Discontinuous Galerkin Finite Element Methods for Quasilinear PDEs

Scott Congreve

School of Mathematical Sciences, University of Nottingham, UK

Joint work with Paul Houston (University of Nottingham), Endre Süli (University of Oxford), Thomas Wihler (Universität Bern).

Universität Bern, 2013

Scott Congreve (University of Nottingham)

DGFEM for Quasilinear PDEs

Universität Bern, 2013 1 / 41

Two-Grid Energy Norm Based Adaptivity

- Two-grid methods for quasilinear elliptic PDEs
- hp-Mesh adaptation
- Two-grid methods based on a single Newton iteration

Non-Newtonian Fluids

- A priori error bounds
- A posteriori error bounds and adaptivity
- Two-grid methods for non-Newtonian fluids

Two-Grid DWR Based Adaptivity for Quasilinear Elliptic PDEs

Outline

Introduction

Two-Grid Energy Norm Based Adaptivity

- Two-grid methods for quasilinear elliptic PDEs
- hp-Mesh adaptation
- Two-grid methods based on a single Newton iteration

Non-Newtonian Fluids

- A priori error bounds
- A posteriori error bounds and adaptivity
- Two-grid methods for non-Newtonian fluids

Two-Grid DWR Based Adaptivity for Quasilinear Elliptic PDEs

- N

• The main aim of my PhD is to study the discontinuous Galerkin finite element method (DGFEM) for nonlinear PDEs.

.

Image: Image:

- The main aim of my PhD is to study the discontinuous Galerkin finite element method (DGFEM) for nonlinear PDEs.
- One major problem with solving nonlinear PDEs is that they are computationally expensive to solve.

- The main aim of my PhD is to study the discontinuous Galerkin finite element method (DGFEM) for nonlinear PDEs.
- One major problem with solving nonlinear PDEs is that they are computationally expensive to solve.
- So called two-grid methods have been proposed for the continuous Galerkin (CG) FE, finite difference and finite volume methods

Xu 1992, 1994, 1996, Xu & Zhou 1999, Axelsson & Layton 1996, Dawson, Wheeler & Woodward 1998,

Utnes 1997, Marion & Xu 1995, Wu & Allen 1999, Bi & Ginting 2007

3 > 4 3

- The main aim of my PhD is to study the discontinuous Galerkin finite element method (DGFEM) for nonlinear PDEs.
- One major problem with solving nonlinear PDEs is that they are computationally expensive to solve.
- So called two-grid methods have been proposed for the continuous Galerkin (CG) FE, finite difference and finite volume methods

Xu 1992, 1994, 1996, Xu & Zhou 1999, Axelsson & Layton 1996, Dawson, Wheeler & Woodward 1998,

Utnes 1997, Marion & Xu 1995, Wu & Allen 1999, Bi & Ginting 2007

• They have recently been extended to DGFEMs (Bi & Ginting 2011), which covered *a priori* error analysis.

글 > 세 글

- The main aim of my PhD is to study the discontinuous Galerkin finite element method (DGFEM) for nonlinear PDEs.
- One major problem with solving nonlinear PDEs is that they are computationally expensive to solve.
- So called two-grid methods have been proposed for the continuous Galerkin (CG) FE, finite difference and finite volume methods

Xu 1992, 1994, 1996, Xu & Zhou 1999, Axelsson & Layton 1996, Dawson, Wheeler & Woodward 1998,

Utnes 1997, Marion & Xu 1995, Wu & Allen 1999, Bi & Ginting 2007

- They have recently been extended to DGFEMs (Bi & Ginting 2011), which covered *a priori* error analysis.
- *A posteriori* error analysis and, hence, automatic mesh refinement has not been developed. This is the area we are interested in.

Nonlinear Problem

Given a semi-linear form $\mathcal{N}(\cdot, \cdot)$, find $u \in V$ such that

 $\mathcal{N}(u,v) = 0 \qquad \forall v \in V.$

Nonlinear Problem

Given a semi-linear form $\mathcal{N}(\cdot, \cdot)$, find $u \in V$ such that

$$\mathcal{N}(u, v) = 0 \qquad \forall v \in V.$$

Create a mesh on the domain and define V_h be the FE space on that mesh, then:

(Standard) Discretisation Method

Find $u_h \in V_h$ such that

$$\mathcal{N}_h(u_h, v_h) = 0 \qquad \forall v_h \in V_h.$$

Scott Congreve (University of Nottingham)

Create a mesh which is 'coarser' than the original mesh and define V_H as the FE space on this mesh, then:

Two-Grid Discretisation Method

Find $u_H \in V_H$ such that

$$\mathcal{N}_H(u_H, v_H) = 0 \qquad \forall v_H \in V_H,$$

find $u_{2G} \in V_h$ such that

$$\mathcal{B}_h[u_H](u_{2G},v_h)=0 \qquad \forall v_h \in V_h.$$

where, for fixed φ , $\mathcal{B}_h[\varphi](\cdot, \cdot)$ is a linearised approximation to $\mathcal{N}_h(\cdot, \cdot)$.

The nonlinear problem is only solved on a coarse mesh and the fine mesh involves only solving a linear problem; hence, the computational expense of the two grid method should be lower than solving the nonlinear problem on the fine mesh.

Scott Congreve (University of Nottingham)

Introduction

Two-Grid Energy Norm Based Adaptivity

- Two-grid methods for quasilinear elliptic PDEs
- hp-Mesh adaptation
- Two-grid methods based on a single Newton iteration

Non-Newtonian Fluids

- A priori error bounds
- A posteriori error bounds and adaptivity
- Two-grid methods for non-Newtonian fluids

Two-Grid DWR Based Adaptivity for Quasilinear Elliptic PDEs

Quasilinear Problem

Given $\Omega \subset \mathbb{R}^d$, d = 2, 3 and $f \in L^2(\Omega)$, find *u* such that

$$-\nabla \cdot \{\mu(\boldsymbol{x}, |\nabla u|) \nabla u\} = f \qquad \text{in } \Omega,$$
$$u = 0 \qquad \text{on } \Gamma.$$

Assumption

$$oldsymbol{0} \ \mu \in {oldsymbol{C}}(ar{\Omega} imes [oldsymbol{0},\infty))$$
 and

2 there exists positive constants m_{μ} and M_{μ} such that

$$M_{\mu}(t-s) \leq \mu(\boldsymbol{x},t)t - \mu(\boldsymbol{x},s)s \leq M_{\mu}(t-s), \quad t \geq s \geq 0, \quad \boldsymbol{x} \in \bar{\Omega}.$$

- *T_h* is a mesh consisting of triangles, quadrilaterals and hexahedral of granularity *h*.
- hp-DG finite element space:

$$V(\mathcal{T}_h, \mathbf{k}) = \{ \mathbf{v} \in L^2(\Omega) : \mathbf{v}|_{\kappa} \in \mathcal{S}_{\mathbf{k}_{\kappa}}(\kappa), \forall \kappa \in \mathcal{T}_h \},$$

- 𝓕_h = 𝓕_h^𝔅 ∪ 𝓕_h^𝔅 denotes the set of all faces in the mesh 𝑘_h.
 Trace operators
 - $\{\!\!\{\cdot\}\!\!\}$: Average Operator $[\![\cdot]\!]$: Jump Operator.

