MS4: Minimizing Communication in Numerical Algorithms Part I of II

Organizers: Oded Schwartz (*Hebrew University of Jerusalem*) and Erin Carson (*New York University*)

Talks:

- 1. Communication-Avoiding Krylov Subspace Methods in Theory and Practice (*Erin Carson*)
- 2. Enlarged GMRES for Reducing Communication When Solving Reservoir Simulation Problems (*Hussam Al Daas*, Laura Grigori, Pascal Henon, Philippe Ricoux)
- 3. CA-SVM: Communication-Avoiding Support Vector Machines on Distributed Systems (*Yang You*)
- 4. Outline of a New Roadmap to Permissive Communication and Applications That Can Benefit (*James A. Edwards* and Uzi Vishkin)

Communication-Avoiding Krylov Subspace Methods in Theory and Practice

Erin Carson Courant Institute @ NYU

> April 12, 2016 SIAM PP 16

What is communication?

- Algorithms have two costs: computation and communication
 - Communication : moving data between levels of memory hierarchy (sequential), between processors (parallel)

 On today's computers, communication is expensive, computation is cheap, in terms of both time and energy!

Future exascale systems

	Petascale Systems (2009)	
System Peak	$2\cdot 10^{15}$ flops/s	
Node Memory Bandwidth	25 GB/s	
Total Node Interconnect Bandwidth	3.5 GB/s	
Memory Latency	100 ns	
Interconnect Latency	1 <i>µ</i> s	

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

- Gaps between communication/computation cost only growing larger in future systems
- Avoiding communication will be essential for applications at exascale!

Minimize communication to save energy

Work in CA algorithms

- For both dense and sparse linear algebra...
 - Prove lower bounds on communication cost of an algorithm
 - Design new algorithms and implementations that meet these those bounds

 More recently, extending communication-avoiding ideas to Machine Learning and optimization domains

Lots of speedups...

- Up to **12x** faster for 2.5D matmul on 64K core IBM BG/P
- Up to **3x** faster for tensor contractions on 2K core Cray XE/6
- Up to 6.2x faster for All-Pairs-Shortest-Path on 24K core Cray CE6
- Up to 2.1x faster for 2.5D LU on 64K core IBM BG/P
- Up to **11.8x** faster for direct N-body on 32K core IBM BG/P
- Up to **13x** faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU
- Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere
- Up to 2x faster for 2.5D Strassen on 38K core Cray XT4
- Up to 4.2x faster for MiniGMG benchmark bottom solver, using CA-BICGSTAB (2.5x for overall solve), 2.5x / 1.5x for combustion simulation code
- Up to 42x for Parallel Direct 3-Body

These and many more recent papers available at bebop.cs.berkeley.edu

Krylov solvers: limited by communication

In terms of linear algebra operations:

"Add a dimension to \mathcal{K}_m "

- → Sparse Matrix-Vector Multiplication (SpMV)
 - Parallel: comm. vector entries w/ neighbors
 - Sequential: read *A*/vectors from slow memory
- "Orthogonalize (with respect to some \mathcal{L}_m)"
 - \rightarrow Inner products
 - Parallel: global reduction (All-Reduce) Sequential: multiple reads/writes to slow
 - memory

Dependencies between communication-bound kernels in each iteration limit performance!

The classical Lanczos method

Communication-Avoiding KSMs

- Idea: Compute blocks of *s* iterations at once
 - Communicate every *s* iterations instead of every iteration
 - Reduces communication cost by O(s)!
 - (latency in parallel, latency and bandwidth in sequential)
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
 - Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale, 1983; Chronopoulos and Gear, 1989
 - Goals: increasing parallelism, avoiding I/O, increasing "convergence rate"

• Resurgence of interest in recent years due to growing problem sizes; growing relative cost of communication

Communication-Avoiding KSMs: CA-Lanczos

- Main idea: Unroll iteration loop by a factor of s; split iteration loop into an outer loop (k) and an inner loop (j)
- Key observation: starting at some iteration $i \equiv sk + j$,

 $v_{sk+j}, u_{sk+j} \in \mathcal{K}_{s+1}(A, v_{sk+1}) + \mathcal{K}_{s+1}(A, u_{sk+1}) \text{ for } j \in \{1, \dots, s+1\}$

