=F_{hp}(v_{hp})$$

for all $v_{hp} \in V_{hp}(\mathcal{T}_h, \boldsymbol{p})$.

Interior penalty parameter:

$$\sigma_{hp} = \gamma_{hp} \frac{p_F^2}{h_F},$$

where $p_F = \max(p_{\kappa_1}, p_{\kappa_2})$ and h_F is the diameter of the face. References:

> Bustinza & Gatica 2004, Gatica, Gonzáles & Meddahi 2004, Houston, Robson & Suli 2005, Bustinza, Cockburn & Gatica 2005, Houston, Süli & Wihler 2007, Gudi, Nataraj & Pani 2008

We construct a coarse mesh T_H , consisting of general polygons/polyhedra κ_H by agglomerating elements in the fine mesh T_h .

We construct a coarse mesh T_H , consisting of general polygons/polyhedra κ_H by agglomerating elements in the fine mesh T_h .

We construct a coarse mesh T_H , consisting of general polygons/polyhedra κ_H by agglomerating elements in the fine mesh T_h .

For example, METIS - Karypis & Kumar 1999

We construct a coarse mesh T_H , consisting of general polygons/polyhedra κ_H by agglomerating elements in the fine mesh T_h .

For example, METIS - Karypis & Kumar 1999

- Define $\mathcal{T}_h(\kappa_H) = \{\kappa \in \mathcal{T}_h : \kappa \subseteq \kappa_H\}$ for all $\kappa_H \in \mathcal{T}_H$.
- Define polynomial degree P_{κ_H} , for all $\kappa_H \in \mathcal{T}_H$, such that

$$P_{\kappa_H} \leq p_{\kappa}$$
 for all $\kappa \in \mathcal{T}_h(\kappa_H)$.

(Coarse) hp-DG finite element space:

$$V_{HP}(\mathcal{T}_{H}, \boldsymbol{P}) = \{ v \in L^{2}(\Omega) : v |_{\kappa} \in \mathcal{P}_{P_{\kappa}}(\kappa), \kappa \in \mathcal{T}_{H} \}.$$

- Define $\mathcal{T}_h(\kappa_H) = \{\kappa \in \mathcal{T}_h : \kappa \subseteq \kappa_H\}$ for all $\kappa_H \in \mathcal{T}_H$.
- Define polynomial degree P_{κ_H} , for all $\kappa_H \in \mathcal{T}_H$, such that

 $P_{\kappa_H} \leq p_{\kappa}$ for all $\kappa \in \mathcal{T}_h(\kappa_H)$.

• (Coarse) *hp*-DG finite element space:

$$\mathcal{W}_{HP}(\mathcal{T}_{H}, \boldsymbol{P}) = \{ v \in L^{2}(\Omega) : v|_{\kappa} \in \mathcal{P}_{P_{\kappa}}(\kappa), \kappa \in \mathcal{T}_{H} \}.$$

 $V_{HP}(\mathcal{T}_H, \boldsymbol{P}) \subseteq V_{hp}(\mathcal{T}_h, \boldsymbol{p})$

- Define $\mathcal{T}_h(\kappa_H) = \{\kappa \in \mathcal{T}_h : \kappa \subseteq \kappa_H\}$ for all $\kappa_H \in \mathcal{T}_H$.
- Define polynomial degree P_{κ_H} , for all $\kappa_H \in \mathcal{T}_H$, such that

 $P_{\kappa_H} \leq p_{\kappa}$ for all $\kappa \in \mathcal{T}_h(\kappa_H)$.

• (Coarse) *hp*-DG finite element space:

$$V_{HP}(\mathcal{T}_{H}, \boldsymbol{P}) = \{ v \in L^{2}(\Omega) : v|_{\kappa} \in \mathcal{P}_{P_{\kappa}}(\kappa), \kappa \in \mathcal{T}_{H} \}.$$

 $V_{HP}(\mathcal{T}_H, \boldsymbol{P}) \subseteq V_{hp}(\mathcal{T}_h, \boldsymbol{p})$

• We use a *slightly* different *interior penalty parameter*.

$$\sigma_{HP} = \gamma_{HP} \max_{\kappa \in \{\kappa^+, \kappa^-\}} \left(C_{INV} \frac{P_{\kappa}^2}{H_{\kappa}} \right),$$

for an interior face $F = \partial \kappa \cap \partial \kappa^-$, where C_{INV} is a constant from an inverse inequality for agglomerated elements.