(Standard) Interior Penalty Method

Find $u_{h,k} \in V(\mathcal{T}_h, \mathbf{k})$ such that

$$A_{h,k}(u_{h,k}; u_{h,k}, v_{h,k}) = F_{h,k}(v_{h,k})$$

for all $v_{h,k} \in V(\mathcal{T}_h, \mathbf{k})$.

(Standard) Interior Penalty Method

Find $u_{h,k} \in V(\mathcal{T}_h, \mathbf{k})$ such that

$$\mathsf{A}_{h,k}(\mathsf{u}_{h,k};\mathsf{u}_{h,k},\mathsf{v}_{h,k})=\mathsf{F}_{h,k}(\mathsf{v}_{h,k})$$

for all $v_{h,k} \in V(\mathcal{T}_h, \mathbf{k})$.

$$\begin{aligned} \mathsf{A}_{h,k}(\psi; u, \mathbf{v}) &= \int_{\Omega} \mu(|\nabla_h \psi|) \nabla_h u \cdot \nabla_h \mathbf{v} \, \mathrm{d}\mathbf{x} - \sum_{F \in \mathcal{F}_h} \int_F \left\{ \mu(|\nabla \psi|) \nabla u \right\} \cdot \llbracket v \rrbracket \, \mathrm{d}\mathbf{s} \\ &+ \theta \sum_{F \in \mathcal{F}_h} \int_F \left\{ \mu(h_F^{-1} | \llbracket \psi \rrbracket |) \nabla \mathbf{v} \right\} \cdot \llbracket u \rrbracket \, \mathrm{d}\mathbf{s} + \sum_{F \in \mathcal{F}_h} \int_F \sigma_{h,k} \llbracket u \rrbracket \cdot \llbracket v \rrbracket \, \mathrm{d}\mathbf{s}, \\ &F_{h,k}(\mathbf{v}) = \sum_{\kappa \in \mathcal{T}_h} \int_{\kappa} f \mathbf{v} \, \mathrm{d}\mathbf{x}. \end{aligned}$$

where $\theta \in [-1, 1]$. Note: $\theta = 1$ is NIP, $\theta = 0$ is IIP and $\theta = -1$ is SIP.

(Standard) Interior Penalty Method

Find $u_{h,k} \in V(\mathcal{T}_h, \mathbf{k})$ such that

$$A_{h,k}(u_{h,k};u_{h,k},v_{h,k})=F_{h,k}(v_{h,k})$$

for all $v_{h,k} \in V(\mathcal{T}_h, \mathbf{k})$.

Interior penalty parameter:

$$\sigma_{h,k} = \gamma \frac{k_F^2}{h_F},$$

where $k_F = \max(k_{\kappa_1}, k_{\kappa_2})$ and h_F is the diameter of the face.

(Standard) Interior Penalty Method

Find $u_{h,k} \in V(\mathcal{T}_h, \mathbf{k})$ such that

$$A_{h,k}(u_{h,k};u_{h,k},v_{h,k})=F_{h,k}(v_{h,k})$$

for all $v_{h,k} \in V(\mathcal{T}_h, \mathbf{k})$.

Interior penalty parameter:

$$\sigma_{h,k} = \gamma \frac{k_F^2}{h_F},$$

where $k_F = \max(k_{\kappa_1}, k_{\kappa_2})$ and h_F is the diameter of the face.

References:

Bustinza & Gatica 2004, Gatica, Gonzáles & Meddahi 2004, Houston, Robson & Süli 2005, Bustinza, Cockburn & Gatica 2005, Houston, Süli & Wihler 2007, Gudi, Nataraj & Pani 2008

Two-Grid hp-DGFEM

Two-Grid Approximation

• Construct coarse and fine FE spaces $V(T_H, K)$ and $V(T_h, k)$, respectively, such that

 $V(\mathcal{T}_H, \boldsymbol{K}) \subseteq V(\mathcal{T}_h, \boldsymbol{k})$

3 D 🖌 🖻

Two-Grid hp-DGFEM

Two-Grid Approximation

• Construct coarse and fine FE spaces $V(T_H, \mathbf{K})$ and $V(T_h, \mathbf{k})$, respectively, such that

$$V(\mathcal{T}_H, \mathbf{K}) \subseteq V(\mathcal{T}_h, \mathbf{k})$$

2 Compute the coarse grid approximation $u_{H,K} \in V(\mathcal{T}_H, K)$ such that

$$A_{H,K}(u_{H,K}; u_{H,K}, v_{H,K}) = F_{H,K}(v_{H,K})$$

for all $v_{H,K} \in V(\mathcal{T}_H, \mathbf{K})$.

Two-Grid Approximation

• Construct coarse and fine FE spaces $V(T_H, \mathbf{K})$ and $V(T_h, \mathbf{k})$, respectively, such that

$$V(\mathcal{T}_H, \mathbf{K}) \subseteq V(\mathcal{T}_h, \mathbf{k})$$

2 Compute the coarse grid approximation $u_{H,K} \in V(\mathcal{T}_H, K)$ such that

$$A_{H,K}(u_{H,K}; u_{H,K}, v_{H,K}) = F_{H,K}(v_{H,K})$$

for all $v_{H,K} \in V(\mathcal{T}_H, K)$.

③ Determine the fine grid approximation $u_{2G} \in V(\mathcal{T}_h, \mathbf{k})$ such that

$$A_{h,k}(u_{H,K}; u_{2G}, v_{h,k}) = F_{h,k}(v_{h,k})$$

for all $v_{h,k} \in V(\mathcal{T}_h, \mathbf{k})$.

.

Theorem (Standard DGFEM)

The following bound holds:

$$\|u-u_{h,k}\|_{h,k}^2 \leq C_1 \sum_{\kappa \in \mathcal{T}_h} \frac{h_{\kappa}^{2r_{\kappa}-2}}{k_{\kappa}^{2s_{\kappa}-3}} \|u\|_{H^{s_{\kappa}}(\kappa)}^2$$

with $1 \leq r_{\kappa} \leq \min(k_{\kappa} + 1, s_{\kappa})$, $k_{\kappa} \geq 1$, for $\kappa \in \mathcal{T}_h$.

Proof.

See Houston, Robson & Süli 2005.

Scott Congreve (University of Nottingham)

Theorem (Two-Grid Approximation)

The following bounds hold:

$$\begin{split} \left\| u_{h,k} - u_{2G} \right\|_{h,k}^{2} &\leq C_{2} \sum_{\kappa \in \mathcal{T}_{H}} \frac{H_{\kappa}^{2R_{\kappa}-2}}{K_{\kappa}^{2S_{\kappa}-3}} \left\| u \right\|_{H^{S_{\kappa}}(\kappa)}^{2} \\ & \left\| u - u_{2G} \right\|_{h,k}^{2} &\leq C_{1} \sum_{\kappa \in \mathcal{T}_{h}} \frac{h_{\kappa}^{2r_{\kappa}-2}}{k_{\kappa}^{2S_{\kappa}-3}} \left\| u \right\|_{H^{S_{\kappa}}(\kappa)}^{2} + C_{2} \sum_{\kappa \in \mathcal{T}_{H}} \frac{H_{\kappa}^{2R_{\kappa}-2}}{K_{\kappa}^{2S_{\kappa}-3}} \left\| u \right\|_{H^{S_{\kappa}}(\kappa)}^{2} \end{split}$$

with $1 \le r_{\kappa} \le \min(k_{\kappa} + 1, s_{\kappa})$, $k_{\kappa} \ge 1$, for $\kappa \in T_h$, and $1 \le R_{\kappa} \le \min(K_{\kappa} + 1, S_{\kappa})$, $K_{\kappa} \ge 1$, for $\kappa \in T_H$

Proof.