For each block of s steps:

- Compute "basis matrix": \mathcal{Y}_k such that $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, v_{sk+1}) + \mathcal{K}_{s+1}(A, u_{sk+1})$
 - O(s) SpMVs, requires reading A/communicating vectors only once using "matrix powers kernel"
- Orthogonalize: $G_k = \mathcal{Y}_k^T \mathcal{Y}_k$
 - One global reduction
- Perform s iterations of updates for n-vectors by updating their O(s) coordinates in \mathcal{Y}_k
 - No communication

The CA-Lanczos method

Given: initial vector
$$v_1$$
 with $||v_1||_2 = 1$
 $u_1 = Av_1$
for $k = 0, 1, ...,$ until convergence do
Compute \mathcal{Y}_k , compute $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$
Let $v'_{k,1} = e_1$, $u'_{k,1} = e_{s+2}$
for $j = 1, ..., s$ do
 $\alpha_{sk+j} = v'_{k,j}^T \mathcal{G}_k u'_{k,j}$
 $w'_{k,j} = u'_{k,j} - \alpha_{sk+j} v'_{k,j}$
 $\beta_{sk+j+1} = (w'_{k,j}^T \mathcal{G}_k w'_{k,j})^{1/2}$
 $v'_{k,j+1} = w'_{k,j} / \beta_{sk+j+1}$
 $u'_{k,j+1} = \mathcal{B}_k v'_{k,j+1} - \beta_{sk+j+1} v'_{k,j}$
end for
Compute $v_{sk+s+1} = \mathcal{Y}_k v'_{k,s+1}$, $u_{sk+s+1} = \mathcal{Y}_k u'_{k,s+1}$

end for

Complexity comparison

Example of parallel (per processor) complexity for *s* iterations of Classical Lanczos vs. CA-Lanczos for a 2D 9-point stencil:

(Assuming each of p processors owns n/p rows of the matrix and $s \leq \sqrt{n/p}$)

	Flops		Words Moved		Messages	
	SpMV	Orth.	SpMV	Orth.	SpMV	Orth.
Classical CG	$\frac{sn}{p}$	$\frac{sn}{p}$	$s\sqrt{n/p}$	$s \log_2 p$	S	$s \log_2 p$
CA-CG	$\frac{sn}{p}$	$\frac{s^2n}{p}$	$s\sqrt{n/p}$	$s^2 \log_2 p$	1	$\log_2 p$

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

From theory to practice

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing *s*
- Two effects of roundoff error:
 - Decrease in accuracy → Tradeoff: increasing blocking factor s past a certain point: accuracy limited
 - 2. Delay of convergence → Tradeoff: increasing blocking factor s past a certain point: no speedup expected

Optimizing iterative method runtime

• Want to minimize total time of iterative solver

Runtime = (time/iteration) x (# iterations)

- Time per iteration determined by matrix/preconditioner structure, machine parameters, basis size, etc.
- Number of iterations depends on numerical properties of the matrix/preconditioner, basis size

Optimizing iterative method runtime

• Want to minimize total time of iterative solver

Runtime = (time/iteration) x (# iterations)

- Speed per iteration determined by matrix/preconditioner structure, machine parameters, basis size, etc.
- Number of iterations depends on numerical properties of the matrix/preconditioner, basis size
- Traditional auto-tuners tune kernels (e.g., SpMV and QR) to optimize speed per iteration
- This misses a big part of the equation!
- Goal: Combine offline auto-tuning with online techniques for achieving desired accuracy and a good convergence rate
- Requires a better understanding of behavior of iterative methods in finite precision

Main results

- Bounds on accuracy and convergence rate for CA methods can be written in terms of those for classical methods times an amplification factor
 - Amplification factor depends on condition number of the s-step bases \mathcal{Y}_k computed in each outer iteration
- These bounds can be used to design techniques to improve accuracy and convergence rate while still avoiding communication

Attainable accuracy of (CA)-CG

• Results for CG (Greenbaum, van der Vorst and Ye, others):

$$||b - Ax_m - r_m|| \le \varepsilon N^* \sum_{i=0}^{\infty} (1 + 2N) ||A|| ||\hat{x}_i|| + ||\hat{r}_i||$$