[Cangiani, Dong, Georgoulis, & Houston 2017]

Two-Grid Approximation

- 1. Construct coarse and fine FE spaces $V_{HP}(\mathcal{T}_H, \boldsymbol{P})$ and $V_{hp}(\mathcal{T}_h, \boldsymbol{p})$.
- 2. Compute the coarse grid approximation $u_{HP} \in V_{HP}(\mathcal{T}_H, \boldsymbol{P})$ such that

$$A_{HP}(u_{HP}; u_{HP}, v_{HP}) = F_{HP}(v_{HP})$$

for all $v_{HP} \in V_{HP}(\mathcal{T}_H, \boldsymbol{P})$.

3. Determine the fine grid approximation $u_{2G} \in V_{hp}(\mathcal{T}_h, \boldsymbol{p})$ such that

$$A_{hp}(u_{HP}; u_{2G}, v_{hp}) = F_{hp}(v_{hp})$$

for all $v_{hp} \in V_{hp}(\mathcal{T}_h, \boldsymbol{p})$.

[C., Houston, & Wihler 2013]

9 / 24

Existence & Uniqueness

We define the following extension of the form $A_{HP}(\cdot; \cdot, \cdot)$, cf. to $\mathcal{V} \times \mathcal{V}$, where $\mathcal{V} = H^1(\Omega) + V_{HP}(\mathcal{T}_H, \mathbf{P})$.

$$\begin{split} \widetilde{A}_{HP}(u,v) &= \sum_{\kappa \in \mathcal{T}_h} \int_{\kappa} \mu(|\nabla u|) \nabla u \cdot \nabla v \, d\mathbf{x} \\ &- \sum_{F \in \mathcal{F}_h} \int_{F} \left\{ \left\{ \mu(|\mathbf{\Pi}_{L^2}(\nabla u)|) \mathbf{\Pi}_{L^2}(\nabla u) \right\} \right\} \cdot \left[\!\left[v\right]\!\right] ds \\ &+ \sum_{F \in \mathcal{F}_h} \int_{F} \sigma_{HP}\left[\!\left[u\right]\!\right] \cdot \left[\!\left[v\right]\!\right] ds, \end{split}$$

Here, $\Pi_{L^2} : [L^2(\Omega)]^d \to [V_{HP}(\mathcal{T}_H, \boldsymbol{P})]^d$ denotes the orthogonal L^2 -projection onto the finite element space $[V_{HP}(\mathcal{T}_H, \boldsymbol{P})]^d$.

Existence & Uniqueness

We define the following extension of the form $A_{HP}(\cdot; \cdot, \cdot)$, cf. to $\mathcal{V} \times \mathcal{V}$, where $\mathcal{V} = H^1(\Omega) + V_{HP}(\mathcal{T}_H, \mathbf{P})$.

$$\begin{split} \widetilde{A}_{HP}(u,v) &= \sum_{\kappa \in \mathcal{T}_h} \int_{\kappa} \mu(|\nabla u|) \nabla u \cdot \nabla v \, d\mathbf{x} \\ &- \sum_{F \in \mathcal{F}_h} \int_{F} \left\{ \left[\mu(|\mathbf{\Pi}_{L^2}(\nabla u)|) \mathbf{\Pi}_{L^2}(\nabla u) \right] \right\} \cdot \left[v \right] \right\} \, ds \\ &+ \sum_{F \in \mathcal{F}_h} \int_{F} \sigma_{HP} \left[\left[u \right] \right] \cdot \left[v \right] \, ds, \end{split}$$

Here, $\Pi_{L^2} : [L^2(\Omega)]^d \to [V_{HP}(\mathcal{T}_H, \boldsymbol{P})]^d$ denotes the orthogonal L^2 -projection onto the finite element space $[V_{HP}(\mathcal{T}_H, \boldsymbol{P})]^d$. We note, that

$$\widetilde{A}_{HP}(u,v) = A_{HP}(u;u,v), \qquad ext{for all } u,v \in V_{HP}(\mathcal{T}_{H}, oldsymbol{P}).$$