Based on an extension of the analysis in Houston, Robson & Süli 2005 and Bi & Ginting 2011.

Scott Congreve (University of Nottingham)

Numerical Experiment

We let $\Omega = (0, 1)^2$, $\mu(\mathbf{x}, |\nabla u|) = 2 + \frac{1}{1 + |\nabla u|^2}$ and select *f* so that

$$u(x, y) = x(1-x)y(1-y)(1-2y)e^{-20(2x-1)^2}$$

Numerical Experiment

We let
$$\Omega = (0, 1)^2$$
, $\mu(\boldsymbol{x}, |\nabla u|) = 2 + \frac{1}{1 + |\nabla u|^2}$ and select f so that

$$u(x,y) = x(1-x)y(1-y)(1-2y)e^{-20(2x-1)^2}$$

Numerical Experiment

We let
$$\Omega = (0, 1)^2$$
, $\mu(\mathbf{x}, |\nabla u|) = 2 + \frac{1}{1 + |\nabla u|^2}$ and select f so that

$$u(x,y) = x(1-x)y(1-y)(1-2y)e^{-20(2x-1)^2}$$

< 17 ▶

Theorem (Standard Quasilinear DGFEM)

The following bound holds:

$$\left\| u - u_{h,k} \right\|_{h,k}^2 \leq C_3 \sum_{\kappa \in \mathcal{T}_h} \eta_{\kappa}^2$$

Here the local error indicators η_{κ} are defined, for all $\kappa \in \mathcal{T}_h$, as

$$\eta_{\kappa}^{2} = \frac{h_{\kappa}^{2}}{k_{\kappa}^{2}} \left\| f + \nabla \cdot \left\{ \mu(|\nabla u_{h,k}|) \nabla u_{h,k} \right\} \right\|_{L^{2}(\kappa)}^{2} \\ + \frac{h_{\kappa}}{k_{\kappa}} \left\| \left[\mu(|\nabla u_{h,k}|) \nabla u_{h,k} \right] \right\|_{L^{2}(\partial \kappa \setminus \Gamma)}^{2} + \gamma^{2} \frac{k_{\kappa}^{3}}{h_{\kappa}} \left\| \left[u_{h,k} \right] \right\|_{L^{2}(\partial \kappa)}^{2}$$

Proof.

See Houston, Süli & Wihler 2008.

Scott Congreve (University of Nottingham)

DGFEM for Quasilinear PDEs

Theorem (Two-Grid Quasilinear Approximation)

The following bound holds:

$$\|u-u_{2G}\|_{h,k}^2 \leq C_4 \sum_{\kappa \in \mathcal{T}_h} \left(\eta_\kappa^2 + \xi_\kappa^2\right).$$

Here the local fine grid error indicators η_{κ} are defined, for all $\kappa \in \mathcal{T}_h$, as

$$\eta_{\kappa}^{2} = \frac{h_{\kappa}^{2}}{k_{\kappa}^{2}} \left\| f + \nabla \cdot \left\{ \mu(|\nabla u_{H,K}|) \nabla u_{2G} \right\} \right\|_{L^{2}(\kappa)}^{2} \\ + \frac{h_{\kappa}}{k_{\kappa}} \left\| \left[\mu(|\nabla u_{H,K}|) \nabla u_{2G} \right] \right\|_{L^{2}(\partial \kappa \setminus \Gamma)}^{2} + \gamma^{2} \frac{k_{\kappa}^{3}}{h_{\kappa}} \left\| \left[u_{2G} \right] \right\|_{L^{2}(\partial \kappa)}^{2} \right]$$

and the local two-grid error indicators are defined, for all $\kappa \in \mathcal{T}_h$, as

$$\xi_{\kappa}^{2} = \left\| \left(\mu(|\nabla u_{H,K}|) - \mu(|\nabla u_{2G}|) \right) \nabla u_{2G} \right\|_{L^{2}(\kappa)}^{2}.$$

★ ∃ > < ∃ >

Image: Image:

Two-Grid *hp*-Adaptivity

- Construct the initial coarse and fine FE hp-mesh ensuring that the coarse space is a subset of the fine space.
- Compute the coarse grid approximation u_{H,K} and two-grid solution u_{2G}.
- Solution Evaluate the elemental error indicators η_{κ} and ξ_{κ} .
- Select elements in both meshes for refinement/derefinement based on some strategy using both η_{κ} and ξ_{κ} .
- Decide in the marked elements whether to perform *h* or *p*-refinement/derefinement.
- Construct the new coarse and fine *hp*-mesh performing smoothing to ensure the coarse space is a subset of the fine space.
- Goto 2.

Two strategies have been considered for Step 4.

- The local fine grid error indicators η_κ are similar to the local error indicators that occur in the standard DGFEM.
 - This suggests that these indicators model the error in the method on the fine grid; hence,
 - these indicators should be used to refine the fine grid.
- The local two-grid error indicators ξ_κ appear to model the error in using the coarse grid solution u_{H,K} in the nonlinearity.
 - This suggests these indicators model the error committed in the difference between the fine and coarse meshes; hence,
 - these indicators should be used to refine the coarse grid.

.

< 47 ▶

For each fine element κ ∈ T_h where λξ_κ ≥ η_κ, λ ≥ 0 refine the coarse element κ_H ∈ T_H where κ ⊆ κ_H.

For each fine element κ ∈ T_h where λξ_κ ≥ η_κ, λ ≥ 0 refine the coarse element κ_H ∈ T_H where κ ⊆ κ_H.

For each fine element κ ∈ T_h where λξ_κ ≥ η_κ, λ ≥ 0 refine the coarse element κ_H ∈ T_H where κ ⊆ κ_H.

hp-Mesh Adaptation (Strategy 2)

글 > 세 글

• Use $\eta_{\kappa} + \xi_{\kappa}$ to calculate the 'fine' elements which need refining.
hp-Mesh Adaptation (Strategy 2)

• Use $\eta_{\kappa} + \xi_{\kappa}$ to calculate the 'fine' elements which need refining.

- For each 'fine' element κ ∈ T_h marked for refinement decide whether to refine that element or the 'parent' coarse element:
 - if $\lambda_F \xi_{\kappa} \leq \eta_{\kappa}$ select the fine element, and/or,
 - if $\lambda_{\rm C}\eta_{\kappa} \leq \xi_{\kappa}$ select the coarse element,

where $\lambda_{C}, \lambda_{F} \in (0, 1]$.

- A B M A B M

hp-Mesh Adaptation (Strategy 2)

• Use $\eta_{\kappa} + \xi_{\kappa}$ to calculate the 'fine' elements which need refining.