200

• Results for CA-CG:

$$\|b - Ax_m - r_m\| \le \varepsilon \Gamma_k N^* \sum_{i=0}^m (1+2N) \|A\| \|\hat{x}_i\| + \|\hat{r}_i\|$$

where $\Gamma_k = \max_{\ell \le k} \|\mathcal{Y}_{\ell}^+\|_2 \cdot \||\mathcal{Y}_{\ell}\|\|_2$

- Bound can be used for designing a "Residual Replacement" strategy for CA-CG (based on van der Vorst and Ye, 1999)
 - In tests, CA-CG accuracy improved up to 7 orders of magnitude for little additional cost

Convergence and accuracy of CA-Lanczos

 Chris Paige's results for classical Lanczos: loss of orthogonality → eigenvalue convergence

if
$$\varepsilon n \leq \frac{1}{12}$$

- This (and other results of Paige) also hold for CA-Lanczos if: $2\varepsilon(n+11s+15) \Gamma^2 \leq \frac{1}{12}$, where $\Gamma = \max_{\ell \leq k} \|\mathcal{Y}_{\ell}^+\|_2 \cdot \||\mathcal{Y}_{\ell}|\|_2$
 - i.e., $\max_{\ell \le k} \|\mathcal{Y}_{\ell}^{+}\|_{2} \cdot \||\mathcal{Y}_{\ell}\|\|_{2} \le (24\epsilon(n+11s+15))^{-1/2}$
- We could approximate this constraint:

$$\kappa(\mathcal{Y}_k) \leq 1/\sqrt{\epsilon n}$$

and use it to design a better algorithm!

Dynamic basis size

- Auto-tune to find best s based on machine, sparsity structure; use this as s_{max}
- In each outer iteration, select largest $s \leq s_{\max}$ such that $\kappa(\mathcal{Y}_k) \leq 1/\sqrt{\epsilon n}$
- Benefit: Maintain acceptable convergence rate regardless of user's choice of s
- Cost: Incremental condition number estimation in each outer iteration; potentially wasted SpMVs in each outer iteration

s values used = (6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 4, 5, 5)

MS4: Minimizing Communication in Numerical Algorithms Part I of II

Talks:

- 1. Communication-Avoiding Krylov Subspace Methods in Theory and Practice (*Erin Carson*)
- 2. Enlarged GMRES for Reducing Communication When Solving Reservoir Simulation Problems (*Hussam Al Daas*, Laura Grigori, Pascal Henon, Philippe Ricoux)
- 3. CA-SVM: Communication-Avoiding Support Vector Machines on Distributed Systems (*Yang You*)
- Outline of a New Roadmap to Permissive Communication and Applications That Can Benefit (*James A. Edwards* and Uzi Vishkin)

MS12: Minimizing Communication in Numerical Algorithms Part II of II

3:20 PM - 5:00 PM, Room: Salle des theses

- Communication-Efficient Evaluation of Matrix Polynomials (*Sivan A. Toledo*)
- Communication-Optimal Loop Nests (*Nicholas Knight*)
- 3. Write-Avoiding Algorithms (*Harsha Vardhan Simhadri*)
- 4. Lower Bound Techniques for Communication in the Memory Hierarchy (*Gianfranco Bilardi*)

Thank you!

Email: erinc@cims.nyu.edu Website: http://cims.nyu.edu/~erinc/ Matlab code: https://github.com/eccarson/ca-ksms

Residual Replacement Strategy

- Improve accuracy by replacing updated residual r_m by the true residual $b Ax_m$ in certain iterations
 - Related work for classical CG: van der Vorst and Ye (1999)
- Choose when to replace r_m with $b Ax_m$ to meet two constraints:
 - 1. $||b Ax_m r_m||$ is small
 - 2. Convergence rate is maintained (avoid large perturbations to finite precision CG recurrence)
- Based on derived bound on deviation of residuals, can devise a residual replacement strategy for CA-CG and CA-BICG
- Implementation has negligible cost → residual replacement strategy allows both speed and accuracy!

