Exploiting Low-Rank Structure In
Computing Matrix Powers
with Applications to Preconditioning

Motivation: The Cost of an Algorithm

Algorithms have 2 costs: Arithmetic (flops)
and movement of data (communication)

Assume simple model with 3 parameters:

— o — Latency, B — Reciprocal Bandwidth,
vy — Flop Rate

— Time to move n words of data is o + nf3

Problem: Communication is the bottleneck on
modern architectures

— o and B improving at much slower rate
than y

Solution: Reorganize algorithms to
avoid communication

CPU
Cache
/ DRAM \

Sequential

CPU ~ CPU
DRAM DRAM

! 1

Parallel

Motivation: Krylov Subspace Methods

« Krylov Subspace Methods (KSMs) are iterative methods
commonly used in solving large, sparse linear systems of

equations
— Krylov Subspace of dimension k with matrix A and vector v:

Ki(A, v) =span{v, Av, A%v, ..., AF "1y}

— Work by iteratively adding a dimension to the expanding
Krylov Subspace (SpMV) and then choosing the “best”
solution from that subspace (vector operations)

* Problem: Krylov Subspace Methods are communication-bound
— SpMV and global vector operations in every iteration

Avoiding Communication in Krylov Subspace Methods

* \We need to break the dependency
between communication bound kernels
and KSM iterations

 ldea: Expand the subspace s dimensions SpMV
(s SpMVs with A), then do s steps of

refinement @
* To do this we need two new

Communication-Avoiding kernels

— “Matrix Powers Kernel” replaces
SpMV

— “Tall Skinny QR” (TSQR) replaces
orthogonalization operations

Orthogonalize

The Matrix Powers Kernel

* Given 4, v, s, and degree j polynomials p;,j = 0:s defined by
a 3-term recurrence, the matrix powers kernel computes
{po(A)v, p1(A)v, p2(A)v, ..., ps(A)V}

« The matrix powers kernel computes these basis vectors only
reading/communicating A o(1) times!

— Parallel case: Reduces latency by a factor of s at the cost of
redundant computations

W
+ e
i;iiﬁ_n_n_-_n_-_m

33 40

Parallel Matrix Powers algorithm for tridiagonal matrix example.
4 processors, n = 40,s =3

Matrix Powers Kernel Limitations

« Asymptotic reduction in communication requires that A is well-

partitioned

— “Well-partitioned”’- number of redundant entries required by each
partition is small — the graph of our matrix has a good cover

dense components

— Matrices with dense low-rank

components appear in many linear

systems (e.g., circuit simulations, power
law graphs), as well as preconditioners
(e.g., Hierarchical Semiseparable (HSS)

matrices)

— Can we exploit low-rank structure to

avoid communication in the matrix
powers algorithm?

L L "?.ﬂ_ﬂmﬂ
....;Eg:“"

T
--.n-..

N

With this matrix powers algorithm, we can’t handle matrices with

ASIC 680k: circuit
simulation matrix.
Sandia.

webbase: web
connectivity
matrix. Williams
et al.

Blocking Covers Approach to Increasing Temporal Locality

* Relevant work:

— Leiserson, C.E. and Rao, S. and Toledo, S. Efficient out-of-core
algorithms for linear relaxation using blocking covers. Journal of
Computer and System Sciences, 1997.

« Blocking Covers ldea:

 According to Hong and Kung’s Red-Blue Pebble game, we can’t
avold data movement if we can’t find a good graph cover

« What if we could find a good cover by removing a subset of vertices
from the graph? (i.e., connections are locally dense but globally
sparse)

 Relax the assumption that the DAG must be executed in order

« Artificially restrict information from passing through removed
vertices (“blockers™) by treating their state variables symbolically,
maintain dependencies among symbolic variables as matrix

Blocking Covers Matrix Powers Algorithm

« Split A into sparse and low-rank dense parts, A = D + UV’

« In our matrix powers algorithm, the application of V' requires
communication, so we want to limit the number these operations

« Then we want to compute (assume monomial basis for simplicity)
{v,Av, ..., A5v} ={v,(D + UVD)v, .., (D + UVT)Sv}

« \We can write the jth basis vector as
¢i=D+UVTYv =D +UV ¢y = Div+3L_ DUV ¢y

* Where the V' ¢;_j, quantities will be the values of the “blockers™ at
each step.

 We can premultiply the previous equation by VT to write a recurrence:

VT =VTDIv+ 3L _ (VIDR10)(VT¢i_y)

Blocking Covers Matrix Powers Algorithm

Phase 0: Compute {U, DU, D?U, ..., DS~2U} using the matrix powers
kernel. Premultiply by V7.

