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The cost of an algorithm

• Algorithms have two costs: computation and communication 

• Communication : moving data between levels of memory hierarchy 
(sequential), between processors (parallel)

• On today’s computers, computation is cheap, but communication is 
expensive, in terms of both time and energy

Sequential Parallel
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“Memory 
wall”

“Interprocessor 
communication 

wall”

• Barrier to scalability for many scientific codes 



Future exascale systems

Petascale
Systems (2009)

Predicted Exascale
Systems

Factor 
Improvement

System Peak ~1000

Node Memory 
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect 
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency ~1
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• Gaps between communication/computation cost only growing larger in 
future systems

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 

• Avoiding communication will be essential for applications at exascale!



Krylov subspace methods
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• In each iteration, 

• Add a dimension to the Krylov subspace 𝒦𝑚

𝒦1 𝐴, 𝑟1 ⊂ 𝒦2 𝐴, 𝑟1 ⊂ ⋯ ⊂ 𝒦𝑚(𝐴, 𝑟1)

• Orthogonalize (with respect to some ℒ𝑚)

• Examples: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum 
Residual (GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc. 

• A Krylov Subspace Method is a projection process onto the Krylov subspace

𝒦𝑚 𝐴, 𝑟1 = span 𝑟1, 𝐴𝑟1, 𝐴2𝑟1, … , 𝐴𝑚−1𝑟1

• Linear systems, eigenvalue problems, singular value problems, least squares, etc. 

• Best for: 𝐴 large & very sparse, stored implicitly, or only approximation needed 

ℒ

𝑟new

𝐴𝛿

𝑟1

0



Communication bottleneck

“Orthogonalize (with respect to some ℒ𝑚)”

 Inner products

• Parallel: global reduction (MPI All-Reduce)
• Sequential: multiple reads/writes to slow memory

Projection process in terms of communication:

“Add a dimension to 𝒦𝑚”
 Sparse matrix-vector multiplication (SpMV)
• Parallel: comm. vector entries w/ neighbors
• Sequential: read 𝐴/vectors from slow memory

Dependencies between communication-bound kernels 
in each iteration limit performance!

SpMV

orthogonalize

5

×

×



Example: classical conjugate gradient (CG)

SpMVs and inner products 
require communication in 

each iteration!
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Given: initial approximation 𝑥1 for solving 𝐴𝑥 = 𝑏
Let 𝑝1 = 𝑟1 = 𝑏 − 𝐴𝑥1

for 𝑚 = 1, 2, … , until convergence do

𝛼𝑚 =
𝑟𝑚

𝑇 𝑟𝑚

𝑝𝑚
𝑇 𝐴𝑝𝑚

𝑥𝑚+1 = 𝑥𝑚 + 𝛼𝑚𝑝𝑚

𝑟𝑚+1 = 𝑟𝑚 − 𝛼𝑚𝐴𝑝𝑚

𝛽𝑚 =
𝑟𝑚+1

𝑇 𝑟𝑚+1

𝑟𝑚
𝑇 𝑟𝑚

𝑝𝑚+1 = 𝑟𝑚+1 + 𝛽𝑚𝑝𝑚

end for
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Processes (6 threads each)

Bottom Solver Time (total)

MPI_AllReduce Time (total)

Solver Time

Communication Time

Solver performance and scalability limited by communication!

miniGMG multigrid benchmark (Williams et al., 2012) on NERSC’s Hopper (Cray XE6)
Variable coefficient Helmholtz operator

Timing for coarse grid solve (BICGSTAB Krylov solver)
Weak scaling: 43 points per process (0 slope ideal)



• Krylov subspace methods can be reorganized to reduce 
communication cost by 𝑶(𝒔)

• “Communication cost”: latency in parallel, latency and 
bandwidth in sequential

• Compute iteration updates in blocks of size 𝑠

• Communicate once every 𝑠 iterations instead of every 
iteration

• Called “s-step” or “communication-avoiding” Krylov subspace 
methods

• Lots of related work…

s-step Krylov subspace methods
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History of 𝑠-step Krylov subspace methods
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1983

Van 
Rosendale: 

CG

1988

Walker: 
GMRES

Chronopoulos
and Gear: CG

1990 1991 1992

First termed 
“s-step Krylov

methods”

de Sturler: 
GMRES

1989

Bai, Hu, and Reichel:
GMRES

Chronopoulos
and Kim: 

Nonsymm. 
Lanczos

Joubert and 
Carey: GMRES

Erhel:
GMRES

Toledo: CG

de Sturler and 
van der Vorst: 

GMRES

1995 2001

Chronopoulos
and Kinkaid: 

Orthodir

Chronopoulos and 
Kim: Orthomin, 

GMRES Chronopoulos: 
MINRES, GCR, 

Orthomin

Kim and 
Chronopoulos:  
Arndoli, Symm. 

