CONTENTS

LIST OF SYMBOLS .. xv

1. INTRODUCTION .. 1

I. FINANCIAL FORMULAS

2. SIMPLE INTEREST AND DISCOUNT 3
 2.1. Simple Interest ... 3
 2.2. Calendar Conventions .. 5
 2.3. Simple Interest with Principals Credited \(m \)thly 7
 2.4. Simple Discount ... 8
 References ... 9

3. COMPOUND INTEREST AND DISCOUNT 11
 3.1. Compound Interest ... 11
 3.2. Compound Discount ... 12
 3.3. Compound Interest and Discount Convertible \(m \)thly ... 13
 3.4. Combination of Simple and Compound Interest 15
 References ... 16

4. CONTINUOUS INTEREST AND DISCOUNT 19
 References ... 21

5. CLASSICAL ANALYSIS OF INTEREST RATES 23
 5.1. Risk-Free Interest Rate and Real Interest Rate 23
 5.2. Term Structure of Interest Rates 25
 References ... 26

6. SYSTEMS OF CASH FLOWS .. 27
 6.1. Present and Future Value 27
 6.2. Internal Rate of Return ... 30
 6.3. Payback Period .. 32
 6.4. Duration .. 32
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.</td>
<td>FINANCIAL STOCHASTIC ANALYSIS</td>
<td>129</td>
</tr>
<tr>
<td>15.1</td>
<td>Wiener Process in Finance</td>
<td>129</td>
</tr>
<tr>
<td>15.2</td>
<td>Poisson Process in Finance</td>
<td>131</td>
</tr>
<tr>
<td>15.3</td>
<td>Ito Stochastic Integral</td>
<td>132</td>
</tr>
<tr>
<td>15.4</td>
<td>Stochastic Differential Equations SDE</td>
<td>134</td>
</tr>
<tr>
<td>15.5</td>
<td>Ito’s Lemma</td>
<td>136</td>
</tr>
<tr>
<td>15.6</td>
<td>Girsanov Theorem on Equivalent Martingale Probability</td>
<td>137</td>
</tr>
<tr>
<td>15.7</td>
<td>Theorem on Martingale Representation</td>
<td>138</td>
</tr>
<tr>
<td>15.8</td>
<td>Derivatives Pricing by Means of Equivalent Martingale Probabilities</td>
<td>139</td>
</tr>
<tr>
<td>15.9</td>
<td>Derivatives Pricing by Means of Partial Differential Equations PDE</td>
<td>141</td>
</tr>
<tr>
<td>15.10</td>
<td>Term Structure Modeling</td>
<td>142</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>147</td>
</tr>
<tr>
<td>II.</td>
<td>INSURANCE FORMULAS</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>INSURANCE CLASSIFICATION</td>
<td>149</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>17.</td>
<td>ACTUARIAL DEMOGRAPHY</td>
<td>155</td>
</tr>
<tr>
<td>17.1</td>
<td>Selected Population Indicators</td>
<td>155</td>
</tr>
<tr>
<td>17.2</td>
<td>Life Tables</td>
<td>159</td>
</tr>
<tr>
<td>17.3</td>
<td>Mortality and Survival Modeling</td>
<td>163</td>
</tr>
<tr>
<td>17.4</td>
<td>Multiple Decrement Models</td>
<td>167</td>
</tr>
<tr>
<td>17.5</td>
<td>Multiple Life Functions</td>
<td>168</td>
</tr>
<tr>
<td>17.6</td>
<td>Commutation Functions</td>
<td>169</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>18.</td>
<td>CLASSICAL LIFE INSURANCE</td>
<td>173</td>
</tr>
<tr>
<td>18.1</td>
<td>Basic Concepts of Life Insurance</td>
<td>173</td>
</tr>
<tr>
<td>18.2</td>
<td>Symbols and Calculation Principles of Life Insurance</td>
<td>175</td>
</tr>
<tr>
<td>18.3</td>
<td>Technical Provisions in Life Insurance</td>
<td>178</td>
</tr>
<tr>
<td>18.4</td>
<td>Pure Endowments</td>
<td>182</td>
</tr>
<tr>
<td>18.5</td>
<td>Whole Life and Term Insurance</td>
<td>184</td>
</tr>
<tr>
<td>18.6</td>
<td>Further Products of Capital Life Insurance</td>
<td>189</td>
</tr>
<tr>
<td>18.7</td>
<td>Life Annuities</td>
<td>193</td>
</tr>
<tr>
<td>18.8</td>
<td>Multiple Life Insurance</td>
<td>198</td>
</tr>
<tr>
<td>18.9</td>
<td>Premium Reserve and Its Implications</td>
<td>200</td>
</tr>
<tr>
<td>18.10</td>
<td>Medical Underwriting</td>
<td>203</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>19.</td>
<td>MODERN APPROACHES TO LIFE INSURANCE</td>
<td>205</td>
</tr>
<tr>
<td>19.1</td>
<td>Critical Illness Insurance</td>
<td>205</td>
</tr>
<tr>
<td>19.2</td>
<td>Flexible Products of Life Insurance</td>
<td>207</td>
</tr>
<tr>
<td>19.3</td>
<td>Unit Linked</td>
<td>208</td>
</tr>
</tbody>
</table>
19.4. Profit Testing .. 211
19.5. Embedded Value .. 213
19.6. Fair Value ... 216
References ... 218

