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Conjugate Gradient on the World's Fastest Computer

1

Site: Oak Ridge National Laboratory

Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz

Interconnect: Dual-rail Mellanox EDR Infiniband

Performance

Theoretical peak: 187,659 TFlops/s

LINPACK benchmark: 122,300 Tflops/s

HPCG benchmark: 2,926 Tflops/s

Summit - IBM Power System AC922
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The Conjugate Gradient (CG) Method 

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end
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⇒ Communication bottleneck!



s-step Krylov subspace methods

• Idea: Compute blocks of 𝑠 iterations at once 

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68) 
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van 

Rosendale (1983);   Chronopoulos and Gear (1989)

• Resurgence of interest in recent years due to growing problem sizes; 
growing relative cost of communication
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s-step CG

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and 

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1 ] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
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The effects of finite precision

Well-known that roundoff error has two 
effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank deficiency
• Residuals no longer orthogonal -

Minimization of 𝑥 − 𝑥𝑖 𝐴 no 
longer exact

2. Loss of attainable accuracy
• Rounding errors cause true 

residual 𝑏 − 𝐴𝑥𝑖 and updated 
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from SuiteSparse, 
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

HSCG (double)
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𝐴: bcsstk03 from SuiteSparse, 
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough 
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HSCG (double)
exact CG
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s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

6



s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

6



s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

6



s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

Convergence delay and attainable accuracy worse with increasing s!
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s-step CG

Even assuming perfect parallel scalability with s (which is usually not the case due to extra 
SpMVs and inner products), already at 𝑠 = 4 we are worse than HSCG in terms of number 
of synchronizations!
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• Accuracy 𝑥 −  𝑥𝑖 generally not computable, but 𝑥 −  𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy 

Maximum attainable accuracy
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• As  𝑟𝑖 → 0, 𝑏 − 𝐴 𝑥𝑖 depends on 𝑏 − 𝐴 𝑥𝑖 −  𝑟𝑖
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Maximum attainable accuracy

7



• In finite precision HSCG, iterates are updated by 

 𝑥𝑖 =  𝑥𝑖−1 +  𝛼𝑖−1  𝑝𝑖−1 − 𝜹𝒙𝒊 and          𝑟𝑖 =  𝑟𝑖−1 −  𝛼𝑖−1𝐴  𝑝𝑖−1 − 𝜹𝒓𝒊

Maximum attainable accuracy of HSCG
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• In finite precision HSCG, iterates are updated by 
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Maximum attainable accuracy of HSCG
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= 𝑓0 +  𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

𝑓𝑖 ≤ 𝑂(𝜀) 𝐴 𝑥 + max
𝑚=0,…,𝑖

 𝑥𝑚 Greenbaum, 1997

𝑓𝑖 ≤ 𝑂 𝜀  𝑚=0
𝑖 𝑁𝐴 𝐴  𝑥𝑚 +  𝑟𝑚 van der Vorst and Ye, 2000

𝑓𝑖 ≤ 𝑂 𝜀 𝑁𝐴 𝐴 𝐴−1  𝑚=0
𝑖  𝑟𝑚 Sleijpen and van der Vorst, 1995
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Sources of local roundoff error in s-step CG

Computing the 𝑠-step Krylov subspace basis:

𝐴  𝒴𝑘 =  𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ =  𝑥𝑘,𝑗−1

′ +  𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ =  𝑟𝑘,𝑗−1

′ − ℬ𝑘  𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with    𝑞𝑘,𝑗−1
′ = fl(  𝛼𝑠𝑘+𝑗−1  𝑝𝑘,𝑗−1

′ )

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 =  𝒴𝑘  𝑥𝑘,𝑗
′ +  𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 =  𝒴𝑘  𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗
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Error in 
basis change

Sources of local roundoff error in s-step CG
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For CG:

Attainable accuracy of s-step CG

𝑓𝑖 ≤ 𝑓0 + 𝜀  

𝑚=1

𝑖

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖−  𝑟𝑖
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For CG:

Attainable accuracy of s-step CG

𝑓𝑠𝑘+𝑗 ≤ 𝑓0 + 𝜀𝚪𝒌  

𝑚=1

𝑠𝑘+𝑗

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 𝜀  

𝑚=1

𝑖

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

where

Γ𝑘 = max
ℓ≤𝑘

𝑐 ⋅  𝒴ℓ
+  𝒴ℓ

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖−  𝑟𝑖

(see C., 2015)

where 𝑐 is a low-degree polynomial in 𝑠
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For CG:

Attainable accuracy of s-step CG

𝑓𝑠𝑘+𝑗 ≤ 𝑓0 + 𝜀𝚪𝒌  

𝑚=1

𝑠𝑘+𝑗

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 𝜀  

𝑚=1

𝑖

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

where

Γ𝑘 = max
ℓ≤𝑘

𝑐 ⋅  𝒴ℓ
+  𝒴ℓ

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖−  𝑟𝑖

(see C., 2015)

where 𝑐 is a low-degree polynomial in 𝑠

Conditioning of computed "s-step basis" plays a huge role 
in determining numerical behavior! 10



Choosing a Polynomial Basis

• Recall: in each outer loop of s-step CG, we compute bases for some Krylov
subspaces, e.g., 𝒦𝑠+1 𝐴, 𝑝𝑖 = span{𝑝𝑖, 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖}
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• Simple loop unrolling gives monomial basis, e.g., 𝒴𝑘 = 𝑝𝑚, 𝐴𝑝𝑚, … , 𝐴𝑠𝑝𝑚

• Condition number can grow exponentially with 𝑠

• Recognized early on that this negatively affects convergence and accuracy 
(Leland, 1989), (Chronopoulous & Swanson, 1995)
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subspaces, e.g., 𝒦𝑠+1 𝐴, 𝑝𝑖 = span{𝑝𝑖, 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖}

• Two choices based on spectral information that usually lead to well-
conditioned bases:

• Newton polynomials 

• Chebyshev polynomials

• Improve basis condition number to improve numerical behavior:  Use different 
polynomials to compute a basis for the same subspace. 

• Simple loop unrolling gives monomial basis, e.g., 𝒴𝑘 = 𝑝𝑚, 𝐴𝑝𝑚, … , 𝐴𝑠𝑝𝑚
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"Backwards-like" analysis of Greenbaum

• Anne Greenbaum (1989): finite precision CG with matrix 𝐴 behaves like 
exact CG run on a larger matrix  𝐴 whose eigenvalues lie in tight clusters 
around the eigenvalues of 𝐴
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"Backwards-like" analysis of Greenbaum

• Anne Greenbaum (1989): finite precision CG with matrix 𝐴 behaves like 
exact CG run on a larger matrix  𝐴 whose eigenvalues lie in tight clusters 
around the eigenvalues of 𝐴

• Based on work of Chris Paige for finite precision Lanczos (1976, 1980):

• Complete rounding error analysis

• Computed eigenvalues lie between extreme eigenvalues of A to within a 
small multiple of machine precision

• At least one small interval containing an eigenvalue of A is found by 
the Nth iteration

• The algorithm behaves as if it used full reorthogonalization until a close 
eigenvalue approximation is found

• Loss of orthogonality among basis vectors follows a rigorous pattern 
and implies that some eigenvalue approximation has converged
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"Backwards-like" analysis of Greenbaum

• Anne Greenbaum (1989): finite precision CG with matrix 𝐴 behaves like 
exact CG run on a larger matrix  𝐴 whose eigenvalues lie in tight clusters 
around the eigenvalues of 𝐴

• Based on work of Chris Paige for finite precision Lanczos (1976, 1980):

• Complete rounding error analysis

• Computed eigenvalues lie between extreme eigenvalues of A to within a 
small multiple of machine precision

• At least one small interval containing an eigenvalue of A is found by 
the Nth iteration

• The algorithm behaves as if it used full reorthogonalization until a close 
eigenvalue approximation is found

• Loss of orthogonality among basis vectors follows a rigorous pattern 
and implies that some eigenvalue approximation has converged

• Can we make similar statements for s-step variants?
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Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (𝐴 is 𝑁 × 𝑁 with at most 𝑛 nonzeros per row)

𝐴  𝑉𝑚 =  𝑉𝑚
 𝑇𝑚 +  𝛽𝑚+1  𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿  𝑉𝑚

 𝑉𝑚 =  𝑣1, … ,  𝑣𝑚 ,       𝛿  𝑉𝑚 = 𝛿  𝑣1, … , 𝛿  𝑣𝑚 ,          𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱  𝛽𝑚

 𝛽𝑚  𝛼𝑚

𝜎 ≡ 𝐴 2

𝜃𝜎 ≡ 𝐴 2

Lanczos [Paige, 1976] 

