
Erin C. Carson
Charles University

Prague, Czech Republic

SIAM CSE '19

February 25, 2019

The s-Step Conjugate Gradient
Method in Finite Precision

This research was partially supported by OP RDE project No. CZ.02.2.69/0.0/0.0/16_027/0008495

Conjugate Gradient on the World's Fastest Computer

1

Site: Oak Ridge National Laboratory

Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz

Interconnect: Dual-rail Mellanox EDR Infiniband

Performance

Theoretical peak: 187,659 TFlops/s

LINPACK benchmark: 122,300 Tflops/s

HPCG benchmark: 2,926 Tflops/s

Summit - IBM Power System AC922

current #1
on top500

Conjugate Gradient on the World's Fastest Computer

Site: Oak Ridge National Laboratory

Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz

Interconnect: Dual-rail Mellanox EDR Infiniband

Performance

Theoretical peak: 187,659 TFlops/s

LINPACK benchmark: 122,300 Tflops/s

HPCG benchmark: 2,926 Tflops/s

Summit - IBM Power System AC922

1

Site: Oak Ridge National Laboratory

Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz

Interconnect: Dual-rail Mellanox EDR Infiniband

Performance

Theoretical peak: 187,659 TFlops/s

LINPACK benchmark: 122,300 Tflops/s

HPCG benchmark: 2,926 Tflops/s

current #1
on top500

LINPACK benchmark
(dense 𝐴𝑥 = 𝑏, direct)

65% efficiency

Conjugate Gradient on the World's Fastest Computer

Summit - IBM Power System AC922

1

Site: Oak Ridge National Laboratory

Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz

Interconnect: Dual-rail Mellanox EDR Infiniband

Performance

Theoretical peak: 187,659 TFlops/s

LINPACK benchmark: 122,300 Tflops/s

HPCG benchmark: 2,926 Tflops/s

current #1
on top500

LINPACK benchmark
(dense 𝐴𝑥 = 𝑏, direct)

65% efficiency

Conjugate Gradient on the World's Fastest Computer

Summit - IBM Power System AC922

HPCG benchmark
(sparse 𝐴𝑥 = 𝑏, iterative)

1.5% efficiency

1

The Conjugate Gradient (CG) Method

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

2

The Conjugate Gradient (HSCG) Method

Iteration Loop

Sparse Matrix
× Vector

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

2

The Conjugate Gradient (HSCG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Product

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

2

The Conjugate Gradient (HSCG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Product

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

2

The Conjugate Gradient (HSCG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Product

Vector Updates

Inner Product

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

2

The Conjugate Gradient (HSCG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Product

Vector Updates

Inner Product

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

2

The Conjugate Gradient (HSCG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Product

Vector Updates

Inner Product

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

3
⇒ Communication bottleneck!

s-step Krylov subspace methods

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68)
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van

Rosendale (1983); Chronopoulos and Gear (1989)

• Resurgence of interest in recent years due to growing problem sizes;
growing relative cost of communication

3

s-step CG

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
4

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
4

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
4

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
4

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

End Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
4

The effects of finite precision

Well-known that roundoff error has two
effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank deficiency
• Residuals no longer orthogonal -

Minimization of 𝑥 − 𝑥𝑖 𝐴 no
longer exact

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from SuiteSparse,
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

HSCG (double)

5

The effects of finite precision

Well-known that roundoff error has two
effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank deficiency
• Residuals no longer orthogonal -

Minimization of 𝑥 − 𝑥𝑖 𝐴 no
longer exact

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from SuiteSparse,
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough
summary of early developments in finite precision analysis of Lanczos and CG

HSCG (double)
exact CG

5

s-step CG

6

s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

6

s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

6

s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

6

s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

Convergence delay and attainable accuracy worse with increasing s!

6

s-step CG

Even assuming perfect parallel scalability with s (which is usually not the case due to extra
SpMVs and inner products), already at 𝑠 = 4 we are worse than HSCG in terms of number
of synchronizations!