Lanczos

Leland: 
CG

1960s

Khabaza (‘63), 
Fortsythe (‘68), 
Marchuk and 

Kuznecov (‘68): 
s-dimensional 

steepest 
descent



Main idea: Unroll iteration loop by a factor of 𝑠; split iteration loop into outer 𝑘 and 
inner loop 𝑗 .  By induction, for 𝑗 ∈ 1, … , 𝑠 + 1

𝑥𝑠𝑘+𝑗 − 𝑥𝑠𝑘+1, 𝑟𝑠𝑘+𝑗 , 𝑝𝑠𝑘+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘+1 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘+1

Brief derivation of s-step CG
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Outer loop: Communication step

Expand solution space 𝒔 dimensions at once
• Compute “basis” matrix 𝒴𝑘 whose cols. span  𝒦𝑠+1 𝐴, 𝑝𝑠𝑘+1 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘+1

• If 𝐴𝑠 is well partitioned, requires reading 𝑨/communicating vectors only once
using matrix powers kernel (Demmel et al.,‘07)

Orthogonalize all at once: 

• Encode inner products  between basis vectors with Gram matrix  𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

(or compute Tall-Skinny QR) 
• Communication cost of one global reduction



13

• Compute basis 𝒫𝑘 for 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘+1

• 𝒫𝑘 is matrix of dimension 𝑛 × (𝑠 + 1)

• Let 𝒫𝑘 denote the first 𝑠 columns of 𝒫𝑘

• 𝐴𝒫𝑘 = 𝒫𝑘ℬ𝑃,𝑘

• Compute basis ℛ𝑘 for 𝒦𝑠 𝐴, 𝑟𝑠𝑘+1

• ℛ𝑘 is a matrix of dimension 𝑛 × 𝑠

• Let ℛ𝑘 denote the first 𝑠 − 1 columns of ℛ𝑘

• 𝐴ℛ𝑘 = ℛ𝑘ℬ𝑅,𝑘

𝒴𝑘 = [𝒫𝑘, ℛ𝑘]       𝒴𝑘 = [𝒫𝑘 , 0, ℛ𝑘,0]    ℬ𝑘 =
[ℬ𝑃,𝑘, 0] 0

0 [ℬ𝑅,𝑘, 0]

𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘
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→

→

Perform 𝑠 iterations of updates

• Using 𝒴𝑘 and 𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘 , this requires no communication!

• Represent 𝑛-vectors by their 𝑂 𝑠 coordinates in 𝒴𝑘:
𝑥𝑠𝑘+𝑗+1 − 𝑥𝑠𝑘+1 = 𝒴𝑘𝑥𝑘,𝑗+1

′ , 𝑟𝑠𝑘+𝑗+1 = 𝒴𝑘𝑟𝑘,𝑗+1
′ , 𝑝𝑠𝑘+𝑗+1 = 𝒴𝑘𝑝𝑘,𝑗+1

′

𝒴𝑘(ℬ𝑘𝑝𝑘,𝑗
′ )

𝑂(𝑠)

𝑂(𝑠)

×

𝑟𝑘,𝑗+1
′𝑇 𝒢𝑘𝑟𝑘,𝑗+1

′

× ×

Inner loop:
Computation 

steps, no 
communication!

𝑟𝑠𝑘+𝑗+1
𝑇 𝑟𝑠𝑘+𝑗+1

𝐴𝑝𝑠𝑘+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑘𝑝𝑘,𝑗
′

= =

= 𝑟𝑘,𝑗+1
′𝑇 𝒴𝑘

𝑇𝒴𝑘𝑟𝑘,𝑗+1
′ =

Brief derivation of s-step CG



via Matrix 
Powers Kernel

Global reduction 

to compute 𝒢𝑘
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s-step CG

Local computations 
within inner loop require 

no communication!

