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Motivation: The Cost of an Algorithm 

• Algorithms have 2 costs:  Arithmetic (flops) 

and movement of data (communication) 

• Assume simple model with 3 parameters:  

– α – Latency, β – Reciprocal Bandwidth, 

𝛾 − Flop Rate 

– Time to move n words of data is  α + nβ 

 

• Problem: Communication is the bottleneck on 

modern architectures 

– α and β improving at much slower rate 

than 𝛾  

 

• Solution: Reorganize algorithms to 

     avoid communication 
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Motivation: Krylov Subspace Methods 

• Krylov Subspace Methods (KSMs) are iterative methods 

commonly used in solving large, sparse linear systems of 

equations 

– Krylov Subspace of dimension 𝑘 with matrix 𝐴 and vector 𝑣: 

 

 

– Work by iteratively adding a dimension to the expanding 

Krylov Subspace (SpMV) and then choosing the “best” 

solution from that subspace (vector operations) 

• Problem: Krylov Subspace Methods are communication-bound 

– SpMV and global vector operations in every iteration 
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Avoiding Communication in Krylov Subspace Methods 

• We need to break the dependency 

between communication bound kernels 

and KSM iterations 

• Idea: Expand the subspace 𝑠 dimensions 

(𝑠 SpMVs with 𝐴), then do 𝑠 steps of 

refinement 

• To do this we need two new 

Communication-Avoiding kernels  

– “Matrix Powers Kernel” replaces 

SpMV 

– “Tall Skinny QR” (TSQR) replaces 

orthogonalization operations 
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The Matrix Powers Kernel 

• Given 𝐴, 𝑣, 𝑠, and degree 𝑗  polynomials 𝜌𝑗 , 𝑗 = 0: 𝑠  defined by 

a 3-term recurrence, the matrix powers kernel computes 

𝜌0 𝐴 𝑣, 𝜌1 𝐴 𝑣, 𝜌2 𝐴 𝑣,… , 𝜌𝑠 𝐴 𝑣  

• The matrix powers kernel computes these basis vectors only 

reading/communicating 𝐴  𝑜(1) times! 

– Parallel case: Reduces latency by a factor of 𝑠  at the cost of 

redundant computations 
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Matrix Powers Kernel Limitations 

• Asymptotic reduction in communication requires that 𝐴 is well-

partitioned 

– “Well-partitioned”- number of redundant entries required by each 

partition is small – the graph of our matrix has a good cover 

• With this matrix powers algorithm, we can’t handle matrices with 

dense components 

– Matrices with dense low-rank 
components appear in many linear 
systems (e.g., circuit simulations, power 
law graphs), as well as preconditioners 
(e.g., Hierarchical Semiseparable (HSS) 
matrices) 

– Can we exploit low-rank structure to 
avoid communication in the matrix 
powers algorithm? 
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Blocking Covers Approach to Increasing Temporal Locality 

• Relevant work: 

– Leiserson, C.E. and Rao, S. and Toledo, S. Efficient out-of-core 
algorithms for linear relaxation using blocking covers. Journal of 
Computer and System Sciences, 1997.  

• Blocking Covers Idea: 

• According to Hong and Kung’s Red-Blue Pebble game, we can’t 

avoid data movement if we can’t find a good graph cover 

• What if we could find a good cover by removing a subset of vertices 

from the graph? (i.e., connections are locally dense but globally 

sparse) 

• Relax the assumption that the DAG must be executed in order 

• Artificially restrict information from passing through removed 

vertices (“blockers”) by treating their state variables symbolically, 

maintain dependencies among symbolic variables as  matrix 
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Blocking Covers Matrix Powers Algorithm 

• Split 𝐴 into sparse and low-rank dense parts, 𝐴 = 𝐷 + 𝑈𝑉𝑇 

• In our matrix powers algorithm, the application of 𝑉𝑇 requires 

communication, so we want to limit the number these operations 

• Then we want to compute (assume monomial basis for simplicity) 

𝑣, 𝐴𝑣,… , 𝐴𝑠𝑣 = 𝑣, (𝐷 + 𝑈𝑉𝑇)𝑣, … , (𝐷 + 𝑈𝑉𝑇)𝑠𝑣  

• We can write the 𝑗𝑡ℎ  basis vector as 

  𝑐𝑗 = (𝐷 + 𝑈𝑉
𝑇)𝑗𝑣 = 𝐷𝑐𝑗−1 + 𝑈𝑉

𝑇𝑐𝑗−1 = 𝐷
𝑗𝑣 +  𝐷𝑘−1𝑈𝑉𝑇𝑐𝑗−𝑘

𝑗
𝑘=1  

• Where the 𝑉𝑇𝑐𝑗−𝑘 quantities will be the values of the “blockers” at 

each step.  