6

• Accuracy 𝑥 − 𝑥𝑖 generally not computable, but 𝑥 − 𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy

Maximum attainable accuracy

7

• Accuracy 𝑥 − 𝑥𝑖 generally not computable, but 𝑥 − 𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

Maximum attainable accuracy

7

• Accuracy 𝑥 − 𝑥𝑖 generally not computable, but 𝑥 − 𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

• Writing 𝑏 − 𝐴 𝑥𝑖 = 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖,

𝑏 − 𝐴 𝑥𝑖 ≤ 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

Maximum attainable accuracy

7

• Accuracy 𝑥 − 𝑥𝑖 generally not computable, but 𝑥 − 𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

• Writing 𝑏 − 𝐴 𝑥𝑖 = 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖,

𝑏 − 𝐴 𝑥𝑖 ≤ 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• As 𝑟𝑖 → 0, 𝑏 − 𝐴 𝑥𝑖 depends on 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

Maximum attainable accuracy

7

• Accuracy 𝑥 − 𝑥𝑖 generally not computable, but 𝑥 − 𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

• Writing 𝑏 − 𝐴 𝑥𝑖 = 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖,

𝑏 − 𝐴 𝑥𝑖 ≤ 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• As 𝑟𝑖 → 0, 𝑏 − 𝐴 𝑥𝑖 depends on 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994,
1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst
and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht
and Strakoš (2000).

Maximum attainable accuracy

7

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

Maximum attainable accuracy of HSCG

8

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

Maximum attainable accuracy of HSCG

8

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

Maximum attainable accuracy of HSCG

8

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

Maximum attainable accuracy of HSCG

8

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

= 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

8

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

= 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

𝑓𝑖 ≤ 𝑂(𝜀) 𝐴 𝑥 + max
𝑚=0,…,𝑖

 𝑥𝑚 Greenbaum, 1997

𝑓𝑖 ≤ 𝑂 𝜀 𝑚=0
𝑖 𝑁𝐴 𝐴 𝑥𝑚 + 𝑟𝑚 van der Vorst and Ye, 2000

𝑓𝑖 ≤ 𝑂 𝜀 𝑁𝐴 𝐴 𝐴−1 𝑚=0
𝑖 𝑟𝑚 Sleijpen and van der Vorst, 1995

8

Sources of local roundoff error in s-step CG

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ = 𝑥𝑘,𝑗−1

′ + 𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ = 𝑟𝑘,𝑗−1

′ − ℬ𝑘 𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with 𝑞𝑘,𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑘,𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 = 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 = 𝒴𝑘 𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

9

Sources of local roundoff error in s-step CG

Error in computing
𝑠-step basis

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ = 𝑥𝑘,𝑗−1

′ + 𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ = 𝑟𝑘,𝑗−1

′ − ℬ𝑘 𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with 𝑞𝑘,𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑘,𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 = 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 = 𝒴𝑘 𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

9

Sources of local roundoff error in s-step CG

Error in computing
𝑠-step basis

Error in updating
coordinate vectors

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ = 𝑥𝑘,𝑗−1

′ + 𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ = 𝑟𝑘,𝑗−1

′ − ℬ𝑘 𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with 𝑞𝑘,𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑘,𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 = 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 = 𝒴𝑘 𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

9

Error in
basis change

Sources of local roundoff error in s-step CG

Error in computing
𝑠-step basis

Error in updating
coordinate vectors

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ = 𝑥𝑘,𝑗−1

′ + 𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ = 𝑟𝑘,𝑗−1

′ − ℬ𝑘 𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with 𝑞𝑘,𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑘,𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 = 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 = 𝒴𝑘 𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

9

For CG:

Attainable accuracy of s-step CG

𝑓𝑖 ≤ 𝑓0 + 𝜀

𝑚=1

𝑖

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

10

For CG:

Attainable accuracy of s-step CG

𝑓𝑠𝑘+𝑗 ≤ 𝑓0 + 𝜀𝚪𝒌

𝑚=1

𝑠𝑘+𝑗

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 𝜀

𝑚=1

𝑖

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

where

Γ𝑘 = max
ℓ≤𝑘

𝑐 ⋅ 𝒴ℓ
+ 𝒴ℓ

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

(see C., 2015)

where 𝑐 is a low-degree polynomial in 𝑠

10

For CG:

Attainable accuracy of s-step CG

𝑓𝑠𝑘+𝑗 ≤ 𝑓0 + 𝜀𝚪𝒌

𝑚=1

𝑠𝑘+𝑗

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 𝜀

𝑚=1

𝑖

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

where

Γ𝑘 = max
ℓ≤𝑘

𝑐 ⋅ 𝒴ℓ
+ 𝒴ℓ

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

(see C., 2015)

where 𝑐 is a low-degree polynomial in 𝑠

Conditioning of computed "s-step basis" plays a huge role
in determining numerical behavior! 10

Choosing a Polynomial Basis

• Recall: in each outer loop of s-step CG, we compute bases for some Krylov
subspaces, e.g., 𝒦𝑠+1 𝐴, 𝑝𝑖 = span{𝑝𝑖, 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖}

10

Choosing a Polynomial Basis

• Recall: in each outer loop of s-step CG, we compute bases for some Krylov
subspaces, e.g., 𝒦𝑠+1 𝐴, 𝑝𝑖 = span{𝑝𝑖, 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖}

• Simple loop unrolling gives monomial basis, e.g., 𝒴𝑘 = 𝑝𝑚, 𝐴𝑝𝑚, … , 𝐴𝑠𝑝𝑚

• Condition number can grow exponentially with 𝑠

• Recognized early on that this negatively affects convergence and accuracy
(Leland, 1989), (Chronopoulous & Swanson, 1995)

10

Choosing a Polynomial Basis

• Recall: in each outer loop of s-step CG, we compute bases for some Krylov
subspaces, e.g., 𝒦𝑠+1 𝐴, 𝑝𝑖 = span{𝑝𝑖, 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖}

• Improve basis condition number to improve numerical behavior: Use different
polynomials to compute a basis for the same subspace.

• Simple loop unrolling gives monomial basis, e.g., 𝒴𝑘 = 𝑝𝑚, 𝐴𝑝𝑚, … , 𝐴𝑠𝑝𝑚

• Condition number can grow exponentially with 𝑠

• Recognized early on that this negatively affects convergence and accuracy
(Leland, 1989), (Chronopoulous & Swanson, 1995)

10

Choosing a Polynomial Basis

• Recall: in each outer loop of s-step CG, we compute bases for some Krylov
subspaces, e.g., 𝒦𝑠+1 𝐴, 𝑝𝑖 = span{𝑝𝑖, 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖}

• Two choices based on spectral information that usually lead to well-
conditioned bases:

• Newton polynomials

• Chebyshev polynomials

• Improve basis condition number to improve numerical behavior: Use different
polynomials to compute a basis for the same subspace.

• Simple loop unrolling gives monomial basis, e.g., 𝒴𝑘 = 𝑝𝑚, 𝐴𝑝𝑚, … , 𝐴𝑠𝑝𝑚

• Condition number can grow exponentially with 𝑠

• Recognized early on that this negatively affects convergence and accuracy
(Leland, 1989), (Chronopoulous & Swanson, 1995)

10

"Backwards-like" analysis of Greenbaum

• Anne Greenbaum (1989): finite precision CG with matrix 𝐴 behaves like
exact CG run on a larger matrix 𝐴 whose eigenvalues lie in tight clusters
around the eigenvalues of 𝐴

11

"Backwards-like" analysis of Greenbaum

• Anne Greenbaum (1989): finite precision CG with matrix 𝐴 behaves like
exact CG run on a larger matrix 𝐴 whose eigenvalues lie in tight clusters
around the eigenvalues of 𝐴

• Based on work of Chris Paige for finite precision Lanczos (1976, 1980):

• Complete rounding error analysis

• Computed eigenvalues lie between extreme eigenvalues of A to within a
small multiple of machine precision