Given: initial approximation 𝑥1 for solving 𝐴𝑥 = 𝑏
Let 𝑝1 = 𝑟1 = 𝑏 − 𝐴𝑥1

for k = 0, 1, … , until convergence do
Compute 𝒴𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 , compute 𝒢𝑘 = 𝒴𝑘

𝑇𝒴𝑘

Let 𝑥𝑘,1
′ = 02𝑠+1, 𝑟𝑘,1

′ = 𝑒𝑠+2, 𝑝𝑘,1
′ = 𝑒1

for 𝑗 = 1, … , 𝑠 do

𝛼𝑠𝑘+𝑗 =
𝑟𝑘,𝑗

′𝑇𝒢𝑘𝑟𝑘,𝑗
′

𝑝𝑘,𝑗
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑘,𝑗

′

𝑥𝑘,𝑗+1
′ = 𝑥𝑘,𝑗

′ + 𝛼𝑠𝑘+𝑗𝑝𝑘,𝑗
′

𝑟𝑘,𝑗+1
′ = 𝑟𝑘,𝑗

′ − 𝛼𝑠𝑘+𝑗ℬ𝑘𝑝𝑘,𝑗
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑘,𝑗+1

′𝑇 𝒢𝑘𝑟𝑘,𝑗+1
′

𝑟𝑘,𝑗
′𝑇𝒢𝑘𝑟𝑘,𝑗

′

𝑝𝑘,𝑗+1
′ = 𝑟𝑘,𝑗+1

′ + 𝛽𝑠𝑘+𝑗𝑝𝑘,𝑗
′

end for
𝑥𝑠𝑘+𝑠+1 = 𝒴𝑘𝑥𝑘,𝑠+1

′ + 𝑥𝑠𝑘+1, 𝑟𝑠𝑘+𝑠+1 = 𝒴𝑘𝑟𝑘,𝑠+1
′ ,  𝑝𝑠𝑘+𝑠+1 = 𝒴𝑘𝑝𝑘,𝑠+1

′

end for



Complexity comparison
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Example of parallel (per processor) complexity for 𝑠 iterations of  CG vs. s-step 
CG for a 2D 9-point stencil:

(Assuming each of 𝑝 processors owns 𝑛/𝑝 rows of the matrix and 𝑠 ≤ 𝑛/𝑝)

All values in the table meant in the Big-O sense (i.e., lower order terms 
and constants not included)

Flops Words Moved Messages

SpMV Orth. SpMV Orth. SpMV Orth.

Classical 
CG

𝑠𝑛

𝑝

𝑠𝑛

𝑝 𝑠  𝑛 𝑝 𝑠 log2 𝑝 𝑠 𝑠 log2 𝑝

s-step CG
𝑠𝑛

𝑝
𝑠2𝑛

𝑝
𝑠  𝑛 𝑝 𝑠2 log2 𝑝 1 log2 𝑝



Tradeoffs

• Parameter 𝑠 is limited by machine 
parameters and matrix sparsity
structure

• We can auto-tune to find the best 𝑠
based on these properties

• That is, find 𝑠 that gives the 
least time per iteration

• But 𝑠 is also limited by numerical 
properties

17

ti
m

e 
p

er
 it

er
at

io
n

s



s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

0

s-step CG Convergence, s = 16

Slower 
convergence due 

to roundoff

Loss of accuracy 
due to roundoff

At s = 16, monomial 
basis is rank deficient! 
Method breaks down!

CG true
CG updated
s-step CG (monomial) true
s-step CG (monomial) updated

Model Problem: 2D Poisson (5-pt stencil), 
𝑛 = 5122, 𝑁 ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1 )



Behavior in finite precision

• s-step variants are mathematically equivalent to classical methods

• But can behave much differently in finite precision!

• Roundoff errors have two discernable effects:

1. Decrease in attainable accuracy → Tradeoff: increasing blocking 
factor 𝑠 past a certain point: true residual 𝒃 − 𝑨𝒙𝒊 stagnates

2. Delay of convergence → Tradeoff: increasing blocking factor 𝑠 past a 
certain point: no speedup expected
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Runtime = (time/iteration) x (# iterations)



• Selecting the best 𝑠 to use (minimize runtime subject to accuracy constraint) 
is a hard problem 

• Can tune to minimize time per iteration (based on hardware, matrix 
structure)

• But numerical properties (stability, convergence rate) are important too!

• The “best” 𝑠 for minimizing time per iteration might not be the best 
𝑠 for minimizing overall runtime, and might give an inaccurate 
solution

• Goal: Based on finite precision analysis, develop ways to automate 
parameter choice to improve reliability and usability of s-step Krylov
subspace methods

• Improving s-step basis conditioning

• Residual replacement

• Variable s-step methods

20

Optimizing for speed and accuracy



Choosing a polynomial basis
• Recall: in each outer loop of s-step CG, we compute bases for some Krylov

subspaces,  𝒦𝑚 𝐴, 𝑣 = span{𝑣, 𝐴𝑣, … , 𝐴𝑚−1𝑣}

• Simple loop unrolling leads to the choice of monomials 𝑣, 𝐴𝑣, … , 𝐴𝑠𝑣

• Monomial basis condition number can grow exponentially with 𝑠 -
expected (near) linear dependence of basis vectors for modest 𝑠 values

• Recognized early on that this negatively affects convergence (Leland, 
1989), (Chronopoulous & Swanson, 1995)

• Improve basis condition number to improve convergence:  Use different 
polynomials to compute a basis for the same subspace. 