20. PENSION INSURANCE ... 221
20.1. Basic Concepts of Pension Insurance 221
20.2. Defined Contribution Plan 223
20.3. Defined Benefit Plan ... 226
References ... 231

21. CLASSICAL NON-LIFE INSURANCE 233
21.1. Basic Concepts of Non-Life Insurance 233
21.2. Premium Calculations in Non-Life Insurance 237
21.3. Forms of Non-Life Insurance and Deductibles 239
21.5. Bonus-Malus Systems 248
References ... 249

22. RISK THEORY IN INSURANCE 251
22.1. Collective Risk Model 251
22.2. Aggregate Claim Distribution 254
22.3. Copula .. 258
22.4. Credibility Premium ... 260
22.5. Ruin Probability ... 263
22.6. Deductible ... 264
22.7. Calculations for Bonus-Malus Systems 267
References ... 269

23. HEALTH INSURANCE ... 271
References ... 273

24. REINSURANCE ... 275
24.1. Basic Concepts of Reinsurance 275
24.2. Types of Reinsurance 278
24.3. Solvency ... 284
24.3. Alternative Risk Transfer ART 287
References ... 290

III. FORMULAS OF RELATED DISCIPLINES

25. MATHEMATICAL COMPENDIUM 291
25.1. Powers with Integral Exponents 291
25.2. Roots of Real Numbers 291
25.3. Powers with Rational Exponents 291
25.4. Powers with Real Exponents 291
25.5. Formulas $a^x + b^x$... 292
28.6. Simultaneous Equation Models and 2SLS-Estimator ……… 350
References ……………………………………………………………. 352

29. INDEX NUMBERS ………………………………………….. 353
29.1. Indices as Instruments of Comparison ………………… …….. 353
29.2. Indices in Practice ………………………………………….. 354
29.3. Stock Exchange Indicators …………………………………. 356
References ……………………………………………………………. 357

30. STOCHASTIC PROCESSES ……………………………………… 359
30.1. Classification and Basic Characteristics of Stochastic Processes … 359
30.2. Markov Chains ……………………………………………... 361
30.3. Markov Processes ………………………………………….. 366
30.4. Important Stochastic Processes …………………………….. 368
30.5. Spectral Properties of Stochastic Processes ………………… 372
References ……………………………………………………………. 375

31. STATISTICAL ANALYSIS OF TIME SERIES ………………….. 377
31.1. Predictions in Time Series …………………………………. 377
31.2. Decomposition of (Economic) Time Series ………… …….. 378
31.3. Estimation of Correlation and Spectral Characteristics ……. 386
31.4. Linear Time Series …………………………………………. 388
31.5. Nonlinear and Financial Time Series …………………… …. 392
31.6. Multivariate Time Series …………………………………… 397
31.7. Kalman Filter ……………………………………………….. 399
References ……………………………………………………………. 401

INDEX ………………………………………………………………… 403
1. INTRODUCTION

Financial and insurance calculations become more and more frequent and helpful for many users not only in their profession life but sometimes even in their personal life. Therefore a survey of formulas of financial and insurance mathematics that can be applied to such calculations seems to be a suitable aid. In some cases one should use instead of the term formula more suitable terms of the type method, procedure or algorithm since the corresponding calculations cannot be simply summed up to a single expression, and a verbal description without introducing complicated symbols is more appropriate.

The survey has the following ambitions:

- The formulas should be applicable in practice: it has motivated their choice for this survey first and foremost. On the other hand it is obvious that by time one puts to use in practice seemingly very abstract formulas of higher mathematics, e.g. when pricing financial derivatives, evaluating financial risks, applying accounting principles based on fair values, choosing alternative risk transfers ARL in insurance, and the like.
- The formulas should be error-free (though such a goal is not achievable in full) since in the financial and insurance framework one publishes sometimes in a hectic way various untried formulas and methods that may be incorrect. Of course, the formulas are introduced here without proofs because their derivation is not the task of this survey.
- The formulas should be systematically sorted and described including a simple denotation that enables a quick and operative searching. Explanation and references to related parts of the survey are often attached to some formulas so that one can browse and look up in the text in an effective way. The detailed Index is also helpful for this purpose.
- The formulas should be presented in the form that is in average the most frequent and the most conventional one in practice.
- The formulas should be sufficiently self-contained. Therefore formulas of related disciplines (e.g. from statistics, theory of probability, demography and others) are also given in final chapters.

The mathematical level of the formulas and methods ranges from simple ones exploiting only an arithmetic to very sophisticated matters of higher mathematics (e.g. the stochastic calculus, and the like). The author hopes that users find in this survey their level of acceptability corresponding to the problems they solve. The survey contains also Mathematical compendium to remind some basic mathematical principles, and chapters that are related in direct or indirect way to financial and insurance analysis: Descriptive and mathematical statistics, Econometrics, Index theory, Stochastic processes and Statistical analysis of time series. One attaches also List of symbols for symbols that are frequent in the text (however, special symbols may be explained in the context of particular formulas).

The author thanks for various forms of help to Dr. K. Janeček, Dr. P. Myška and Dr. H. Zaňková. The work is a part of the research project MSM0021620839 (Czech Republic).