• At least one small interval containing an eigenvalue of A is found by
the Nth iteration

• The algorithm behaves as if it used full reorthogonalization until a close
eigenvalue approximation is found

• Loss of orthogonality among basis vectors follows a rigorous pattern
and implies that some eigenvalue approximation has converged

11

"Backwards-like" analysis of Greenbaum

• Anne Greenbaum (1989): finite precision CG with matrix 𝐴 behaves like
exact CG run on a larger matrix 𝐴 whose eigenvalues lie in tight clusters
around the eigenvalues of 𝐴

• Based on work of Chris Paige for finite precision Lanczos (1976, 1980):

• Complete rounding error analysis

• Computed eigenvalues lie between extreme eigenvalues of A to within a
small multiple of machine precision

• At least one small interval containing an eigenvalue of A is found by
the Nth iteration

• The algorithm behaves as if it used full reorthogonalization until a close
eigenvalue approximation is found

• Loss of orthogonality among basis vectors follows a rigorous pattern
and implies that some eigenvalue approximation has converged

• Can we make similar statements for s-step variants?

11

Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (𝐴 is 𝑁 × 𝑁 with at most 𝑛 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚
 𝑇𝑚 + 𝛽𝑚+1 𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿 𝑉𝑚

 𝑉𝑚 = 𝑣1, … , 𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 𝑣1, … , 𝛿 𝑣𝑚 , 𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱ 𝛽𝑚

 𝛽𝑚 𝛼𝑚

𝜎 ≡ 𝐴 2

𝜃𝜎 ≡ 𝐴 2

Lanczos [Paige, 1976]

𝜀0 = 𝑂 𝜀𝑁

𝜀1 = 𝑂 𝜀𝑛𝜃

12

for 𝑖 ∈ {1, … , 𝑚},
𝛿 𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1
2 + 𝛼𝑖

2 + 𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (𝐴 is 𝑁 × 𝑁 with at most 𝑛 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚
 𝑇𝑚 + 𝛽𝑚+1 𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿 𝑉𝑚

 𝑉𝑚 = 𝑣1, … , 𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 𝑣1, … , 𝛿 𝑣𝑚 , 𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱ 𝛽𝑚

 𝛽𝑚 𝛼𝑚

𝜎 ≡ 𝐴 2

𝜃𝜎 ≡ 𝐴 2

Lanczos [Paige, 1976]

𝜀0 = 𝑂 𝜀𝑁

𝜀1 = 𝑂 𝜀𝑛𝜃

for 𝑖 ∈ {1, … , 𝑚},
𝛿 𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1
2 + 𝛼𝑖

2 + 𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

s-step Lanczos [C., Demmel, 2015]:

𝜀0 = 𝑂 𝜀𝑁𝚪𝟐

𝜀1 = 𝑂 𝜀𝑛𝜃𝚪

Γ = 𝑐 ⋅ max
ℓ

 𝒴ℓ
+ 𝒴ℓ 12

Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
− 1 2

≈
1

𝑁𝜀

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

13

Γ = 𝑐 ⋅ max
ℓ

 𝒴ℓ
+ 𝒴ℓ

Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
− 1 2

≈
1

𝑁𝜀

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

• Bounds on accuracy of Ritz values depend on Γ2

Γ = 𝑐 ⋅ max
ℓ

 𝒴ℓ
+ 𝒴ℓ

13

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

𝜆

𝑂(𝜀𝑁3 𝐴)
Lanczos

• Bounds on accuracy of Ritz values depend on Γ2

Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
− 1 2

≈
1

𝑁𝜀

Γ = 𝑐 ⋅ max
ℓ

 𝒴ℓ
+ 𝒴ℓ

13

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

𝜆

𝑂(𝜀𝑁3 𝐴)

𝑂(𝜀𝑁3 𝐴 𝚪𝟐)

Lanczos

• Bounds on accuracy of Ritz values depend on Γ2

s-step Lanczos

Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
− 1 2

≈
1

𝑁𝜀

Γ = 𝑐 ⋅ max
ℓ

 𝒴ℓ
+ 𝒴ℓ

13

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

𝜆

𝑂(𝜀𝑁3 𝐴)