• Two choices based on spectral information that usually lead to well-
conditioned bases:

• Newton polynomials 

• Chebyshev polynomials

21



Better conditioned bases
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• The Newton basis:

𝑣, 𝐴 − 𝜃1 𝑣, 𝐴 − 𝜃2 𝐴 − 𝜃1 𝑣, … , 𝐴 − 𝜃𝑠 ⋯ 𝐴 − 𝜃1 𝑣

where {𝜃1, … , 𝜃𝑠} are approximate eigenvalues of 𝐴,  ordered according to Leja ordering

– In practice: recover Ritz (Petrov) values from the first few iterations, iteratively refine 
eigenvalue estimates to improve basis

– Used by many to improve 𝑠-step variants: e.g., Bai, Hu, and Reichel (1991), Erhel 
(1995), Hoemmen (2010)

• Chebyshev basis: given ellipse enclosing spectrum of 𝐴 with foci at 𝑑 ± 𝑐, we can 
generate the scaled and shifted Chebyshev polynomials as:

 𝜏𝑗 𝑧 =  𝜏𝑗
𝑑−𝑧

𝑐
𝜏𝑗

𝑑

𝑐

where 𝜏𝑗 𝑗≥0
are the Chebyshev polynomials of the first kind

– In practice: estimate 𝑑 and 𝑐 parameters from Ritz values recovered from the first 
few iterations

– Used by many to improve 𝑠-step variants: e.g., de Sturler (1991), Joubert and Carey 
(1992), de Sturler and van der Vorst (1995)



Better basis 
choice allows 

higher s values

s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16

But can still see loss of 
accuracy/convergence 

delay

CG true
CG updated
s-step CG (monomial) true
s-step CG (monomial) updated
s-step CG (Newton) true
s-step CG (Newton) updated
s-step CG (Chebyshev) true
s-step CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil), 
𝑛 = 5122, 𝑁 ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1 )



Maximum attainable accuracy of CG

24

• In classical CG, iterates are updated by 

 𝑥𝑚+1 =  𝑥𝑚 +  𝛼𝑚  𝑝𝑚 + 𝜉𝑚+1 and          𝑟𝑚+1 =  𝑟𝑚 −  𝛼𝑚𝐴  𝑝𝑚 + 𝜂𝑚+1

• Accumulation of rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒎+𝟏, and the 
updated residual,  𝒓𝒎+𝟏, to deviate

• The size of the true residual:

𝑏 − 𝐴 𝑥𝑚+1 ≤  𝑟𝑚+1 + 𝑏 − 𝐴 𝑥𝑚+1 −  𝑟𝑚+1

• As  𝑟𝑚+1 → 0, 𝑏 − 𝐴 𝑥𝑚+1 depends on   𝑏 − 𝐴 𝑥𝑚+1 −  𝑟𝑚+1

• Many results on attainable accuracy, e.g.: Greenbaum (1989, 1994, 1997), Sleijpen, 
van der Vorst and Fokkema (1994), Sleijpen, van der Vorst and Modersitzki (2001), 
Björck, Elfving and Strakoš (1998) and Gutknecht and Strakoš (2000).

• Can perform a similar analysis to upper bound the maximum attainable accuracy in 
finite precision s-step CG



Error in 
basis change

Sources of roundoff error in s-step CG

Error in computing 
𝑠-step basis

Error in updating 
coefficient vectors
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Computing the 𝑠-step Krylov basis:

𝐴  𝒴𝑘 =  𝒴𝑘ℬ𝑘 + ∆𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗+1
′ =  𝑥𝑘,𝑗

′ +  𝑞𝑘,𝑗
′ + 𝜉𝑘,𝑗+1

 𝑟𝑘,𝑗+1
′ =  𝑟𝑘,𝑗

′ − ℬ𝑘  𝑞𝑘,𝑗
′ + 𝜂𝑘,𝑗+1

with    𝑞𝑘,𝑗
′ = fl(  𝛼𝑠𝑘+𝑗  𝑝𝑘,𝑗

′ )

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗+1 =  𝒴𝑘  𝑥𝑘,𝑗+1
′ +  𝑥𝑠𝑘+1 + 𝜙𝑠𝑘+𝑗+1