- For each 'fine' element κ ∈ T_h marked for refinement decide whether to refine that element or the 'parent' coarse element:
 - if $\lambda_F \xi_{\kappa} \leq \eta_{\kappa}$ select the fine element, and/or,
 - if $\lambda_C \eta_{\kappa} \leq \xi_{\kappa}$ select the coarse element,
 - where $\lambda_{C}, \lambda_{F} \in (0, 1]$.
- Refine the meshes.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Quasilinear PDE: Singular Solution

We let Ω be the Fichera corner $(-1,1)^3 \setminus [0,1)^3,$

$$\mu(\boldsymbol{x}, |\nabla \boldsymbol{u}|) = 2 + \frac{1}{1 + |\nabla \boldsymbol{u}|^2}$$

and select f so that

$$u({oldsymbol x})=(x^2+y^2+z^2)^{q/2},\quad q\in\mathbb{R};$$

for q > -1/2, $u \in H^1(\Omega)$. Here, we select q = -1/4.

Beilina, Korotov & Křížek 2005

Quasilinear PDE: Singular Solution

Scott Congreve (University of Nottingham)

DGFEM for Quasilinear PDEs

Universität Bern, 2013 19 / 41

Scott Congreve (University of Nottingham)

DGFEM for Quasilinear PDEs

Universität Bern, 2013 19 / 41

æ

h–Mesh after 5 adaptive refinements

Coarse Mesh

Fine Mesh

Scott Congreve (University of Nottingham)

Universität Bern, 2013 19 / 41

hp–Mesh after 6 adaptive refinements

Two-Grid based on a Newton Iteration

The University of Nottingham

Two-Grid Approximation

Construct coarse and fine FE spaces V(T_H, K) and V(T_h, k), respectively, such that

 $V(\mathcal{T}_H, \boldsymbol{K}) \subseteq V(\mathcal{T}_h, \boldsymbol{k})$

Two-Grid based on a Newton Iteration

Two-Grid Approximation

• Construct coarse and fine FE spaces $V(T_H, K)$ and $V(T_h, k)$, respectively, such that

 $V(\mathcal{T}_H, \mathbf{K}) \subseteq V(\mathcal{T}_h, \mathbf{k})$

2 Compute the coarse grid approximation $u_{H,K} \in V(\mathcal{T}_H, K)$ such that

$$A_{H,K}(u_{H,K},v_{H,K})=F_{H,K}(v_{H,K})$$

for all $v_{H,K} \in V(\mathcal{T}_H, \mathbf{K})$.

Two-Grid based on a Newton Iteration

Two-Grid Approximation

• Construct coarse and fine FE spaces $V(T_H, \mathbf{K})$ and $V(T_h, \mathbf{k})$, respectively, such that

 $V(\mathcal{T}_H, \mathbf{K}) \subseteq V(\mathcal{T}_h, \mathbf{k})$

2 Compute the coarse grid approximation $u_{H,K} \in V(\mathcal{T}_H, K)$ such that

$$A_{H,K}(u_{H,K},v_{H,K})=F_{H,K}(v_{H,K})$$

for all $v_{H,K} \in V(\mathcal{T}_H, \mathbf{K})$.

③ Determine the fine grid approximation $u_{2G} \in V(\mathcal{T}_h, \mathbf{k})$ such that

$$A'_{h,k}[u_{H,K}](u_{2G}, v_{h,k}) = A'_{h,k}[u_{H,K}](u_{H,K}, v_{h,k}) - A_{h,k}(u_{H,K}, v_{h,k}) + F_{h,k}(v_{h,k})$$

for all $v_{h,k} \in V(\mathcal{T}_h, \mathbf{k})$.

Theorem (Two-Grid based on a Single Newton Iteration)

On a uniform mesh of size h, with polynomial degree k the following bounds hold:

$$\begin{split} \left\| u_{h,k} - u_{2G} \right\|_{h,k} &\leq C_5 \frac{k^{7/2}}{h} \frac{H^{2R-2}}{K^{2S-3}} \left\| u \right\|_{H^{S}(\Omega)}^{2} \\ \left\| u - u_{2G} \right\|_{h,k} &\leq C_1 \frac{h_{\kappa}^{s-1}}{k^{s-3/2}} \left\| u \right\|_{H^{s}(\Omega)} + C_5 \frac{k^{7/2}}{h} \frac{H^{2R-2}}{K^{2S-3}} \left\| u \right\|_{H^{S}(\Omega)}^{2} \end{split}$$

with $1 \le r \le \min(k + 1, s)$ and $1 \le R \le \min(K + 1, S)$.

Proof.

See C., & Houston 2013.

(日)

Theorem (Two-Grid based on a Single Newton Iteration)

$$\|u - u_{2G}\|_{h,k}^2 \leq C_6 \sum_{\kappa \in \mathcal{T}_h} \left(\eta_{\kappa}^2 + \xi_{\kappa}^2\right).$$

Here the local fine grid error indicators η_{κ} are defined, for all $\kappa \in \mathcal{T}_h$, as

$$\eta_{\kappa}^{2} = h_{\kappa}^{2} k_{\kappa}^{-2} \left\| f + \nabla \cdot \left\{ \mu(|\nabla u_{h,k}|) \nabla u_{2G} \right\} \right\|_{L^{2}(\kappa)}^{2} \\ + h_{\kappa} k_{\kappa}^{-1} \left\| \left[\mu(|\nabla u_{h,k}|) \nabla u_{2G} \right] \right\|_{L^{2}(\partial \kappa \setminus \Gamma)}^{2} + \gamma^{2} k_{\kappa}^{3} h_{\kappa}^{-1} \left\| \left[u_{2G} \right] \right\|_{L^{2}(\partial \kappa)}^{2}$$

and the local two-grid error indicators are defined, for all $\kappa \in \mathcal{T}_h$, as

$$\begin{split} \xi_{\kappa}^{2} &= \left\| \left(\mu(|\nabla u_{H,K}|) - \mu(|\nabla u_{2G}|) \right) \nabla u_{2G} \right\|_{L^{2}(\kappa)}^{2} \\ &+ \left\| \left(\mu_{\nabla u}'(|\nabla u_{H,K}|) \cdot \left(\nabla u_{2G} - u_{H,K} \right) \right) \nabla u_{H,K} \right\|_{L^{2}(\kappa)}^{2} \\ &+ h_{\kappa} k_{\kappa}^{-1} \left\| \left(\mu_{\nabla u}'(|\nabla u_{H,K}|) \cdot \left(\nabla u_{2G} - u_{H,K} \right) \right) \nabla u_{H,K} \right\|_{L^{2}(\partial \kappa)}^{2}. \end{split}$$

Introduction

Two-Grid Energy Norm Based Adaptivity

- Two-grid methods for quasilinear elliptic PDEs
- hp-Mesh adaptation
- Two-grid methods based on a single Newton iteration

Non-Newtonian Fluids

- A priori error bounds
- A posteriori error bounds and adaptivity
- Two-grid methods for non-Newtonian fluids

Two-Grid DWR Based Adaptivity for Quasilinear Elliptic PDEs

Non-Newtonian Fluid Problem

Given $\Omega \subset \mathbb{R}^d$, d = 2, 3 and $f \in L^2(\Omega)^d$, find (u, p) such that

- $-\nabla \cdot \{\mu(\boldsymbol{x}, |\underline{\boldsymbol{e}}(\boldsymbol{u})|)\underline{\boldsymbol{e}}(\boldsymbol{u})\} + \nabla \boldsymbol{p} = \boldsymbol{f} \qquad \text{in } \Omega,$
 - $abla \cdot \boldsymbol{u} = \mathbf{0} \qquad \qquad \text{in } \Omega,$
 - *u* = **0** on Γ,

where $\underline{e}(\boldsymbol{u})$ is the symmetric $d \times d$ strain tensor defined by $\boldsymbol{e}_{ij}(\boldsymbol{u}) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right).$