𝑂(𝜀𝑁3 𝐴)

Lanczos

• Bounds on accuracy of Ritz values depend on Γ2

s-step Lanczos behaves
the same numerically
as classical Lanczos

If 𝚪 ≈ 𝟏:

s-step Lanczos

Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
− 1 2

≈
1

𝑁𝜀

Γ = 𝑐 ⋅ max
ℓ

 𝒴ℓ
+ 𝒴ℓ

13

14

Problem: Diagonal matrix with 𝑛 = 100 with
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector

Problem: Diagonal matrix with 𝑛 = 100 with
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector

Top plots:

Computed Γ𝑘,𝑗
2

24(𝜀(𝑛 + 11𝑠 + 15) −1

𝒔 = 𝟐

monomial basis Chebyshev basis

14

Problem: Diagonal matrix with 𝑛 = 100 with
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector

Top plots:

Computed Γ𝑘,𝑗
2

24(𝜀(𝑛 + 11𝑠 + 15) −1

Bottom Plots:

𝒔 = 𝟐

Computed Ritz values True eigenvalues

Bounds on range of computed Ritz values

monomial basis Chebyshev basis

14

𝒔 = 𝟏𝟐

Bottom Plots:

Problem: Diagonal matrix with 𝑛 = 100 with
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector

Top plots:

Computed Ritz values True eigenvalues

Bounds on range of computed Ritz values

Computed Γ𝑘,𝑗
2

24(𝜀(𝑛 + 11𝑠 + 15) −1

monomial basis Chebyshev basis

14

Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, monomial basis, 𝑠 = 2

Γ ≤ 7 × 102

Measure of loss
of orthogonality

Measure of Ritz
value convergence 15

Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, monomial basis, 𝑠 = 4

Γ ≤ 3 × 103

Measure of loss
of orthogonality

Measure of Ritz
value convergence 15

Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, monomial basis, 𝑠 = 8

Γ ≤ 2 × 106

Measure of loss
of orthogonality

Measure of Ritz
value convergence 15

Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, Chebyshev basis, 𝑠 = 8

Γ ≤ 2 × 103

Measure of loss
of orthogonality

Measure of Ritz
value convergence 15

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

16

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

If application only requires
𝑥 − 𝑥𝑖 𝐴 ≈ 10−10,

finite precision effects negligible relative to
classical method!

16

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

If application only requires
𝑥 − 𝑥𝑖 𝐴 ≈ 10−10,

finite precision effects negligible relative to
classical method!

Need adaptive, problem-dependent approach based
on understanding of finite precision behavior!

16

• Consider the growth of the relative residual gap caused by errors in outer loop
𝑘, which begins with global iteration number 𝑚

Adaptive s-step CG

17

• Consider the growth of the relative residual gap caused by errors in outer loop
𝑘, which begins with global iteration number 𝑚

• We can approximate an upper bound on this quantity by

𝑓𝑚+𝑠 − 𝑓𝑚
𝐴 𝑥

≲ 𝜀 1 + 𝜅 𝐴 Γ𝑘

max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

𝐴 𝑥

Adaptive s-step CG

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

17

• Consider the growth of the relative residual gap caused by errors in outer loop
𝑘, which begins with global iteration number 𝑚

• We can approximate an upper bound on this quantity by

𝑓𝑚+𝑠 − 𝑓𝑚
𝐴 𝑥

≲ 𝜀 1 + 𝜅 𝐴 Γ𝑘

max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

𝐴 𝑥

• If our application requires relative accuracy 𝜀∗, we must have

Γ𝑘 ≡ 𝑐 ⋅ 𝒴𝑘
+ 𝒴𝑘 ≲

𝜀∗

𝜀 max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

Adaptive s-step CG

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

17

• Consider the growth of the relative residual gap caused by errors in outer loop
𝑘, which begins with global iteration number 𝑚