 𝑟𝑠𝑘+𝑗+1 =  𝒴𝑘  𝑟𝑘,𝑗+1
′ + 𝜓𝑠𝑘+𝑗+1



𝛿𝑠𝑘+𝑗+1 ≡ 𝑏−𝐴 𝑥𝑠𝑘+𝑗+1−  𝑟𝑠𝑘+𝑗+1

= 𝛿1

−  

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠+1+𝜓𝑠ℓ+𝑠+1+  

𝑖=1

𝑠

𝐴  𝒴ℓ𝜉ℓ,𝑖+1+  𝒴ℓ𝜂ℓ,𝑖+1 −Δℓ  𝑞ℓ,𝑖
′

−𝐴𝜙𝑠𝑘+𝑗+1 − 𝜓𝑠𝑘+𝑗+1 −  

𝑖=1

𝑗

𝐴  𝒴𝑘𝜉𝑘,𝑖+1+  𝒴𝑘𝜂𝑘,𝑖+1 − Δ𝑘  𝑞𝑘,𝑖
′

• We can write the deviation of the true and updated residuals in terms of 
these errors:

Maximum attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper 

bound on 𝛿𝑠𝑘+𝑗+1 .

26



For CG:

Attainable accuracy of CG versus s-step CG
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𝛿𝑠𝑘+𝑗+1 ≤ 𝛿1 + 𝜀𝒄 𝚪𝒌  

𝑖=1

𝑠𝑘+𝑗

1 + 𝑁 𝐴  𝑥𝑖+1 +  𝑟𝑖+1

𝛿𝑚+1 ≤ 𝛿1 + 𝜀  

𝑖=1

𝑚

1 + 𝑁 𝐴  𝑥𝑖+1 +  𝑟𝑖+1

For s-step CG:

where 𝑐 is a low-degree polynomial in 𝑠, and

 Γ𝑘 = max
ℓ≤𝑘

Γℓ ,     where     Γℓ =  𝒴ℓ
+ ⋅  𝒴ℓ



Residual replacement strategy

• Improve accuracy by replacing updated residual  𝑟𝒎+𝟏 by the true residual 

𝒃 − 𝑨 𝑥𝒎+𝟏 in certain iterations

• Related work for classical CG: van der Vorst and Ye (1999)

28

• Based on derived bound on deviation of residuals, can devise a residual 
replacement strategy for s-step CG

• Choose when to replace  𝑟𝑚+1 with 𝑏 − 𝐴 𝑥𝑚+1 to meet two constraints: 

1. 𝑏 − 𝐴 𝑥𝑚+1 −  𝑟𝑚+1 is small  (relative to 𝜀𝑁 𝐴  𝑥𝑚+1 )

2. Convergence rate is maintained (avoid large perturbations to finite 

precision CG recurrence)

• Implementation has negligible cost → residual replacement strategy allows 
both speed and accuracy!



if 𝑑𝑠𝑘+𝑗 ≤  𝜀 𝑟𝑠𝑘+𝑗 𝐚𝐧𝐝 𝑑𝑠𝑘+𝑗+1 >  𝜀 𝑟𝑠𝑘+𝑗+1 𝐚𝐧𝐝 𝑑𝑠𝑘+𝑗+1 > 1.1𝑑𝑖𝑛𝑖𝑡

𝑧 = 𝑧 + 𝒴𝑘 𝑥𝑘,𝑗+1
′ + 𝑥𝑠𝑘+1

𝑥𝑠𝑘+𝑗+1 = 0

𝑟𝑠𝑘+𝑗+1 = 𝑏 − 𝐴𝑧

𝑑𝑖𝑛𝑖𝑡 = 𝑑𝑠𝑘+𝑗+1= 𝜀 1 + 2𝑁′ 𝐴 𝑧 + 𝑟𝑠𝑘+𝑗+1

𝑝𝑠𝑘+𝑗+1 = 𝒴𝑘𝑝𝑘,𝑗+1
′

break from inner loop and begin new outer loop

end

Residual replacement for s-step CG

• Use computable bound for 𝑏 − 𝐴𝑥𝑠𝑘+𝑗+1 − 𝑟𝑠𝑘+𝑗+1 to update 𝑑𝑠𝑘+𝑗+1, an 
estimate of error in computing 𝑟𝑠𝑘+𝑗+1, in each iteration

• Set threshold  𝜀 ≈ 𝜀, replace whenever 𝑑𝑠𝑘+𝑗+1/ 𝑟𝑠𝑘+𝑗+1 reaches threshold
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Pseudo-code for residual replacement with group update for s-step CG:

group update of approximate solution

set residual to true residual



• In each iteration, update error estimate 𝑑𝑠𝑘+𝑗 by:

A computable bound

o.w.