Residual Replacement for CA-CG

- Use computable bound for $||b Ax_{sk+j} r_{sk+j}||$ to update d_{sk+j} , an estimate of error in computing r_{sk+j} , in each iteration
- Set threshold $\hat{\varepsilon} \approx \sqrt{\varepsilon}$, replace whenever $d_{sk+j} / ||r_{sk+j}||$ reaches threshold

Pseudo-code for residual replacement with group update for CA-CG:

if
$$d_{sk+j-1} \leq \hat{\varepsilon} \| r_{sk+j-1} \|$$
 and $d_{sk+j} > \hat{\varepsilon} \| r_{sk+j} \|$ and $d_{sk+j} > 1.1d_{init}$
 $z = z + Y_k x'_{k,j} + x_{sk}$ group update of approximate solution
 $x_{sk+j} = 0$ set updated residual to true residual
 $d_{init} = d_{sk+j} = \varepsilon \left((1 + 2N') \|A\| \| \|z\| + \| r_{sk+j} \| \right)$
 $p_{sk+j} = Y_k p'_{k,j}$
break from inner loop and begin new outer loop
end

A Computable Bound for CA-CG

• In each iteration, update error estimate d_{sk+j} by:

O(sExtra computation all lower order termser s iterations to communication pnly increased by at most factor of 2!

$$\begin{split} d_{sk+j} &\equiv d_{sk+j-1} \\ &+ \varepsilon \big[(4+N') \big(\|A\| \| \| \hat{Y}_k| \cdot |\hat{x}'_{k,j}| \| + \| |\hat{Y}_k| \cdot |B_k| \cdot |\hat{x}'_{k,j}| \| \big) + \| |\hat{Y}_k| \cdot |\hat{r}'_{k,j}| \| \big] \\ &+ \varepsilon \begin{cases} \|A\| \| \hat{x}_{sk+s}\| + (2+2N') \|A\| \| \| \hat{Y}_k| \cdot |\hat{x}'_{k,s}| \| + N' \| |\hat{Y}_k| \cdot |\hat{r}'_{k,s}| \|, j = s \\ 0, \text{ otherwise} \end{cases} \end{split}$$

where $N' = \max(N, 2s + 1)$.

Model Problem: 2D Poisson, n = 262K, nnz = 1.3M, cond(A) $\approx 10^4$

"consph" matrix (3D FEM), From UFL Sparse Matrix Collection

 $n = 8.3 \times 10^4$, nnz = 6.0×10^6 , $\kappa(A) = 9.7 \times 10^3$, $||A||_2 = 9.7$

31

even with better bases

Iteration

n = 262K, nnz = 1.3M, cond(A) $\approx 10^4$

"consph" matrix (3D FEM), From UFL Sparse Matrix Collection

 $n = 8.3 \times 10^4$, nnz = 6.0×10^6 , $\kappa(A) = 9.7 \times 10^3$, $||A||_2 = 9.7$

Coarse-grid Krylov Solver on NERSC's Hopper (Cray XE6) Weak Scaling: 4³ points per process (0 slope ideal)

Solver performance and scalability limited by communication!

The Matrix Powers Kernel (Demmel et al., 2007)

Avoids communication:

- In serial, by exploiting temporal locality:
 - Reading A, reading vectors
- In parallel, by doing only 1 'expand' phase (instead of *s*).
- Requires sufficiently low 'surface-to-volume' ratio

Also works for general graphs! black = local elements
red = 1-level dependencies
green = 2-level dependencies
blue = 3-level dependencies

Tridiagonal Example:

Choosing a Polynomial Basis

- Recall: in each outer loop of CA-CG, we compute bases for some Krylov subspaces, $\mathcal{K}_m(A, v) = \operatorname{span}\{v, Av, \dots, A^{m-1}v\}$
- Simple loop unrolling gives monomial basis $Y = [p, Ap, A^2p, A^3p, ...]$
 - Condition number can grow exponentially with s
 - Condition number = ratio of largest to smallest eigenvalues, $\lambda_{\rm max}/\lambda_{\rm min}$
 - Recognized early on that this negatively affects convergence (Leland, 1989)
- Improve basis condition number to improve convergence: Use different polynomials to compute a basis for the same subspace.
- Two choices based on spectral information that usually lead to wellconditioned bases:
 - Newton polynomials
 - Chebyshev polynomials

History of *s*-step Krylov Methods

Recent Years...