Assumption

() $\mu \in C(\bar{\Omega} \times [0,\infty))$ and

ithere exists positive constants m_{μ} *and* M_{μ} *such that*

$$M_{\mu}(t-s) \leq \mu(\boldsymbol{x},t)t - \mu(\boldsymbol{x},s)s \leq M_{\mu}(t-s), \quad t \geq s \geq 0, \quad \boldsymbol{x} \in \bar{\Omega}.$$

• hp-DG finite element space:

$$\begin{split} \mathbf{V}(\mathcal{T}_h, \mathbf{k}) &= \{ \mathbf{v} \in L^2(\Omega)^d : \mathbf{v}|_{\kappa} \in \mathcal{S}_{k_{\kappa}}(\kappa)^d, \forall \kappa \in \mathcal{T}_h \}, \\ \mathbf{Q}(\mathcal{T}_h, \mathbf{k}) &= \{ \mathbf{q} \in L^2_0(\Omega) : \mathbf{q}|_{\kappa} \in \mathcal{S}_{k_{\kappa}-1}(\kappa), \forall \kappa \in \mathcal{T}_h \}. \end{split}$$

• Jump operator: $\llbracket \boldsymbol{v} \rrbracket = \boldsymbol{v}^+ \otimes \boldsymbol{n}^+ + \boldsymbol{v}^- \otimes \boldsymbol{n}^-$

(3)

Image: A matrix and a matrix

hp-DGFEM

• hp-DG finite element space:

$$\begin{aligned} \mathbf{V}(\mathcal{T}_h, \mathbf{k}) &= \{ \mathbf{v} \in L^2(\Omega)^d : \mathbf{v}|_{\kappa} \in \mathcal{S}_{k_{\kappa}}(\kappa)^d, \forall \kappa \in \mathcal{T}_h \}, \\ \mathbf{Q}(\mathcal{T}_h, \mathbf{k}) &= \{ \mathbf{q} \in L^2_0(\Omega) : \mathbf{q}|_{\kappa} \in \mathcal{S}_{k_{\kappa}-1}(\kappa), \forall \kappa \in \mathcal{T}_h \}. \end{aligned}$$

• Jump operator: $\llbracket \boldsymbol{v} \rrbracket = \boldsymbol{v}^+ \otimes \boldsymbol{n}^+ + \boldsymbol{v}^- \otimes \boldsymbol{n}^-$

(Standard) Interior Penalty Method

Find $(u_{h,k}, p_{h,k}) \in V(\mathcal{T}_h, k) \times Q(\mathcal{T}_h, k)$ such that

$$egin{aligned} & A_{h,k}(m{u}_{h,k};m{u}_{h,k},m{v}_{h,k}) + B_{h,k}(m{v}_{h,k},m{p}_{h,k}) = F_{h,k}(m{v}_{h,k}) \ & -B_{h,k}(m{u}_{h,k},m{q}_{h,k}) = 0 \end{aligned}$$

for all $(\mathbf{v}_{h,k}, q_{h,k}) \in \mathbf{V}(\mathcal{T}_h, \mathbf{k}) \times Q(\mathcal{T}_h, \mathbf{k}).$

(日)

Theorem (Well-Posedness)

Provided that the penalty parameter γ is chosen sufficiently large, and the inf-sup condition,

$$\inf_{0\neq q\in \mathsf{Q}(\mathcal{T}_h,\boldsymbol{k})}\sup_{\boldsymbol{0}\neq\boldsymbol{v}\in\boldsymbol{V}(\mathcal{T}_h,\boldsymbol{k})}\frac{B_h(\boldsymbol{v},q)}{\|\boldsymbol{v}\|_{h,k}\,\|q\|_{0,\Omega}}\geq c\left(\max_{\kappa\in\mathcal{T}_h}k_\kappa\right)^{-1},$$

holds then exactly one solution $(\mathbf{u}_{h,k}, \mathbf{p}_{h,k}) \in \mathbf{V}(\mathcal{T}_h, \mathbf{k}) \times Q(\mathcal{T}_h, \mathbf{k})$ of the above hp-DGFEM exists.

Proof.

As the inf-sup condition can be shown to hold (Schotzau, Schwab & Toselli (2002)), then existence of a unique solution follows, see C., Houston, Süli & Wihler (2013).

Theorem (Standard Non-Newtonian DGFEM)

Providing the inf-sup condition is valid the following bound holds:

$$\begin{split} \left\| \left(\boldsymbol{u} - \boldsymbol{u}_{h,k}, \boldsymbol{p} - \boldsymbol{p}_{h,k} \right) \right\|_{DG}^{2} \\ & \leq C_{7} k_{\max}^{4} \sum_{\kappa \in \mathcal{T}_{h}} \left(\frac{h_{\kappa}^{2r_{\kappa}-2}}{k_{\kappa}^{2s_{\kappa}-3}} \left\| \boldsymbol{u} \right\|_{H^{s_{\kappa}}(\kappa)}^{2} + \frac{h_{\kappa}^{2r_{\kappa}-2}}{k_{\kappa}^{2s_{\kappa}-2}} \left\| \boldsymbol{p} \right\|_{H^{s_{\kappa}-1}(\kappa)}^{2} \right), \end{split}$$

with
$$1 \leq r_{\kappa} \leq \min(k_{\kappa} + 1, s_{\kappa})$$
, $k_{\kappa} \geq 1$, for $\kappa \in \mathcal{T}_h$.

Proof.

See C., Houston, Süli & Wihler (2013).

(4) (5) (4) (5)

Image: A matrix and a matrix

We let $\Omega = (-1, 1)^2 \setminus [0, 1) \times (-1, 0]$, $\mu(\mathbf{x}, |\nabla u|) = 2 + \frac{1}{1 + |\nabla u|^2}$ and select \mathbf{f} so that

$$u(x,y) = \begin{pmatrix} -e^x(y\cos y + \sin y) \\ e^x y\sin y \end{pmatrix},$$

$$p(x,y) = 2e^x\sin y - \frac{2(1-e)(\cos 1-1)}{3}$$

Scott Congreve (University of Nottingham)

DGFEM for Quasilinear PDEs

Universität Bern, 2013 28 / 41

Theorem (Standard Non-Newtonian DGFEM)

The following bound holds:

$$\left\| (oldsymbol{u} - oldsymbol{u}_{h,k}, oldsymbol{p} - oldsymbol{p}_{h,k})
ight\|_{DG}^2 \leq C_8 \sum_{\kappa \in \mathcal{T}_h} \eta_\kappa^2.$$

Here the local error indicators η_{κ} are defined, for all $\kappa \in \mathcal{T}_h$ as

$$\eta_{\kappa}^{2} = \frac{h_{\kappa}^{2}}{k_{\kappa}^{2}} \left\| \boldsymbol{f} + \nabla \cdot \left\{ \mu(|\underline{\boldsymbol{e}}(\boldsymbol{u}_{h,k})|)\underline{\boldsymbol{e}}(\boldsymbol{u}_{h,k}) \right\} - \nabla \boldsymbol{p}_{h,k} \right\|_{L^{2}(\kappa)}^{2} + \left\| \nabla \cdot \boldsymbol{u}_{h,k} \right\|_{L^{2}(\kappa)}^{2} \\ + \frac{h_{\kappa}}{k_{\kappa}} \left\| \left[\left[\boldsymbol{p}_{h,k} \right] \right] - \left[\left[\mu(|\underline{\boldsymbol{e}}(\boldsymbol{u}_{h,k})|)\underline{\boldsymbol{e}}(\boldsymbol{u}_{h,k}) \right] \right] \right\|_{L^{2}(\partial\kappa\setminus\Gamma)}^{2} + \gamma^{2} \frac{k_{\kappa}^{3}}{h_{\kappa}} \left\| \left[\left[\left[\boldsymbol{u}_{h,k} \right] \right] \right\|_{L^{2}(\partial\kappa)}^{2} \right] \right\|_{L^{2}(\partial\kappa\setminus\Gamma)}^{2}$$

Proof.