𝑗 = 𝑠

where  𝑁′ = max 𝑁, 2𝑠 + 1 .

Estimated only once𝑶(𝒔𝟐) flops per 𝒔 iterations; no communication
𝑶(𝒔𝟑) flops per 𝒔 iterations; ≤1 reduction per 𝒔 iterations 

to compute  𝓨𝒌
𝑻  𝓨𝒌

Extra computation all lower order terms, communication only 
increased by at most factor of 2
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+𝜀  
𝐴  𝑥𝑠𝑘+𝑠+1 + 2+2𝑁′ 𝐴  𝒴𝑘 ∙  𝑥𝑘,𝑠+1

′ +𝑁′  𝒴𝑘 ∙  𝑟𝑘,𝑠+1
′ ,

0,

𝑑𝑠𝑘+𝑗+1 ≡ 𝑑𝑠𝑘+𝑗

+𝜀 4+𝑁′ 𝐴  𝒴𝑘 ∙  𝑥𝑘,𝑗+1
′ +  𝒴𝑘 ∙ ℬ𝑘 ∙  𝑥𝑘,𝑗+1

′ +  𝒴𝑘 ∙  𝑟𝑘,𝑗+1
′



s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16
CG true
CG updated
s-step CG (monomial) true
s-step CG (monomial) updated
s-step CG (Newton) true
s-step CG (Newton) updated
s-step CG (Chebyshev) true
s-step CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil), 
𝑛 = 5122, 𝑁 ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1 )



s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16
CG+RR true
CG+RR updated
s-step CG+RR (monomial) true
s-step CG+RR (monomial) updated
s-step CG+RR (Newton) true
s-step CG+RR (Newton) updated
s-step CG+RR(Chebyshev) true
s-step CG+RR(Chebyshev) updated

Residual Replacement 
can improve accuracy 
orders of magnitude 

for negligible cost

Maximum 
replacement steps 
(extra reductions) 

for any test: 8

Model Problem: 2D Poisson (5-pt stencil), 
𝑛 = 5122,  𝑁 ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1 )



consph8, FEM/Spheres (from UFSMC)
𝑛 = 8.3 ⋅ 104, 𝑁 = 6.0 ⋅ 106, 𝜅 𝐴 = 9.7 ⋅ 103, 𝐴 = 9.7
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Before After

𝑠
=

8
𝑠

=
1

2

Class. 2

Mono. 12

Newt. 2

Cheb. 2

# Replacements

Class. 2

Mono. 0

Newt. 4

Cheb. 3

# Replacements

CG+RR true
CG+RR upd
s-step CG+RR M, true
s-step CG+RR M, upd
s-step CG+RR N, true
s-step CG+RR N, upd
s-step CG+RR C, true
s-step CG+RR C, upd

CG true
CG upd
s-step CG M, true
s-step CG M, upd
s-step CG N, true
s-step CG N, upd
s-step CG C, true
s-step CG C, upd

R
es

id
u

al
 2

-n
o

rm

Iteration



• Consider the growth of the relative residual gap caused by errors in outer loop 𝑘

• We can approximate an upper bound on this quantity by

𝛿𝑠𝑘+𝑠+1 − 𝛿𝑠𝑘+1

𝐴 𝑥
≲ 𝑐𝜅 𝐴 Γ𝑘𝜀

 𝑟𝑠𝑘+1

𝐴 𝑥

where 𝑐 is a low-degree polynomial in 𝑠

• If our application requires relative accuracy 𝜀∗, we must have 

Γ𝑘 ≡  𝒴𝑘
+  𝒴𝑘 ≲

𝜀∗ 𝑏

𝑐𝜀  𝑟𝑠𝑘+1

• In other words, as the method converges (i.e., as  𝑟𝑠𝑘+1 decreases), we can 
tolerate more ill-conditioned s-step bases without affecting attainable accuracy

• This naturally leads to a variable s-step approach, where 𝑠 starts off small and 
increases as the method converges

• Analogy to relaxation strategy in “inexact Krylov subspace methods”

Variable s-step CG derivation
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• Input (or tune off-line to find) best 𝑠 based on speed per iteration; set 
this as 𝑠𝑚𝑎𝑥

• Run variable s-step CG

• In each outer loop, stop constructing basis  𝒴𝑘 after 𝑠𝑘 ≤ 𝑠𝑚𝑎𝑥
SpMVs such that 

𝜅  𝒴𝑘 ≤
𝜀∗ 𝑏

𝜀  𝑟𝑐𝑢𝑟𝑟

• Perform 𝑠𝑘 inner iteration updates 

Variable s-step CG method
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𝑠 = 8 monomial basis 𝜀∗ = 10−14