Lemma

Let $\gamma_{HP} > \gamma_{\min}\epsilon$, where $\epsilon > 1/4$ and γ_{\min} is a positive constant; then, given a regularity assumption on the element (cf., Cangiani, Dong, Georgoulis, Houston 2017) holds, we have that the semi-linear form $\widetilde{A}_{HP}(\cdot, \cdot)$ is strongly monotone in the sense that

$$\widetilde{A}_{HP}(v_1, v_1 - v_2) - \widetilde{A}_{HP}(v_2, v_1 - v_2) \geq C_{\text{mono}} \|v_1 - v_2\|_{HP}^2,$$

and Lipschitz continuous in the sense that

$$|\widetilde{A}_{HP}(v_1,w) - \widetilde{A}_{HP}(v_2,w)| \leq C_{ ext{cont}} \|v_1 - v_2\|_{HP} \|w\|_{HP}$$

for all $v_1, v_2, w \in \mathcal{V}$, where C_{mono} and C_{cont} are positive constants independent of the discretization parameters.

Proof.

Application of the bounds of the non-linearity, along with standard arguments, prove these bounds. [C., Houston (In Prep.)]

12 / 24

Theorem

Suppose that γ_{hp} and γ_{HP} are sufficiently large. Then, there exists a unique solution $u_{2G} \in V_{hp}(\mathcal{T}_h, \boldsymbol{p})$ to the two-grid IIP DGFEM.

Proof.

As from the previous lemma we have Lipschitz continuity and strong monotonicity of the semi-linear form $\widetilde{A}_{HP}(\cdot, \cdot)$ and

$$\widetilde{A}_{HP}(u_{HP}, v_{HP}) = A_{HP}(u_{HP}; u_{HP}, v_{HP}) = F_{HP}(v_{HP}),$$

for all $v_{HP} \in V_{HP}(\mathcal{T}_H, \mathbf{P})$, we can follow the proof of Houston, Robson, Süli 2005 (Theorem 2.5) to show that u_{HP} is a unique solution of the coarse approximation. Furthermore, as the fine grid formulation is an interior penalty discretization of a linear elliptic PDE, where the coefficient $\mu(|\nabla_h u_{HP}|)$ is a known function, the existence and uniqueness of the solution u_{2G} to this problem follows immediately.

Lemma (Standard Qualilinear DGFEM)

Assuming that $u \in C^1(\Omega)$ and $u|_{\kappa} \in H^{k_{\kappa}}(\kappa)$, $k_{\kappa} \ge 2$, for $\kappa \in \mathcal{T}_h$ then the solution $u_{hp} \in V_{hp}(\mathcal{T}_h, \boldsymbol{p})$ of the standard DGFEM satisfies the error bound

$$\|u-u_{hp}\|_{hp}^{2} \leq C_{1} \sum_{\kappa \in \mathcal{T}_{h}} \frac{h_{\kappa}^{2s_{\kappa}-2}}{p_{\kappa}^{2k_{\kappa}-3}} \|u\|_{H^{k_{\kappa}}(\kappa)}^{2}$$

with $s_{\kappa} = \min(p_{\kappa} + 1, k_{\kappa})$.

Proof.

See Houston, Robson, & Süli 2005.

Theorem (Coarse Mesh Approximation)

Let $\mathcal{T}_{H}^{\sharp} = \{\mathcal{K}\}$ be a covering of \mathcal{T}_{H} consisting of d-simplices and $u_{HP} \in V_{HP}(\mathcal{T}_{H}, \mathbf{P})$ be the coarse mesh approximation. If $u|_{\kappa} \in H^{K_{\kappa}}(\kappa)$, $K_{\kappa} \geq 3/2$, for $\kappa \in \mathcal{T}_{H}$, such that $\mathfrak{E}u|_{\mathcal{K}} \in H^{K_{\kappa}}(\mathcal{K})$, where \mathfrak{E} is an extension operator and $\mathcal{K} \in \mathcal{T}_{H}^{\sharp}$ with $\kappa \subset \mathcal{K}$; then,

$$\|u-u_{HP}\|_{HP}^2 \leq C_2 \sum_{K\in\mathcal{T}_H} \frac{H_{\kappa}^{2S_{\kappa}-2}}{P_{\kappa}^{2K_{\kappa}-2}} (1+\mathcal{G}_{\kappa}(H_{\kappa},P_{\kappa})) \|\mathfrak{E}u\|_{H^{K_{\kappa}}(\mathcal{K})}^2$$