𝜀0 = 𝑂 𝜀𝑁

𝜀1 = 𝑂 𝜀𝑛𝜃

12

for 𝑖 ∈ {1, … , 𝑚},
𝛿  𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇  𝑣𝑖+1 − 1 ≤  𝜀0 2

 𝛽𝑖+1
2 +  𝛼𝑖

2 +  𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2



Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (𝐴 is 𝑁 × 𝑁 with at most 𝑛 nonzeros per row)

𝐴  𝑉𝑚 =  𝑉𝑚
 𝑇𝑚 +  𝛽𝑚+1  𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿  𝑉𝑚

 𝑉𝑚 =  𝑣1, … ,  𝑣𝑚 ,       𝛿  𝑉𝑚 = 𝛿  𝑣1, … , 𝛿  𝑣𝑚 ,          𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱  𝛽𝑚

 𝛽𝑚  𝛼𝑚

𝜎 ≡ 𝐴 2

𝜃𝜎 ≡ 𝐴 2

Lanczos [Paige, 1976] 

𝜀0 = 𝑂 𝜀𝑁

𝜀1 = 𝑂 𝜀𝑛𝜃

for 𝑖 ∈ {1, … , 𝑚},
𝛿  𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇  𝑣𝑖+1 − 1 ≤  𝜀0 2

 𝛽𝑖+1
2 +  𝛼𝑖

2 +  𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

s-step Lanczos [C., Demmel, 2015]:

𝜀0 = 𝑂 𝜀𝑁𝚪𝟐

𝜀1 = 𝑂 𝜀𝑛𝜃𝚪

Γ = 𝑐 ⋅ max
ℓ

 𝒴ℓ
+  𝒴ℓ 12



Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
−  1 2

≈
1

𝑁𝜀

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue 
convergence, hold for s-step Lanczos as long as 
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Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue 
convergence, hold for s-step Lanczos as long as 

𝜆

𝑂(𝜀𝑁3 𝐴 )

𝑂(𝜀𝑁3 𝐴 )

Lanczos

• Bounds on accuracy of Ritz values depend on Γ2

s-step Lanczos behaves 
the same numerically 
as classical Lanczos

If 𝚪 ≈ 𝟏:

s-step Lanczos
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−  1 2

≈
1
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Γ = 𝑐 ⋅ max
ℓ
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+  𝒴ℓ
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Problem: Diagonal matrix with 𝑛 = 100 with 
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector



Problem: Diagonal matrix with 𝑛 = 100 with 
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector

Top plots:

Computed Γ𝑘,𝑗
2

24(𝜀(𝑛 + 11𝑠 + 15) −1

𝒔 = 𝟐

monomial basis Chebyshev basis
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Problem: Diagonal matrix with 𝑛 = 100 with 
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector

Top plots:

Computed Γ𝑘,𝑗
2

24(𝜀(𝑛 + 11𝑠 + 15) −1

Bottom Plots:

𝒔 = 𝟐

Computed Ritz values True eigenvalues 

Bounds on range of computed Ritz values

monomial basis Chebyshev basis
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𝒔 = 𝟏𝟐

Bottom Plots:

Problem: Diagonal matrix with 𝑛 = 100 with 
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector

Top plots:

Computed Ritz values True eigenvalues 

Bounds on range of computed Ritz values

Computed Γ𝑘,𝑗
2

24(𝜀(𝑛 + 11𝑠 + 15) −1

monomial basis Chebyshev basis
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Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between 
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, monomial basis, 𝑠 = 2

Γ ≤ 7 × 102

Measure of loss 
of orthogonality

Measure of Ritz 
value convergence 15



Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between 
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, monomial basis, 𝑠 = 4

Γ ≤ 3 × 103

Measure of loss 
of orthogonality

Measure of Ritz 
value convergence 15



Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between 
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector
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𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, monomial basis, 𝑠 = 8

Γ ≤ 2 × 106

Measure of loss 
of orthogonality

Measure of Ritz 
value convergence 15



Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between 
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, Chebyshev basis, 𝑠 = 8

Γ ≤ 2 × 103

Measure of loss 
of orthogonality

Measure of Ritz 
value convergence 15



A different problem...

𝐴: nos4 from UFSMC, 
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3
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𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

If application only requires 
𝑥 − 𝑥𝑖 𝐴 ≈ 10−10, 

finite precision effects negligible relative to 
classical method!
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A different problem...