See C., Houston, Süli & Wihler (2013).

Scott Congreve (University of Nottingham)

3 1 4

Non-Newtonian Fluid: Singular Solution

Let $\Omega = (-1, 1)^2 \setminus [0, 1) \times (-1, 0]$, $\mu = 1 + e^{-|\underline{e}(\boldsymbol{u})|}$ and select \boldsymbol{f} so that

where (r, φ) denotes polar coordinates,

$$\Psi(\varphi) = \frac{\sin((1+\lambda)\varphi)\cos(\lambda\omega)}{1+\lambda} - \cos((1+\lambda)\varphi) \\ - \frac{\sin((1-\lambda)\varphi)\cos(\lambda\omega)}{1-\lambda} + \cos((1-\lambda)\varphi),$$

and $\omega = \frac{3\pi}{2}$. Here, the exponent λ is the smallest positive solution of

$$\sin(\lambda\omega) + \lambda\sin(\omega) = 0;$$

thereby, $\lambda \approx 0.54448373678$. Note that $\boldsymbol{u} \notin H^2(\Omega)^2$ and $\boldsymbol{p} \notin H^1(\Omega)$.

30/41

Non-Newtonian Fluid: Singular Solution

Scott Congreve (University of Nottingham)

DGFEM for Quasilinear PDEs

Universität Bern, 2013 30 / 41

Non-Newtonian Fluid: Singular Solution

Scott Congreve (University of Nottingham)

DGFEM for Quasilinear PDEs

Universität Bern. 2013 30 / 41

э.

Two-Grid Approximation

• Construct $V(\mathcal{T}_H, \mathbf{K})$, $Q(\mathcal{T}_H, \mathbf{K})$, $V(\mathcal{T}_h, \mathbf{k})$ and $Q(\mathcal{T}_h, \mathbf{k})$ such that

 $V(\mathcal{T}_H, \mathbf{K}) \subseteq V(\mathcal{T}_h, \mathbf{k})$ and $Q(\mathcal{T}_H, \mathbf{K}) \subseteq Q(\mathcal{T}_h, \mathbf{k})$

2 Compute $(\boldsymbol{u}_{H,K}, \boldsymbol{p}_{H,K}) \in \boldsymbol{V}(\mathcal{T}_H, \boldsymbol{K}) \times \boldsymbol{Q}(\mathcal{T}_H, \boldsymbol{K})$ such that

$$A_{H,K}(\boldsymbol{u}_{H,K};\boldsymbol{u}_{H,K},\boldsymbol{v}_{H,K}) + B_{H,K}(\boldsymbol{v}_{H,K},p_{H,K}) = F_{H,K}(\boldsymbol{v}_{H,K}), \\ -B_{H,K}(\boldsymbol{u}_{H,K},q_{H,K}) = 0$$

for all $(\mathbf{v}_{H,K}, q_{H,K}) \in \mathbf{V}(\mathcal{T}_H, \mathbf{K}) \times Q(\mathcal{T}_H, \mathbf{K})$. Solution Determine $(\mathbf{u}_{2G}, p_{2G}) \in \mathbf{V}(\mathcal{T}_h, \mathbf{k}) \times Q(\mathcal{T}_h, \mathbf{k})$ such that

$$A_{h,k}(u_{H,K}; u_{2G}, v_{h,k}) + B_{h,k}(v_{h,k}, p_{2G}) = F_{h,k}(v_{h,k}), -B_{H,K}(u_{2G}, q_{h,k}) = 0$$

for all $(\mathbf{v}_{h,k}, q_{h,k}) \in \mathbf{V}(\mathcal{T}_h, \mathbf{k}) \times Q(\mathcal{T}_h, \mathbf{k}).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A Priori Error Estimation

Theorem (Standard Non-Newtonian DGFEM)

Providing the inf-sup condition is valid the following bound holds:

$$\left\| (\boldsymbol{u} - \boldsymbol{u}_{h,k}, \boldsymbol{p} - \boldsymbol{p}_{h,k}) \right\|_{DG}^{2} \leq C_{6} k_{\max}^{4} \sum_{\kappa \in \mathcal{T}_{h}} \left(\frac{h_{\kappa}^{2r_{\kappa}-2}}{k_{\kappa}^{2s_{\kappa}-3}} \left\| \boldsymbol{u} \right\|_{H^{s_{\kappa}}(\kappa)}^{2} + \frac{h_{\kappa}^{2r_{\kappa}-2}}{k_{\kappa}^{2s_{\kappa}-2}} \left\| \boldsymbol{p} \right\|_{H^{s_{\kappa}-1}(\kappa)}^{2} \right)$$

with $1 \leq r_{\kappa} \leq \min(k_{\kappa} + 1, s_{\kappa})$, $k_{\kappa} \geq 1$, for $\kappa \in \mathcal{T}_h$.

Proof.

See C., Houston, Süli & Wihler (2013).

Scott Congreve (University of Nottingham)

Theorem (Two-Grid Non-Newtonian DGFEM)

Providing the inf-sup condition is valid the following bounds hold:

$$\begin{split} \left\| \boldsymbol{u}_{h,k} - \boldsymbol{u}_{2G} \right\|_{h,k}^{2} &\leq C_{8} k_{\max}^{4} \sum_{\kappa \in \mathcal{T}_{h}} \left(\frac{H_{\kappa}^{2R_{\kappa}-2}}{K_{\kappa}^{2S_{\kappa}-3}} \left\| \boldsymbol{u} \right\|_{H^{S_{\kappa}}(\kappa)}^{2} + \frac{H_{\kappa}^{2R_{\kappa}-2}}{K_{\kappa}^{2S_{\kappa}-2}} \left\| \boldsymbol{p} \right\|_{H^{S_{\kappa}-1}(\kappa)}^{2} \right), \\ \left\| \boldsymbol{p}_{h,k} - \boldsymbol{p}_{2G} \right\|_{L^{2}(\Omega)}^{2} &\leq C_{8} k_{\max}^{6} \sum_{\kappa \in \mathcal{T}_{h}} \left(\frac{H_{\kappa}^{2R_{\kappa}-2}}{K_{\kappa}^{2S_{\kappa}-3}} \left\| \boldsymbol{u} \right\|_{H^{S_{\kappa}}(\kappa)}^{2} + \frac{H_{\kappa}^{2R_{\kappa}-2}}{K_{\kappa}^{2S_{\kappa}-2}} \left\| \boldsymbol{p} \right\|_{H^{S_{\kappa}-1}(\kappa)}^{2} \right), \\ \left| (\boldsymbol{u} - \boldsymbol{u}_{2G}, \boldsymbol{p} - \boldsymbol{p}_{2G}) \right\|_{DG}^{2} &\leq C_{6} k_{\max}^{4} \sum_{\kappa \in \mathcal{T}_{h}} \left(\frac{H_{\kappa}^{2r_{\kappa}-2}}{K_{\kappa}^{2S_{\kappa}-3}} \left\| \boldsymbol{u} \right\|_{H^{S_{\kappa}}(\kappa)}^{2} + \frac{H_{\kappa}^{2r_{\kappa}-2}}{K_{\kappa}^{2S_{\kappa}-2}} \left\| \boldsymbol{p} \right\|_{H^{S_{\kappa}-1}(\kappa)}^{2} \right) \\ &+ C_{10} k_{\max}^{6} \sum_{\kappa \in \mathcal{T}_{h}} \left(\frac{H_{\kappa}^{2R_{\kappa}-2}}{K_{\kappa}^{2S_{\kappa}-3}} \left\| \boldsymbol{u} \right\|_{H^{S_{\kappa}}(\kappa)}^{2} + \frac{H_{\kappa}^{2R_{\kappa}-2}}{K_{\kappa}^{2S_{\kappa}-2}} \left\| \boldsymbol{p} \right\|_{H^{S_{\kappa}-1}(\kappa)}^{2} \right), \end{split}$$