where $S_{\kappa} = \min(P_{\kappa} + 1, K_{\kappa})$ and

$$\mathcal{G}_{\kappa}(H_{\kappa},P_{\kappa}) \coloneqq (P_{\kappa}+P_{\kappa}^{2})H_{\kappa}^{-1}\max_{F\subset\partial\kappa}\sigma_{HP}^{-1}|_{F} + H_{\kappa}P_{\kappa}^{-1}\max_{F\subset\partial\kappa}\sigma_{HP}|_{F}.$$

Proof.

Due to Lipschitz continuity and monotonicity the prove follows almost identically to Cangiani, Dong, Georgoulis, & Houston 2017.

Scott Congreve (University of Vienna) Two-Grid DG + agglomerated coarse mesh

GAMM 2019 (Vienna)

14 / 24

A Priori Error Estimation

15 / 24

Theorem (Two-Grid Quasilinear Approximation)

Let $\mathcal{T}_{H}^{\sharp} = \{\mathcal{K}\}$ be a covering of \mathcal{T}_{H} consisting of *d*-simplices. If $u|_{\kappa} \in H^{k_{\kappa}}(\kappa)$, $k_{\kappa} \geq 2$ and $u|_{\kappa} \in H^{K_{\kappa}}(\kappa)$, $K_{\kappa} \geq 3/2$, for $\kappa \in \mathcal{T}_{H}$, such that $\mathfrak{E}u|_{\mathcal{K}} \in H^{K_{\kappa}}(\mathcal{K})$, where $\mathcal{K} \in \mathcal{T}_{H}^{\sharp}$ with $\kappa \subset \mathcal{K}$; then, the solution $u_{2G} \in V_{hp}(\mathcal{T}_{h}, \mathbf{p})$ of the two-grid DGFEM satisfies the error bounds

$$\begin{split} \|u_{hp} - u_{2G}\|_{hp}^{2} &\leq C_{3} \left(C_{1} \sum_{\kappa \in \mathcal{T}_{h}} \frac{h_{\kappa}^{2s_{\kappa}-2}}{p_{\kappa}^{2k_{\kappa}-3}} \|u\|_{H^{k_{\kappa}}(\kappa)}^{2} \\ &+ C_{2} \sum_{K \in \mathcal{T}_{H}} \frac{H_{\kappa}^{2S_{\kappa}-2}}{P_{\kappa}^{2K_{\kappa}-2}} (1 + \mathcal{G}_{\kappa}(H_{\kappa}, P_{\kappa})) \|\mathfrak{E}u\|_{H^{k_{\kappa}}(\mathcal{K})}^{2} \right) \\ \|u - u_{2G}\|_{hp}^{2} &\leq (1 + C_{3}) C_{1} \sum_{\kappa \in \mathcal{T}_{h}} \frac{h_{\kappa}^{2s_{\kappa}-2}}{p_{\kappa}^{2k_{\kappa}-3}} \|u\|_{H^{k_{\kappa}}(\kappa)}^{2} \\ &+ C_{2} C_{3} \sum_{K \in \mathcal{T}_{H}} \frac{H_{\kappa}^{2S_{\kappa}-2}}{P_{\kappa}^{2K_{\kappa}-2}} (1 + \mathcal{G}_{\kappa}(H_{\kappa}, P_{\kappa})) \|\mathfrak{E}u\|_{H^{k_{\kappa}}(\mathcal{K})}^{2}. \end{split}$$

Proof.