The Amplification Term Γ

- Roundoff errors in CA variant follow same pattern as classical variant, but amplified by factor of Γ or Γ^2
 - Theoretically confirms observations on importance of basis conditioning (dating back to late '80s)
- Need $|||\mathcal{Y}||y'|||_2 \leq \Gamma ||\mathcal{Y}y'||_2$ to hold for the computed basis \mathcal{Y} and coordinate vector y' in every bound.
- A loose bound for the amplification term:

$$\Gamma \leq \max_{\ell \leq k} \|\mathcal{Y}_{\ell}^{+}\|_{2} \cdot \||\mathcal{Y}_{\ell}\|\|_{2} \leq (2s+1) \cdot \max_{\ell \leq k} \kappa(\mathcal{Y}_{\ell})$$

- What we really need: $|||\mathcal{Y}||y'|||_2 \leq \Gamma ||\mathcal{Y}y'||_2$ to hold for the computed basis \mathcal{Y} and coordinate vector y' in every bound.
- Tighter bound on Γ possible; requires some light bookkeeping
- Example:

$$\Gamma_{k,j} \equiv \max_{x \in \{\hat{w}'_{k,j}, \hat{u}'_{k,j}, \hat{v}'_{k,j}, \hat{v}'_{k,j-1}\}} \frac{\left\| |\hat{\mathcal{Y}}_k| |x| \right\|_2}{\left\| \hat{\mathcal{Y}}_k x \right\|_2}$$

More Current Work

- 2.5D symmetric eigensolver (Solomonik et al.)
- Write-Avoiding algorithms (talk by Harsha Vardhan Simhadri in afternoon session)
- CA sparse RRLU (Grigori, Cayrols, Demmel)
- CA Parallel Sparse-Dense Matrix-Matrix Multiplication (Koanantakool et al.)
- Lower bounds for general programs that access arrays (talk by Nick Knight in afternoon session)
- CA Support Vector Machines (talk by Yang You)
- CA-RRQR (Demmel, Grigori, Gu, Xiang)
- CA-SBR (Ballard, Demmel, Knight)

Dynamic basis size

- Auto-tune to find best s based on machine, matrix sparsity structure; use this as s_{max}
- In each outer iteration, select largest $s \leq s_{\max}$ such that

$$\kappa(\mathcal{Y}_k) \leq 1/\sqrt{\epsilon n}$$

- Benefit: Maintain acceptable convergence rate regardless of user's choice of s
- Cost: Incremental condition number estimation in each outer iteration; potentially wasted SpMVs in each outer iteration

(CA-)Lanczos Convergence Analysis

Finite precision Lanczos process: (A is $n \times n$ with at most N nonzeros per row)

$$\begin{split} A\hat{V}_{m} &= \hat{V}_{m}\hat{T}_{m} + \hat{\beta}_{m+1}\hat{v}_{m+1}e_{m}^{T} + \delta\hat{V}_{m} \\ \hat{V}_{m} &= [\hat{v}_{1}, \dots, \hat{v}_{m}], \quad \delta\hat{V}_{m} = [\delta\hat{v}_{1}, \dots, \delta\hat{v}_{m}], \quad \hat{T}_{m} = \begin{bmatrix} \hat{\alpha}_{1} & \hat{\beta}_{2} & & \\ \hat{\beta}_{2} & \ddots & \ddots & \\ & \ddots & \ddots & \hat{\beta}_{m} \\ & & \hat{\beta}_{m} & \hat{\alpha}_{m} \end{bmatrix} \\ \text{for } i \in \{1, \dots, m\}, \\ & \|\delta\hat{v}_{i}\|_{2} \leq \varepsilon_{1}\sigma \\ & \hat{\beta}_{i+1} |\hat{v}_{i}^{T}\hat{v}_{i+1}| \leq 2\varepsilon_{0}\sigma \\ & |\hat{v}_{i+1}^{T}\hat{v}_{i+1} - 1| \leq \varepsilon_{0}/2 \\ & |\hat{\beta}_{i+1}^{2} + \hat{\alpha}_{i}^{2} + \hat{\beta}_{i}^{2} - \|A\hat{v}_{i}\|_{2}^{2} | \leq 4i(3\varepsilon_{0} + \varepsilon_{1})\sigma^{2} \end{split} \text{ where } \sigma \equiv \|A\|_{2}, \text{ and } \\ \theta\sigma \equiv \||A|\|_{2} \end{split}$$