• We can premultiply the previous equation by 𝑉𝑇 to write a recurrence: 

𝑉𝑇𝑐𝑗 = 𝑉
𝑇𝐷𝑗𝑣 +  𝑉𝑇𝐷𝑘−1𝑈 𝑉𝑇𝑐𝑗−𝑘

𝑗
𝑘=1   
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Blocking Covers Matrix Powers Algorithm 

Phase 0: Compute 𝑈,𝐷𝑈, 𝐷2𝑈,… , 𝐷𝑠−2𝑈  using the matrix powers 

kernel. Premultiply by 𝑉𝑇 . 

 

𝑉𝑇𝑐𝑗 = 𝑉
𝑇𝐷𝑗𝑣 +  𝑉𝑇𝐷𝑘−1𝑈 𝑉𝑇𝑐𝑗−𝑘

𝑗
𝑘=1   

Phase 1: Compute 𝑣, 𝐷𝑣, 𝐷2𝑣,… , 𝐷𝑠−1𝑣  using the matrix powers kernel.       

Premultiply by 𝑉𝑇 . 

 𝑐𝑗 = 𝐷𝑐𝑗−1 + 𝑈𝑉
𝑇𝑐𝑗−1 

Phase 3: Compute the  𝑐𝑗 vectors, interleaving the matrix powers kernel  

with local 𝑈𝑉𝑇𝑐𝑗−1  multiplications 

Phase 2: Using the computed quantities, each processor backsolves for 

𝑉𝑇𝑐𝑗 for 𝑗 = 1: 𝑠 − 1 
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Asymptotic Costs 

Phase Flops Words Moved Messages 

0 
𝐴𝑘𝑥(𝐷, 𝑈, 𝑠 − 2)  +  𝑂(

s𝑟2𝑛

𝑝
) 

𝑂(𝑠𝑟2 log 𝑝) + 

  𝑟(ghost zones, 𝐷𝑠−2) 

𝑂(log 𝑝)  
 

1 𝐴𝑘𝑥(𝐷, 𝑣, 𝑠 − 1)  +  𝑂(
s𝑟𝑛

𝑝
) 𝑂(𝑠𝑟 log 𝑝)  + 

 (ghost zones, 𝐷𝑠−1) 

𝑂(log 𝑝)  

 

2 𝑂(𝑠2𝑟2)  0 0 

3 𝐴𝑘𝑥 𝐷, 𝑣, 𝑠 + 𝑂(
s𝑟𝑛

𝑝
) 0 0 

Flops Words Moved Messages 

Total Online 

(CA) 
2 × 𝐴𝑘𝑥 𝐷, 𝑣, 𝑠 + 𝑂(

s𝑟𝑛

𝑝
) 

 

𝑂(𝑠𝑟 log 𝑝)  + 

 (ghost zones, 𝐷𝑠−1) 

 
𝑂(log 𝑝)  

 

Standard Alg. s × 𝐴𝑘𝑥(𝐷, 𝑣, 1)  +  𝑂(
s𝑟𝑛

𝑝
) 𝑂(𝑠𝑟 log 𝑝) + 

 𝑠(ghost zones, 𝐷) 

𝑂(𝑠 log 𝑝) 
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     HSS Structure: 

𝐷0;1 = 𝐴 

𝐷𝑘;𝑖 =
𝐷𝑘+1;2𝑖−1 𝑈𝑘+1;2𝑖−1𝐵𝑘+1;2𝑖−1,2𝑖𝑉

𝑇
𝑘+1;2𝑖

𝑈𝑘+1;2𝑖𝐵𝑘+1;2𝑖,2𝑖−1𝑉
𝑇
𝑘+1;2𝑖−1 𝐷𝑘+1;2𝑖

 

• Can define translations for row and column bases, i.e: 

 𝑈𝑘;𝑖 =
𝑈𝑘+1;2𝑖−1𝑅𝑘+1;2𝑖−1
𝑈𝑘+1;2𝑖𝑅𝑘+1;2𝑖

              𝑉𝑘;𝑖=
𝑉𝑘+1;2𝑖−1𝑊𝑘+1;2𝑖−1
𝑉𝑘+1;2𝑖𝑊𝑘+1;2𝑖

 

• 𝑙-level binary tree 

• Off-diagonal blocks have 

rank 𝑟 

• Can write 𝐴 hierarchically: 

 