with $1 \le r_{\kappa} \le \min(k_{\kappa} + 1, s_{\kappa})$, $k_{\kappa} \ge 1$, for $\kappa \in T_h$, and $1 \le R_{\kappa} \le \min(K_{\kappa} + 1, S_{\kappa})$, $K_{\kappa} \ge 1$, for $\kappa \in T_H$

(日)

Theorem (Standard Non-Newtonian DGFEM)

The following bound holds:

$$ig\| (oldsymbol{u} - oldsymbol{u}_{h,k}, oldsymbol{
ho} - oldsymbol{
ho}_{h,k}) ig\|_{D\mathsf{G}}^2 \leq C_7 \sum_{\kappa \in \mathcal{T}_h} \ \eta_\kappa^2$$

Here the local error indicators η_{κ} are defined, for all $\kappa \in \mathcal{T}_h$ as

$$\eta_{\kappa}^{2} = \frac{h_{\kappa}^{2}}{k_{\kappa}^{2}} \left\| \mathbf{f} + \nabla \cdot \left\{ \mu(|\underline{e}(\mathbf{u}_{h,k})|)\underline{e}(\mathbf{u}_{h,k}) \right\} - \nabla p_{h,k} \right\|_{L^{2}(\kappa)}^{2} + \left\| \nabla \cdot \mathbf{u}_{h,k} \right\|_{L^{2}(\kappa)}^{2} \\ + \frac{h_{\kappa}}{k_{\kappa}} \left\| \left[\left[p_{h,k} \right] \right] - \left[\left[\mu(|\underline{e}(\mathbf{u}_{h,k})|)\underline{e}(\mathbf{u}_{h,k}) \right] \right] \right\|_{L^{2}(\partial\kappa\setminus\Gamma)}^{2} + \gamma^{2} \frac{k_{\kappa}^{3}}{h_{\kappa}} \left\| \left[\left[\underline{u}_{h,k} \right] \right] \right\|_{L^{2}(\partial\kappa)}^{2}$$

Proof.

See C., Houston, Süli & Wihler (2013).

Scott Congreve (University of Nottingham)

DGFEM for Quasilinear PDEs

Theorem (Two-Grid Non-Newtonian DGFEM)

The following bound holds:

$$\|(oldsymbol{u}-oldsymbol{u}_{2G},oldsymbol{p}-oldsymbol{p}_{2G})\|_{DG}^2\leq C_{11}\sum_{\kappa\in\mathcal{T}_h}\Big(\eta_\kappa^2+\xi_\kappa^2\Big).$$

Here the local fine grid error indicators η_{κ} are defined, for all $\kappa \in \mathcal{T}_h$ as

$$\eta_{\kappa}^{2} = \frac{h_{\kappa}^{2}}{k_{\kappa}^{2}} \left\| \boldsymbol{f} + \nabla \cdot \left\{ \mu(|\underline{\boldsymbol{e}}(\boldsymbol{u}_{H,K})|)\underline{\boldsymbol{e}}(\boldsymbol{u}_{2G}) \right\} - \nabla \boldsymbol{p}_{2G} \right\|_{L^{2}(\kappa)}^{2} + \left\| \nabla \cdot \boldsymbol{u}_{2G} \right\|_{L^{2}(\kappa)}^{2} \\ + \frac{h_{\kappa}}{k_{\kappa}} \left\| \left[\left[\boldsymbol{p}_{2G} \right] \right] - \left[\left[\mu(|\underline{\boldsymbol{e}}(\boldsymbol{u}_{H,K})|)\underline{\boldsymbol{e}}(\boldsymbol{u}_{2G}) \right] \right] \right\|_{L^{2}(\partial\kappa\setminus\Gamma)}^{2} + \gamma^{2} \frac{k_{\kappa}^{3}}{h_{\kappa}} \left\| \left[\left[\underline{\boldsymbol{u}}_{2G} \right] \right] \right\|_{L^{2}(\partial\kappa)}^{2} \right]$$

and the local two-grid error indicators are defined, for all $\kappa \in \mathcal{T}_h$ as

$$\xi_{\kappa}^{2} = \left\| \left(\mu(|\underline{e}(\boldsymbol{u}_{H,K})|) - \mu(|\underline{e}(\boldsymbol{u}_{2G})|) \right) \underline{e}(\boldsymbol{u}_{2G}) \right\|_{L^{2}(\kappa)}^{2}.$$

(4) (3) (4) (4) (4)

h-Mesh after 11 adaptive refinements

Fine Mesh

Scott Congreve (University of Nottingham)

DGFEM for Quasilinear PDEs

Universität Bern, 2013 34 / 41

H 16

hp–Mesh after 11 adaptive refinements

Scott Congreve (University of Nottingham)

DGFEM for Quasilinear PDEs

Universität Bern, 2013 34 / 41

Introduction

Two-Grid Energy Norm Based Adaptivity

- Two-grid methods for quasilinear elliptic PDEs
- hp-Mesh adaptation
- Two-grid methods based on a single Newton iteration

Non-Newtonian Fluids

- A priori error bounds
- A posteriori error bounds and adaptivity
- Two-grid methods for non-Newtonian fluids

Two-Grid DWR Based Adaptivity for Quasilinear Elliptic PDEs

E 5 4

Quasilinear Problem

Given $\Omega \subset \mathbb{R}^d$, d = 2, 3 and $f \in L^2(\Omega)$, find *u* such that

$$-\nabla \cdot \{\mu(\boldsymbol{x}, \boldsymbol{u}, \nabla \boldsymbol{u}) \nabla \boldsymbol{u}\} = f \qquad \text{in } \Omega, \\ \boldsymbol{u} = 0 \qquad \text{on } \Gamma.$$

Remark

Here we do not enforce any condition on the nonlinearity μ .