Classical Lanczos (Paige, 1976):

$$\varepsilon_0 = O(\varepsilon n)$$
$$\varepsilon_1 = O(\varepsilon N\theta)$$

CA-Lanczos (C., 2015): $\varepsilon_0 = O(\varepsilon n \Gamma^2)$ $\varepsilon_1 = O(\varepsilon N \theta \Gamma)$

$$\Gamma = \max_{\ell \le k} \, \|\mathcal{Y}_{\ell}^{+}\|_{2} \cdot \||\mathcal{Y}_{\ell}\|_{2}$$

Paige's Results for Classical Lanczos (1980)

- Using bounds on local rounding errors in Lanczos, showed that
 - 1. The computed eigenvalues always lie between the extreme eigenvalues of *A* to within a small multiple of machine precision.
 - 2. At least one small interval containing an eigenvalue of A is found by the *n*th iteration.
 - 3. The algorithm behaves numerically like Lanczos with full reorthogonalization until a very close eigenvalue approximation is found.
 - 4. The loss of orthogonality among basis vectors follows a rigorous pattern and implies that some computed eigenvalues have converged.

Do the same statements hold for CA-Lanczos?

Paige's Lanczos Convergence Analysis

$$\begin{split} A\hat{V}_m &= \hat{V}_m \hat{T}_m + \hat{\beta}_{m+1} \hat{v}_{m+1} e_m^T + \delta \hat{V}_m \\ \hat{V}_m &= [\hat{v}_1, \dots, \hat{v}_m], \quad \delta \hat{V}_m = [\delta \hat{v}_1, \dots, \delta \hat{v}_m], \quad \hat{T}_m = \begin{bmatrix} \hat{\alpha}_1 & \hat{\beta}_2 & & \\ \hat{\beta}_2 & \ddots & \ddots & \\ & \ddots & \ddots & \hat{\beta}_m \\ & & & \hat{\beta}_m & \hat{\alpha}_m \end{bmatrix} \end{split}$$

Classic Lanczos rounding error result of Paige (1976):

for
$$i \in \{1, ..., m\}$$
,

$$\begin{aligned} \|\delta \hat{v}_i\|_2 &\leq \varepsilon_1 \sigma \\ \hat{\beta}_{i+1} |\hat{v}_i^T \hat{v}_{i+1}| &\leq 2\varepsilon_0 \sigma \\ |\hat{v}_{i+1}^T \hat{v}_{i+1} - 1| &\leq \varepsilon_0/2 \\ |\hat{\beta}_{i+1}^2 + \hat{\alpha}_i^2 + \hat{\beta}_i^2 - \|A \hat{v}_i\|_2^2 &|\leq 4i(3\varepsilon_0 + \varepsilon_1)\sigma^2 \end{aligned}$$

where
$$\sigma \equiv ||A||_2$$
, $\theta \sigma \equiv ||A|||_2$, $\varepsilon_0 \equiv 2\varepsilon(n+4)$, and $\varepsilon_1 \equiv 2\varepsilon(N\theta+7)$
 \uparrow
 $\varepsilon_0 = O(\varepsilon n)$
 $\varepsilon_1 = O(\varepsilon N\theta)$

 \rightarrow These results form the basis for Paige's influential results in (Paige, 1980).