• We can approximate an upper bound on this quantity by

𝑓𝑚+𝑠 − 𝑓𝑚
𝐴 𝑥

≲ 𝜀 1 + 𝜅 𝐴 Γ𝑘

max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

𝐴 𝑥

• If our application requires relative accuracy 𝜀∗, we must have

Γ𝑘 ≡ 𝑐 ⋅ 𝒴𝑘
+ 𝒴𝑘 ≲

𝜀∗

𝜀 max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

• 𝑟𝑖 large → Γ𝑘 must be small; 𝑟𝑖 small → Γ𝑘 can grow

Adaptive s-step CG

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

17

• Consider the growth of the relative residual gap caused by errors in outer loop
𝑘, which begins with global iteration number 𝑚

• We can approximate an upper bound on this quantity by

𝑓𝑚+𝑠 − 𝑓𝑚
𝐴 𝑥

≲ 𝜀 1 + 𝜅 𝐴 Γ𝑘

max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

𝐴 𝑥

• If our application requires relative accuracy 𝜀∗, we must have

Γ𝑘 ≡ 𝑐 ⋅ 𝒴𝑘
+ 𝒴𝑘 ≲

𝜀∗

𝜀 max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

• 𝑟𝑖 large → Γ𝑘 must be small; 𝑟𝑖 small → Γ𝑘 can grow

⇒ adaptive s-step approach [C., 2018]

• 𝑠 starts off small, increases at rate depending on 𝑟𝑖 and 𝜀∗

Adaptive s-step CG

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

17

Improving Adaptive s-step CG

• Method of Meurant and Tichý (2018) for cheap approximation of extremal
Ritz values

• Uses Cholesky factors of Lanczos tridiagonal 𝑇𝑖, 𝑇𝑖 = 𝐿𝑖𝐿𝑖
𝑇

• Use 𝛼 and 𝛽 computed during each iteration to incrementally update

estimates of 𝐿𝑖 2
2 = 𝜆𝑚𝑎𝑥 𝑇𝑖 ≈ 𝜆𝑚𝑎𝑥(𝐴), 𝐿𝑖

−1
2

−2
= 𝜆𝑚𝑖𝑛 𝑇𝑖 ≈

𝜆𝑚𝑖𝑛(𝐴)

• Essentially no extra work, no extra communication

18

Improving Adaptive s-step CG

• Method of Meurant and Tichý (2018) for cheap approximation of extremal
Ritz values

• Uses Cholesky factors of Lanczos tridiagonal 𝑇𝑖, 𝑇𝑖 = 𝐿𝑖𝐿𝑖
𝑇

• Use 𝛼 and 𝛽 computed during each iteration to incrementally update

estimates of 𝐿𝑖 2
2 = 𝜆𝑚𝑎𝑥 𝑇𝑖 ≈ 𝜆𝑚𝑎𝑥(𝐴), 𝐿𝑖

−1
2

−2
= 𝜆𝑚𝑖𝑛 𝑇𝑖 ≈

𝜆𝑚𝑖𝑛(𝐴)

• Essentially no extra work, no extra communication

• Can be used in two ways in adaptive algorithm

1. Incrementally refine estimate of 𝜅(𝐴) (used in determining which s to
use)

2. Incrementally refine parameters used to construct Newton or
Chebyshev polynomials

18

Fixed s-step
Improved adaptive s-step

w/Newton
Improved adaptive s-step

w/Chebyshev
classical CG

- 59 53 414

Number of global synchronizations

𝐴 = 494bus from SuiteSparse

𝑏i = 1/ 𝑁

19

Summary

• In order to truly claim that a modified variant of a Krylov subspace method
is suitable for HPC/more efficient than the classical approach, we must
understand its behavior in finite precision

• In s-step variants of Krylov subspace methods, local roundoff errors are
amplified by a factor related to the conditioning of the computed "s-step
bases"

• Bounds on maximum attainable accuracy

• Working towards understanding convergence delay

• Understanding finite precision behavior can allow us to develop adaptive
approaches that are both accurate and efficient

20

carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson

Thank You!Thank you!