Two-Grid hp-DGFEM

The University of Nottingham

Two-Grid Approximation

• Construct coarse and fine FE spaces $V(T_H, \mathbf{K})$ and $V(T_h, \mathbf{k})$, respectively, such that

 $V(\mathcal{T}_H, \mathbf{K}) \subseteq V(\mathcal{T}_h, \mathbf{k})$

2 Compute the coarse grid approximation $u_{H,K} \in V(\mathcal{T}_H, K)$ such that

$$A_{H,K}(u_{H,K},v_{H,K})=F_{H,K}(v_{H,K})$$

for all $v_{H,K} \in V(\mathcal{T}_H, K)$.

③ Determine the fine grid approximation $u_{2G} \in V(\mathcal{T}_h, \mathbf{k})$ such that

$$A'_{h,k}[u_{H,K}](u_{2G}, v_{h,k}) = A'_{h,k}[u_{H,K}](u_{H,K}, v_{h,k}) - A_{h,k}(u_{H,K}, v_{h,k}) + F_{h,k}(v_{h,k})$$

for all $v_{h,k} \in V(\mathcal{T}_h, \mathbf{k})$.

DWR A Posteriori Error Estimation

Inte University of Nottingham

We can find a *a posteriori* error estimate by introducing the dual:

(Fine Grid) Dual Problem

Find $\varphi \in H_0^1(\Omega)$ such that

$$A'_{h,k}[u_{H,K}](v,\varphi) = J(v)$$

for all $v \in H_0^1(\Omega)$, where $J(\cdot)$ is a linear functional.

DWR A Posteriori Error Estimation

We can find a *a posteriori* error estimate by introducing the dual:

(Fine Grid) Dual Problem

Find $\varphi \in H_0^1(\Omega)$ such that

$$A'_{h,k}[u_{H,K}](v,\varphi) = J(v)$$

for all $v \in H_0^1(\Omega)$, where $J(\cdot)$ is a linear functional.

with it's associated approximation:

(Fine Grid) Dual Approximation

Find $\varphi_{h,k} \in V(\mathcal{T}_h, \mathbf{k})$ such that

$$A'_{h,k}[u_{H,K}](v_{h,k},\varphi_{h,k})=J(v_{h,k})$$

for all $v_{h,k} \in V(\mathcal{T}_h, \mathbf{k})$.

DWR A Posteriori Error Estimation

Theorem

For a given linear functional $J(\cdot)$ we can estimate the error in the two grid approximation with:

$$\begin{aligned} \mathsf{J}(\mathsf{u}) - \mathsf{J}(\mathsf{u}_{2\mathsf{G}}) &\approx \mathsf{F}_{h,k}(\varphi - \varphi_{h,k}) + \mathsf{A}_{h,k}'[\mathsf{u}_{H,\mathsf{K}}](\mathsf{u}_{H,\mathsf{K}} - \mathsf{u}_{2\mathsf{G}},\varphi - \varphi_{h,k}) \\ &- \mathsf{A}_{h,k}(\mathsf{u}_{H,\mathsf{K}},\varphi - \varphi_{h,k}) - \mathcal{Q}(\mathsf{u}_{H,\mathsf{K}},\mathsf{u}_{2\mathsf{G}},\varphi) \end{aligned}$$

where

$$\mathcal{Q}(\mathbf{v},\mathbf{w},\varphi) = \int_0^1 (1-t) A_{h,k}''[\mathbf{v}+t(\mathbf{w}-\mathbf{v})](\mathbf{w}-\mathbf{v},\mathbf{w}-\mathbf{v},\varphi) \,\mathrm{d}t.$$

Remark

We note that $Q(v, w, \varphi)$ is the remainder from a 1st order Taylor's expansion, about 0, of the function $\eta(t) = A_{h,k}(v + t(w - v), \varphi)$ evaluated at 1.

Scott Congreve (University of Nottingham)

p-Laplacian

Selecting $\mu = |\nabla u|^{p-2}$, for $p \in (0, \infty)$ gives rise to the *p*-Laplacian:

Quasilinear Problem

Given $\Omega \subset \mathbb{R}^d$, d = 2, 3 and a smooth given data $f \in L^2(\Omega)$, find u such that

$$\begin{aligned} -\nabla \cdot \{ |\nabla u|^{p-2} \nabla u \} &= f & \text{in } \Omega, \\ u &= 0 & \text{on } \Gamma, \end{aligned}$$

where $p \in (0, \infty)$.

We consider the domain $\Omega = (0, 1)^2$ with p = 3 and select the forcing function such that the analytical solution is $u = r^{3/4}$. This results in a singularity at the origin.

We select the linear functional as a point functional near the singularity,

J(u) = u(0.01, 0.01).

p-Laplacian

DoFs (F)	DoFs (C)	$J(u) - J(u_{2G})$	$\mathcal{E}(u, u_{H,K}, u_{2G})$	Eff.
144	144	$0.3718 imes 10^{-3}$	$0.2306 imes 10^{-2}$	6.20
252	144	$0.1649 imes 10^{-4}$	$0.2198 imes 10^{-2}$	133.23
387	252	$-0.1000 imes 10^{-2}$	$0.1228 imes 10^{-3}$	-0.12
657	360	$-0.1801 imes 10^{-3}$	$-0.6972 imes 10^{-3}$	3.87
1008	603	$0.1506 imes 10^{-2}$	$0.1507 imes 10^{-2}$	1.00
1575	1062	$0.1676 imes 10^{-2}$	$0.1306 imes 10^{-2}$	0.78
2574	1548	$0.2524 imes 10^{-3}$	$0.2264 imes 10^{-3}$	0.90
4356	2439	$0.2977 imes 10^{-3}$	$0.2640 imes 10^{-3}$	0.89
7785	3789	$0.1221 imes 10^{-3}$	$0.1138 imes 10^{-3}$	0.93
13293	6732	$0.2540 imes 10^{-4}$	$0.2741 imes 10^{-4}$	1.08
22986	11673	$0.8779 imes 10^{-5}$	$0.9309 imes 10^{-5}$	1.06
41130	20556	$0.3225 imes 10^{-5}$	$0.3361 imes 10^{-5}$	1.04
73692	36243	$0.1158 imes 10^{-5}$	$0.1192 imes 10^{-5}$	1.03
132498	64620	$0.4171 imes 10^{-6}$	$0.4258 imes 10^{-6}$	1.02
244035	120942	$0.1668 imes 10^{-6}$	$0.1692 imes 10^{-6}$	1.01

Scott Congreve (University of Nottingham)

DGFEM for Quasilinear PDEs

40/41

• Summary:

- A priori and a posteriori error analysis for non-Newtonian fluids
- Two-grid *h-/hp*-DGFEMs proposed for quasilinear/non-Newtonian.
- Energy norm *a priori* and *a posteriori* error analysis of two-grid method.
- Dual weighted residual *a posteriori* error analysis for two-grid.
- Two-grid *h-/hp*-adaptive algorithms developed to control the discretization error in both the coarse and fine grid solutions.

• Summary:

- A priori and a posteriori error analysis for non-Newtonian fluids
- Two-grid *h-/hp*-DGFEMs proposed for quasilinear/non-Newtonian.
- Energy norm *a priori* and *a posteriori* error analysis of two-grid method.
- Dual weighted residual a posteriori error analysis for two-grid.
- Two-grid *h-/hp*-adaptive algorithms developed to control the discretization error in both the coarse and fine grid solutions.

Future Work:

- 3D two-grid dual weighted residual
- Two-grid dual weighted residual for non-Newtonian fluids.
- Compressible flows.