Phase 1: Compute {v, Dv, D*v, ..., DS~ v} using the matrix powers kernel.
Premultiply by V7.

Phase 2: Using the computed guantities, each processor backsolves for
Vi forj=1:s—-1

Phase 3. Compute the ¢; vectors, interleaving the matrix powers kernel
with local UV"¢;_; multiplications

VT =VTDIv+ X _ (VvID*1U)(V ¢,)

Cj — DCj_l + UVTCj_1

Asymptotic Costs

Phase Flops Words Moved Messages
0 sr’n O(sr?logp) + O(logp)
Akx(D,U,s —2) + O(>) r(ghost zones, DS~2)
1 e O(srlogp) + O(logp)
Akx(D,v,s — 1) + O(—
() (p) (ghost zones, D571)
2 0(s%r?) 0
Ssrn
3 Akx(D,v,s) + 0(7) 0
Flops Words Moved Messages
Total Online | 5 o« Akx(D, v, s) + O(ﬁ) O(srlogp) +
(CA) p (ghost zones, DS™1) 0(logp)
Standard Alg. | . Akx(D,v,1) + O(ﬂ) O(srlogp) + O(slogp)
p s(ghost zones, D)

Extending the Blocking Covers Matrix Powers Algorithm
to HSS Matrices

HSS Structure:

 [-level binary tree

« Off-diagonal blocks have
rank r

« Can write A hierarchically:

DO;l — A
T
D _(Dy+1;2i-1 Uk+1,2i-1Br+1;2i-1,2iV k+1;2i>
k;i — T
Uk+1.2iBr+1:2i2i-1V" k+1:2i-1 Dy 1.2

e (Can define translations for row and column bases, I1.e:

U,.. = Uk+1;2i—-1Rk+1;2i-1 Vo: = Vik+1;2i-1Wk+1;2i-1
ki — k;i —

Uk+1:2iRk+1;2i Vik+1.2iWk+1:2i
11

Exploiting Low-Rank Structure

Matrix can be written as D + USVT
« Scomposed of R,W, B’s translation operations (S is not formed explicitly)

e

U

12

Parallel HSS Akx Algorithm

» Data Structures:
— Assume p = 2! processors
— Each processor i owns
» D, , dense diagonal block, dimension (n/p X n/p)
« V;, dimension (r X n/p)
» U;, dimension (r X n/p)
* x;, (n/p X 1) piece of source vector

o All matricesR, W, B,
— These are all small 0(2'r?) sized matrices, assumed they fit on each proc.

[O F=—
.
|

al

13

Extending the Algorithm

» Only change needed is in Phase 2 (backsolving for V' ¢;)
— Before, we computed, forj = 1:s — 1

Ve, =VTDIv+ 3L _ (VIDR10)(V ¢)

— Now, we can exploit hierarchical semiseparability:
— Forj = 1:s — 1, first compute

9, =VTDIv +
k

(VDR 0) (V)

J
=1

Extending the Algorithm

« Then each processor locally performs upsweep and downsweep:

fory=101—-1:1

(W1 Wy
9y = 9y+1
W'y i1209-1 Wysi0m]]

fo = (0)
fory=0:1-1
_[Ry+1;1]
By+1;1,2 Ry+1;2
fy+1 — gy t fy
By+1;23’+1,23’+1—1 [Ry+1;23’+1 —1]
Ry y1,2v+1
VTC]' = fl

« At the end, each processor has locally computed the Vch recurrence for
the j* iteration (additional s2p flops in Phase 2)

HSS Matrix Powers Communication and Computation Cost

« Offline (Phase 0)

srén
p

— Words Moved: O0(r?s logp)

— Messages: O(logp)
* Online (Phases 1, 2, 3)
S

— Flops: 2 x Akx(D, x,s) + 0(=7)

— Flops: Akx(D,U,s) + 0(—)

— Words Moved: O(rs log p)
— Messages: O(logp)

« Same flops (asymptotically) as s itexations of standard HSS
Matrix-Vector Multiply algorithm

« Asymptotically reduces messages by factor of s!

Future Work

Auto-tuning: Can we automate the decision of which matrix
powers kernel variant to use?

— What should be the criteria for choosing blockers?
Stability

— How good is the resulting (preconditioned) Krylov basis?
Performance studies

— How does actual performance of HSS matrix powers
compare to s HSS matrix-vector multiplies?

Extension to other classes of preconditioners

Can we apply the blocking covers approach to other
algorithms with similar computational patterns?