CG s-step CG variable s-step CG

# outer loops accuracy # outer loops accuracy # outer loops accuracy

33 4 × 10−16 9 1 × 10−13 7 1 × 10−16

mesh3e1 (UFSMC)
𝑛 = 289
𝜅 𝐴 ≈ 10
𝑏𝑖 = 1/ 𝑛

s-step CG
var. s-step CG
CG



CG s-step CG variable s-step CG

# outer loops accuracy # outer loops accuracy # outer loops accuracy

33 4 × 10−16 9 1 × 10−13 9 1 × 10−13

𝑠 = 8 monomial basis 𝜀∗ = 10−6

s-step CG
var. s-step CG
CG

mesh3e1 (UFSMC)
𝑛 = 289
𝜅 𝐴 ≈ 10
𝑏𝑖 = 1/ 𝑛



𝑠 = 10 monomial basis 𝜀∗ = 10−14

CG s-step CG variable s-step CG

# outer loops accuracy # outer loops accuracy # outer loops accuracy

33 4 × 10−16 − − 9 1 × 10−16

s-step CG
var. s-step CG
CG

mesh3e1 (UFSMC)
𝑛 = 289
𝜅 𝐴 ≈ 10
𝑏𝑖 = 1/ 𝑛



𝑠 = 10 monomial basis 𝜀∗ = 10−6

CG s-step CG variable s-step CG

# outer loops accuracy # outer loops accuracy # outer loops accuracy

33 4 × 10−16 − − 7 1 × 10−13

s-step CG
var. s-step CG
CG

mesh3e1 (UFSMC)
𝑛 = 289
𝜅 𝐴 ≈ 10
𝑏𝑖 = 1/ 𝑛



ex5 (UFSMC)
𝑛 = 27
𝜅 𝐴 ≈ 7 × 107

𝑏𝑖 = 1/ 𝑛 𝑠 = 10 monomial basis 𝜀∗ = 10−14

CG s-step CG variable s-step CG

# outer loops accuracy # outer loops accuracy # outer loops accuracy

157 9 × 10−9 − − 60 5 × 10−9

s-step CG
var. s-step CG
CG



Paige’s results for classical Lanczos

• Using bounds on local rounding errors in Lanczos, Paige showed that

1. The computed Ritz values always lie between the extreme 
eigenvalues of 𝐴 to within a small multiple of machine 
precision.

2. At least one small interval containing an eigenvalue of 𝐴 is 
found by the 𝑛th iteration.

3. The algorithm behaves numerically like Lanczos with full 
reorthogonalization until a very close eigenvalue 
approximation is found.

4. The loss of orthogonality among basis vectors follows a 
rigorous pattern and implies that some Ritz values have 
converged.

Do the same statements hold for s-step Lanczos?
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𝐴  𝑉𝑚 =  𝑉𝑚
 𝑇𝑚 +  𝛽𝑚+1  𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿  𝑉𝑚

 𝑉𝑚 =  𝑣1, … ,  𝑣𝑚 ,       𝛿  𝑉𝑚 = 𝛿  𝑣1, … , 𝛿  𝑣𝑚 ,          𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱  𝛽𝑚

 𝛽𝑚  𝛼𝑚

Lanczos analysis

Classic Lanczos rounding 
error result of Paige (1976): 

for 𝑖 ∈ {1, … , 𝑚},
𝛿  𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇  𝑣𝑖+1 − 1 ≤  𝜀0 2

 𝛽𝑖+1
2 +  𝛼𝑖

2 +  𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

42

where 𝜎 ≡ 𝐴 2,    𝜃𝜎 ≡ 𝐴 2,   𝜀0 = 𝑂(𝜀𝑛), 𝜀1 = 𝑂 𝜀𝑁𝜃

For s-step Lanczos:
𝜀0 = 𝑂 𝜀𝑛 𝚪𝒌

𝟐 , 𝜀1 = 𝑂 𝜀𝑁𝜃 𝚪𝒌

 Γ𝑘 ≤ max
ℓ≤𝑘

𝒴ℓ
+ ∙ 𝒴ℓ



• Roundoff errors in s-step variant follow same pattern as classical variant, but 
amplified by factor of  Γ𝑘 or  Γ𝑘

2

• Theoretically confirms empirical observations on importance of basis 
conditioning (dating back to late ‘80s)

• Using the definition     
 Γ𝑘 = max

ℓ≤𝑘
𝒴ℓ

+ ∙ 𝒴ℓ

gives simple, but loose bounds

• What we really need: 𝒴 |𝑦′| ≤ Γ 𝒴𝑦′ to hold for the computed basis 𝒴
and coordinate vector 𝑦′ in every bound.