Extending the Blocking Covers Matrix Powers Algorithm 

to HSS Matrices 
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Exploiting Low-Rank Structure 

• Matrix can be written as 𝐷 + 𝑈𝑆𝑉𝑇 

• S composed of 𝑅,𝑊, 𝐵’s  translation operations (𝑆 is not formed explicitly) 

 

+ 

𝐷 
𝑈 

𝑆 𝑉𝑇 

12 



Parallel HSS Akx Algorithm 

• Data Structures: 

– Assume 𝑝 = 2𝑙 processors 

– Each processor 𝑖  owns  
• 𝐷𝑖 , dense diagonal block, dimension 𝑛/𝑝 × 𝑛/𝑝  

• 𝑉𝑖, dimension 𝑟 × 𝑛/𝑝  

• 𝑈𝑖, dimension 𝑟 × 𝑛/𝑝  

• 𝑥𝑖, 𝑛/𝑝 × 1  piece of source vector 

• All matrices 𝑅,𝑊, 𝐵,   
– These are all small 𝑂(2𝑙𝑟2) sized matrices, assumed they fit on each proc. 

+ 
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Extending the Algorithm 

• Only change needed is in Phase 2 (backsolving for 𝑉𝑇𝑐𝑗) 

– Before, we computed, for 𝑗 = 1: 𝑠 − 1 

 

𝑉𝑇𝑐𝑗 = 𝑉
𝑇𝐷𝑗𝑣 +  𝑉𝑇𝐷𝑘−1𝑈 𝑉𝑇𝑐𝑗−𝑘

𝑗
𝑘=1   

 

– Now, we can exploit hierarchical semiseparability: 

– For 𝑗 = 1: 𝑠 − 1, first compute 

 

𝑔𝑙 = 𝑉
𝑇𝐷𝑗𝑣 + 𝑉𝑇𝐷𝑘−1𝑈 𝑉𝑇𝑐𝑗−𝑘+1

𝑗

𝑘=1
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Extending the Algorithm 
• Then each processor locally performs upsweep and downsweep: 

• At the end, each processor has locally computed the  𝑉𝑇𝑐𝑗  recurrence for 

the 𝑗𝑡ℎ  iteration (additional 𝑠𝑟2𝑝 flops in Phase 2) 

  

for 𝑦 = 𝑙 − 1: 1 

 𝑔𝑦 = 

𝑊𝑇𝑦+1;1 𝑊
𝑇
𝑦+1;2

⋱
𝑊𝑇𝑦+1;2 2𝑦 −1 𝑊

𝑇
𝑦+1;2 2𝑦

𝑔𝑦+1 

 𝑓0 = (0) 

for 𝑦 = 0: 𝑙 − 1 

𝑓𝑦+1 =

𝐵𝑦+1;1,2
⋱
𝐵𝑦+1;2𝑦+1,2𝑦+1−1

𝑔𝑦 +

𝑅𝑦+1;1
𝑅𝑦+1;2

⋱
𝑅𝑦+1;2𝑦+1 −1
𝑅𝑦+1;2𝑦+1  

𝑓𝑦 

  𝑉𝑇𝑐𝑗 = 𝑓𝑙 

 

  

15 



HSS Matrix Powers Communication and Computation Cost 

• Offline (Phase 0) 

– Flops: 𝐴𝑘𝑥 𝐷, 𝑈, 𝑠 + 𝑂(
𝑠𝑟2𝑛

𝑝
) 

– Words Moved: 𝑂(𝑟2𝑠 log 𝑝) 

– Messages: 𝑂(log 𝑝) 

• Online (Phases 1, 2, 3) 

– Flops: 2 × 𝐴𝑘𝑥 𝐷, 𝑥, 𝑠 + 𝑂(
𝑠𝑟𝑛

𝑝
) 

– Words Moved: 𝑂(𝑟𝑠 log 𝑝) 

– Messages: 𝑂(log 𝑝) 

• Asymptotically reduces messages by factor of 𝒔! 16 

• Same flops (asymptotically) as 𝒔 iterations of standard HSS 

Matrix-Vector Multiply algorithm 



Future Work 

• Auto-tuning: Can we automate the decision of which matrix 

powers kernel variant to use? 

– What should be the criteria for choosing blockers? 

• Stability 

– How good is the resulting (preconditioned) Krylov basis? 

• Performance studies 

– How does actual performance of HSS matrix powers 

compare to 𝑠 HSS matrix-vector multiplies? 

• Extension to other classes of preconditioners 

• Can we apply the blocking covers approach to other 

algorithms with similar computational patterns? 
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