CA-Lanczos Convergence Analysis

Let
$$\Gamma \equiv \max_{\ell \le k} \|Y_{\ell}^+\|_2 \cdot \||Y_{\ell}\|\|_2 \le (2s+1) \cdot \max_{\ell \le k} \kappa(Y_{\ell}).$$

For CA-Lanczos, we have:

For
$$i \in \{1, \dots, m = sk + j\}$$
,
 $\|\delta \hat{v}_i\|_2 \leq \varepsilon_1 \sigma$
 $\hat{\beta}_{i+1} |\hat{v}_i^T \hat{v}_{i+1}| \leq 2\varepsilon_0 \sigma$
 $|\hat{v}_{i+1}^T \hat{v}_{i+1} - 1| \leq \varepsilon_0/2$
 $|\hat{\beta}_{i+1}^2 + \hat{\alpha}_i^2 + \hat{\beta}_i^2 - \|A \hat{v}_i\|_2^2| \leq 4i(3\varepsilon_0 + \varepsilon_1)\sigma^2$

 $\varepsilon_0 \equiv 2\varepsilon(n+11s+15) \Gamma^2 = O(\varepsilon n \Gamma^2)$, \leftarrow (vs. $O(\varepsilon n)$ for Lanczos)

 $\varepsilon_1 \equiv 2\varepsilon ((N+2s+5)\theta + (4s+9)\tau + 10s+16)\Gamma = O(\varepsilon N\theta\Gamma), \leftarrow (vs. O(\varepsilon N\theta) \text{ for Lanczos})$

where
$$\sigma \equiv ||A||_2$$
, $\theta \sigma \equiv ||A|||_2$, $\tau \sigma \equiv \max_{\ell \le k} ||B_\ell||_2$

Residual Replacement Strategy

- van der Vorst and Ye (1999): improve accuracy by replacing updated residual r_m by the true residual $b Ax_m$ in certain iterations
- Choose when to replace r_m with $b Ax_m$ to meet two constraints:
 - 1. $||b Ax_m r_m||$ is small
 - 2. Convergence rate is maintained (avoid large perturbations to finite precision CG recurrence)
- Requires monitoring estimate of deviation of residuals
- We can use the same strategy for CA-CG
- Implementation has negligible cost → residual replacement strategy can allow both speed and accuracy!

Iteration

n = 262K, nnz = 1.3M, cond(A) $\approx 10^4$

Hopper, 4 MPI Processes per node CG is PETSc solver 2D Poisson on 512^2 grid

Hopper, 4 MPI Processes per node CG is PETSc solver 2D Poisson on 1024^2 grid

Hopper, 4 MPI Processes per node CG is PETSc solver 2D Poisson on 2048^2 grid

Hopper, 4 MPI Processes per nodeCG is PETSc solver2D Poisson on 16^2 grid per process

Hopper, 4 MPI Processes per nodeCG is PETSc solver2D Poisson on 32^2 grid per process

Hopper, 4 MPI Processes per nodeCG is PETSc solver2D Poisson on 64^2 grid per process

Communication-Avoiding Krylov Method Speedups

- Recent results: CA-BICGSTAB used as geometric multigrid (GMG) bottom-solve (Williams, Carson, et al., IPDPS '14)
- Plot: Net time spent on different operations over one GMG bottom solve using 24,576 cores, 64³ points/core on fine grid, 4³ points/core on coarse grid
- Hopper at NERSC (Cray XE6), 4 6-core Opteron chips per node, Gemini network, 3D torus
- 3D Helmholtz equation $a\alpha u - b\nabla \cdot \beta \nabla u = f$ $\alpha = \beta = 1.0, a = b = 0.9$
- CA-BICGSTAB with s = 4
 4.2x speedup in Krylov solve;
 2.5x in overall GMG solve
- Implemented in BoxLib: applied to low-Mach number combustion and 3D N-body dark matter simulation apps

Benchmark timing breakdown

- Plot: Net time spent across all bottom solves at 24,576 cores, for BICGSTAB and CA-BICGSTAB with s = 4
- 11.2x reduction in MPI_AllReduce time (red)
 - BICGSTAB requires 6s more MPI_AllReduce's than CA-BICGSTAB
 - Less than theoretical 24x since messages in CA-BICGSTAB are larger, not always latency-limited
- P2P (blue) communication doubles for CA-BICGSTAB
 - Basis computation requires twice as many SpMVs (P2P) per iteration as BICGSTAB

Values	Example: stencil with variable coefficients				
of Matrix		implicit structure explicit values			
uo –					
esentati		implicit structure implicit values			
Repr	Example: stencil with constant coefficients				

Example: general
sparse matrix

explicit structure explicit values

explicit structure implicit values

Example: Laplacian matrix of a graph

Representation of Matrix Structures

Hoemmen (2010), Fig 2.5