• Alternate definition of 𝚪 gives tighter bounds; requires light bookkeeping 

• Example: for bounds on  𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 and  𝑣𝑖+1

𝑇  𝑣𝑖+1 − 1 , we can use the 
definition

Γ𝑘,𝑗 ≡ max
𝑥∈{  𝑤𝑘,𝑗

′ , 𝑢𝑘,𝑗
′ ,  𝑣𝑘,𝑗

′ ,  𝑣𝑘,𝑗−1
′ }

 𝒴𝑘 𝑥

 𝒴𝑘𝑥

The amplification term 
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• The answer is YES

•  𝒴ℓ is numerically full rank for 0 ≤ ℓ ≤ 𝑘 and

• 𝜀0 ≡ 2𝜀 𝑛+11𝑠+15  Γ𝑘
2 ≤

1

12

• i.e.,   Γ𝑘
2 ≤ 24𝜀 𝑛 + 11𝑠 + 15

−1

• Otherwise, e.g., can lose orthogonality due to computation 
with rank-deficient basis

Results for s-step Lanczos
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…if

• Back to our question: Do Paige’s results, e.g.,
loss of orthogonality  eigenvalue convergence

hold for s-step Lanczos?



Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between 
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos



Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between 
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

Measure of loss 
of orthogonality

Measure of Ritz 
value convergence

classical Lanczos



Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between 
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, monomial basis, 𝑠 = 2

 Γ𝑘 ≤ 7 × 102

Measure of loss 
of orthogonality

Measure of Ritz 
value convergence



Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between 
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, monomial basis, 𝑠 = 4

 Γ𝑘 ≤ 3 × 103

Measure of loss 
of orthogonality

Measure of Ritz 
value convergence



Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between 
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, monomial basis, 𝑠 = 8

 Γ𝑘 ≤ 2 × 106

Measure of loss 
of orthogonality

Measure of Ritz 
value convergence



Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between 
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, Chebyshev basis, 𝑠 = 8

 Γ𝑘 ≤ 2 × 103

Measure of loss 
of orthogonality

Measure of Ritz 
value convergence



Preconditioning for s-step variants
• Preconditioners improve spectrum of system to improve convergence rate

• E.g., instead of 𝐴𝑥 = 𝑏, solve 𝑀−1𝐴𝑥 = 𝑀−1𝑏, where 𝑀−1 ≈ 𝐴−1

• Essential in practice

• In s-step variants, general preconditioning is a challenge

• Except for very simple cases, ability to exploit temporal locality across 
iterations is diminished by preconditioning

• If possible to avoid communication at all, usually necessitates 
significant modifications to the algorithm

• Tradeoff: speed up convergence, but increase time per iteration due to 
communication!

• For each specific app, must evaluate tradeoff between preconditioner 
quality and sparsity of the system 
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Recent efforts in s-step preconditioners
• Much recent/ongoing work in developing communication-avoiding 

preconditioned methods 

• Many approaches shown to be compatible

• Diagonal

• Sparse Approx. Inverse (SAI) – same sparsity as 𝐴; recent work for CA-
BICGSTAB by Mehri (2014)

• Polynomial preconditioning (Saad, 1985)

• HSS preconditioning (Hoemmen, 2010); for banded matrices (Knight, C., 
Demmel, 2014) - same general technique for any system that can be 
written as sparse + low-rank

• CA-ILU(0), CA-ILU(k) – Moufawad, Grigori (2013), Cayrols, Grigori (2015)

• Deflation for CA-CG (C., Knight, Demmel, 2014), based on Deflated CG 
of (Saad et al., 2000); for CA-GMRES (Yamazaki et al., 2014) 

• Domain decomposition – avoid introducing additional communication 
by “underlapping” subdomains (Yamazaki, Rajamanickam, Boman, 
Hoemmen, Heroux, Tomov, 2014)
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Summary
• New communication-avoiding approaches to algorithm design are 

necessary
• But modifications may affect numerical properties

• s-step Krylov subspace methods can asymptotically reduce 
communication cost; potential applications in many scientific domains
• But complicated tradeoffs depending on matrix structure, 

numerical properties, and machine parameters

• Solving exascale-level problems efficiently will require a holistic
approach
• Best method, best parameters, best preconditioners, etc. all very 

problem- and machine-dependent
• Requires a better understanding of how algorithmic changes affect 

finite precision behavior
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Thank you!
contact: erinc@cims.nyu.edu

http://www.cims.nyu.edu/~erinc/