Defining $\phi = u_{2G} - u_{hp}$; then,

$$\begin{split} C_{c} \|\phi\|_{hp}^{2} &\leq A_{hp}(u_{HP}; u_{2G}, \phi) - A_{hp}(u_{HP}; u_{hp}, \phi) \\ &= A_{hp}(u_{hp}; u_{hp}, \phi) - A_{hp}(u_{HP}; u_{hp}, \phi) \\ &\leq \sum_{\kappa \in \mathcal{T}_{h}} \int_{\kappa} |(\mu(|\nabla u_{hp}|) - \mu(|\nabla u_{HP}|))\nabla u_{hp}||\nabla \phi| \, d\mathbf{x} \\ &\quad + \sum_{F \in \mathcal{F}_{h}} \int_{F} \{\!\!\{|(\mu(|\nabla u_{hp}|) - \mu(|\nabla u_{HP}|))\nabla u_{hp}|\}\!\} |[\!\![\phi]\!\!]| \, ds \\ &\leq C \bigg(\sum_{\kappa \in \mathcal{T}_{h}} \int_{\kappa} |\nabla(u_{hp} - u_{HP})||\nabla \phi| \, d\mathbf{x} \\ &\quad + \sum_{F \in \mathcal{F}_{h}} \int_{F} \{\!\!\{|\nabla(u_{hp} - u_{HP})|]\}\!|[\!\![\phi]\!\!]| \, ds \bigg) \\ &\leq C \left(\|\nabla_{h}(u - u_{hp})\|_{L^{2}(\Omega)} + \|\nabla_{h}(u - u_{HP})\|_{L^{2}(\Omega)} \right) \|\phi\|_{hp}. \end{split}$$

.

Lemma (Standard Quasilinear DGFEM)

The following bound holds:

$$\|u-u_{hp}\|_{hp}^2 \leq C_1 \sum_{\kappa \in \mathcal{T}_h} \eta_{\kappa}^2$$

Here the local error indicators η_{κ} are defined, for all $\kappa \in \mathcal{T}_h$, as

$$\eta_{\kappa}^{2} = h_{\kappa}^{2} p_{\kappa}^{-2} \| f + \nabla \cdot \{ \mu(|\nabla u_{hp}|) \nabla u_{hp} \} \|_{L^{2}(\kappa)}^{2} \\ + h_{\kappa} p_{\kappa}^{-1} \| \llbracket \mu(|\nabla u_{hp}|) \nabla u_{hp} \rrbracket \|_{L^{2}(\partial \kappa \setminus \Gamma)}^{2} + \gamma_{hp}^{2} p_{\kappa}^{3} h_{\kappa}^{-1} \| \llbracket u_{hp} \rrbracket \|_{L^{2}(\partial \kappa)}^{2}$$

Proof.

See Houston, Süli & Wihler 2008.

Lemma (Two-Grid Quasilinear Approximation)

The following bound holds:

$$\|\boldsymbol{u}-\boldsymbol{u}_{2\boldsymbol{G}}\|_{\boldsymbol{hp}}^2 \leq C_2 \sum_{\boldsymbol{\kappa}\in\mathcal{T}_{\boldsymbol{i}}} \left(\eta_{\boldsymbol{\kappa}}^2 + \boldsymbol{\xi}_{\boldsymbol{\kappa}}^2\right).$$

Here the local error indicators η_{κ} are defined, for all $\kappa \in \mathcal{T}_h$, as

$$\eta_{\kappa}^{2} = h_{\kappa}^{2} p_{\kappa}^{-2} \| f + \nabla \cdot \{ \mu(|\nabla u_{HP}|) \nabla u_{2G} \} \|_{L^{2}(\kappa)}^{2} \\ + h_{\kappa} p_{\kappa}^{-1} \| \llbracket \mu(|\nabla u_{HP}|) \nabla u_{2G} \rrbracket \|_{L^{2}(\partial \kappa \setminus \Gamma)}^{2} + \gamma_{hp}^{2} p_{\kappa}^{3} h_{\kappa}^{-1} \| \llbracket u_{2G} \rrbracket \|_{L^{2}(\partial \kappa)}^{2}$$

and the local two-grid error indicators are defined, for all $\kappa \in \mathcal{T}_h$, as

$$\xi_{\kappa}^{2} = \|(\mu(|\nabla u_{HP}|) - \mu(|\nabla u_{2G}|))\nabla u_{2G}\|_{L^{2}(\kappa)}^{2}.$$

Proof.

See C., Houston, & Wihler 2013 for the case of a *normal* coarse mesh. This analysis is performed on the fine mesh and the only requirement on the coarse mesh is that $V_{HP}(\mathcal{T}_H, \mathbf{P}) \subseteq V_{hp}(\mathcal{T}_h, \mathbf{p})$, which still holds.