𝐴: nos4 from UFSMC, 
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

If application only requires 
𝑥 − 𝑥𝑖 𝐴 ≈ 10−10, 

finite precision effects negligible relative to 
classical method!

Need adaptive, problem-dependent approach based 
on understanding of finite precision behavior!
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• Consider the growth of the relative residual gap caused by errors in outer loop 
𝑘, which begins with global iteration number 𝑚

Adaptive s-step CG

17



• Consider the growth of the relative residual gap caused by errors in outer loop 
𝑘, which begins with global iteration number 𝑚

• We can approximate an upper bound on this quantity by

𝑓𝑚+𝑠 − 𝑓𝑚
𝐴 𝑥

≲ 𝜀 1 + 𝜅 𝐴 Γ𝑘

max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

𝐴 𝑥

Adaptive s-step CG

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖−  𝑟𝑖
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• Consider the growth of the relative residual gap caused by errors in outer loop 
𝑘, which begins with global iteration number 𝑚

• We can approximate an upper bound on this quantity by

𝑓𝑚+𝑠 − 𝑓𝑚
𝐴 𝑥

≲ 𝜀 1 + 𝜅 𝐴 Γ𝑘

max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

𝐴 𝑥

• If our application requires relative accuracy 𝜀∗, we must have 

Γ𝑘 ≡ 𝑐 ⋅  𝒴𝑘
+  𝒴𝑘 ≲

𝜀∗

𝜀 max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

•  𝑟𝑖 large → Γ𝑘 must be small;  𝑟𝑖 small → Γ𝑘 can grow

⇒ adaptive s-step approach [C., 2018]

• 𝑠 starts off small, increases at rate depending on  𝑟𝑖 and 𝜀∗

Adaptive s-step CG

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖−  𝑟𝑖
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Improving Adaptive s-step CG

• Method of Meurant and Tichý (2018) for cheap approximation of extremal
Ritz values 

• Uses Cholesky factors of Lanczos tridiagonal 𝑇𝑖, 𝑇𝑖 = 𝐿𝑖𝐿𝑖
𝑇

• Use 𝛼 and 𝛽 computed during each iteration to incrementally update 

estimates of 𝐿𝑖 2
2 = 𝜆𝑚𝑎𝑥 𝑇𝑖 ≈ 𝜆𝑚𝑎𝑥(𝐴), 𝐿𝑖

−1
2

−2
= 𝜆𝑚𝑖𝑛 𝑇𝑖 ≈

𝜆𝑚𝑖𝑛(𝐴)

• Essentially no extra work, no extra communication
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Improving Adaptive s-step CG

• Method of Meurant and Tichý (2018) for cheap approximation of extremal
Ritz values 

• Uses Cholesky factors of Lanczos tridiagonal 𝑇𝑖, 𝑇𝑖 = 𝐿𝑖𝐿𝑖
𝑇

• Use 𝛼 and 𝛽 computed during each iteration to incrementally update 

estimates of 𝐿𝑖 2
2 = 𝜆𝑚𝑎𝑥 𝑇𝑖 ≈ 𝜆𝑚𝑎𝑥(𝐴), 𝐿𝑖

−1
2

−2
= 𝜆𝑚𝑖𝑛 𝑇𝑖 ≈

𝜆𝑚𝑖𝑛(𝐴)

• Essentially no extra work, no extra communication

• Can be used in two ways in adaptive algorithm

1. Incrementally refine estimate of 𝜅(𝐴) (used in determining which s to 
use)

2. Incrementally refine parameters used to construct Newton or 
Chebyshev polynomials
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Fixed s-step
Improved adaptive s-step 

w/Newton
Improved adaptive s-step 

w/Chebyshev
classical CG

- 59 53 414

Number of global synchronizations

𝐴 = 494bus from SuiteSparse

𝑏i = 1/ 𝑁
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Summary

• In order to truly claim that a modified variant of a Krylov subspace method 
is suitable for HPC/more efficient than the classical approach, we must 
understand its behavior in finite precision

• In s-step variants of Krylov subspace methods, local roundoff errors are 
amplified by a factor related to the conditioning of the computed "s-step 
bases"

• Bounds on maximum attainable accuracy

• Working towards understanding convergence delay 

• Understanding finite precision behavior can allow us to develop adaptive 
approaches that are both accurate and efficient
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