Scott Congreve (University of Vienna) Two-Grid DG + agglomerated coarse mesh

GAMM 2019 (Vienna)

a) 17 /

24

Two-Grid Adaptivity

- 1. Construct initial coarse and fine FE spaces, with coarse mesh created by agglomerating the fine mesh.
- 2. Compute the coarse grid approximation and two-grid solution.
- 3. Select elements for refinement based on η_{κ} and ξ_{κ} :
 - 3.1 Use $\sqrt{\eta_K^2 + \xi_K^2}$ to determine set $\mathfrak{R}(\mathcal{T}_h) \subseteq \mathcal{T}_h$ of elements to refine. 3.2 Choose fine or coarse mesh refinement. For all $\kappa \in \mathfrak{R}(\mathcal{T}_h)$

■ if $\lambda_F \xi_{\kappa} \leq \eta_{\kappa}$ refine the fine element κ , and ■ if $\lambda_C \eta_{\kappa} \leq \xi_{\kappa}$ refine the coarse element $\kappa_H \in \mathcal{T}_H$, where $\kappa \in \mathcal{T}_h(\kappa_H)$.

- 4. Perform h-/hp-mesh refinement of the fine space.
- 5. Select *h* or *p*-refinement for each coarse element to refine.
- 6. Perform h-/hp-refinement of the coarse space.
- 7. Goto 2.

The constants λ_F and λ_C are steering parameters.

Fine Element Refine:

Fine Element Refine:

Coarse Element Refine — Partition patch of fine elements into 2^d elements

[Collis & Houston, 2016]

Using a standard graph partition algorithm will attempt to create agglomerated elements with the same number of *child* fine elements, minimising the number of edge cuts.

However, we have information about the error for each fine element — can we distribute the agglomeration using this information?

Using a standard graph partition algorithm will attempt to create agglomerated elements with the same number of *child* fine elements, minimising the number of edge cuts.

However, we have information about the error for each fine element — can we distribute the agglomeration using this information?

Possible to assign *weights* to each vertex and use a graph partitioning algorithm that balances these weights, rather than the number of elements. [Karypis & Kumar 1998]

We set the weight to the total local error indicator: $\eta_{\kappa}^2 + \xi_{\kappa}^2$

Using a standard graph partition algorithm will attempt to create agglomerated elements with the same number of *child* fine elements, minimising the number of edge cuts.

However, we have information about the error for each fine element — can we distribute the agglomeration using this information?

Possible to assign *weights* to each vertex and use a graph partitioning algorithm that balances these weights, rather than the number of elements. [Karypis & Kumar 1998]

We set the weight to the total local error indicator: $\eta_{\kappa}^2 + \xi_{\kappa}^2$

The coarse element refinement uses the fine elements *after* refinement; therefore, we divide the (square) of each error indicator equally between the new fine elements; i.e., $\eta_{\kappa_s} = \eta_{\kappa}/\sqrt{N}$ and $\xi_{\kappa_s} = \xi \kappa/\sqrt{N}$, for $s = 1, \ldots, N$, if κ is divided into N children $\kappa_1, \ldots, \kappa_N$.

0.5

y

0

0.5

х

21 / 24

Scott Congreve (University of Vienna) Two-Grid DG + agglomerated coarse mesh

We let $\Omega = (-1,1)^2 \setminus [0,1) \times (-1,0], \mu(\mathbf{x}, |\nabla u|) = 1 + e^{-|\nabla u|^2}$ and select f so that

$$u(r,\phi)=r^{2/3}\sin\left(rac{2}{3}\varphi
ight).$$

Note that u in analytic in $\overline{\Omega} \setminus \{\mathbf{0}\}$, but ∇u is singular at the origin.

22 / 24

We let Ω be the Fichera corner $(-1,1)^3 \setminus [0,1)^3$, $\mu(\mathbf{x}, |\nabla u|) = 2 + \frac{1}{1+|\nabla u|^2}$ and select f so that

$$u(\mathbf{x}) = (x^2 + y^2 + z^2)^{q/2}, \quad q \in \mathbb{R};$$

for q > -1/2, $u \in H^1(\Omega)$. Here, we select q = -1/4.

Beilina, Korotov & Křížek 2005

Summary:

- Two-Grid DG a posteriori error estimates still hold for agglomerated coarse mesh of polygons and fine mesh of simplices.
- We can adaptively refine the coarse mesh based on the error estimates.

Future Aims:

Extend to general nonlinearities.