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What is communication?

• Algorithms have two costs: computation and communication

• Communication : moving data between levels of memory hierarchy 
(sequential), between processors (parallel)

• On today’s computers, communication is expensive, computation is cheap, 
in terms of both time and energy!
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Future exascale systems

Petascale
Systems (2009)

Predicted Exascale
Systems

Factor 
Improvement

System Peak 2 ⋅ 1015 flops/s 1018 flops/s ~1000

Node Memory 
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect 
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency 1 𝜇s 0.5 𝜇s ~1
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• Gaps between communication/computation cost only growing larger in 
future systems

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 

• Avoiding communication will be essential for applications at exascale!



Minimize communication to save energy

Source: John Shalf, LBL



Work in CA algorithms

• For both dense and sparse linear algebra…

• More recently, extending communication-avoiding ideas to 
Machine Learning and optimization domains

• Prove lower bounds on communication cost of an algorithm

• Design new algorithms and implementations that meet 
these those bounds



Lots of speedups… 

• Up to 12x faster for 2.5D matmul on 64K core IBM BG/P 

• Up to 3x faster for tensor contractions on 2K core Cray XE/6 

• Up to 6.2x faster for All-Pairs-Shortest-Path on 24K core Cray CE6

• Up to 2.1x faster for 2.5D LU on 64K core IBM BG/P

• Up to 11.8x faster for direct N-body on 32K core IBM BG/P

• Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU

• Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere

• Up to 2x faster for 2.5D Strassen on 38K core Cray XT4

• Up to 4.2x faster for MiniGMG benchmark bottom solver, using CA-BICGSTAB (2.5x
for overall solve), 2.5x / 1.5x for combustion simulation code 

• Up to 42x for Parallel Direct 3-Body 

These and many more recent papers available at bebop.cs.berkeley.edu

bebop.cs.berkeley.edu


Krylov solvers: limited by communication
In terms of linear algebra operations:

Dependencies between communication-bound kernels 
in each iteration limit performance!

SpMV

orthogonalize

8

×

×

“Add a dimension to 𝒦𝑚”
 Sparse Matrix-Vector Multiplication (SpMV)
• Parallel: comm. vector entries w/ neighbors
• Sequential: read 𝐴/vectors from slow memory

“Orthogonalize (with respect to some ℒ𝑚)”
 Inner products

Parallel: global reduction (All-Reduce)
Sequential: multiple reads/writes to slow 
memory



Given: initial vector 𝑣1 with 𝑣1 2
= 1

𝑢1 = 𝐴𝑣1

for 𝑖 = 1, 2, … , until convergence do

𝛼𝑖 = 𝑣𝑖
𝑇𝑢𝑖

𝑤𝑖 = 𝑢𝑖 − 𝛼𝑖𝑣𝑖

𝛽𝑖+1 = 𝑤𝑖 2

𝑣𝑖+1 = 𝑤𝑖/𝛽𝑖+1

𝑢𝑖+1 = 𝐴𝑣𝑖+1 − 𝛽𝑖+1𝑣𝑖

end for

The classical Lanczos method
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SpMV

Inner products



Communication-Avoiding KSMs
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• Idea: Compute blocks of 𝑠 iterations at once 

• Communicate every 𝑠 iterations instead of every iteration

• Reduces communication cost by 𝑶(𝒔)! 

• (latency in parallel, latency and bandwidth in sequential)

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68) 
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van 

Rosendale, 1983;   Chronopoulos and Gear, 1989
• Goals: increasing parallelism, avoiding I/O, increasing “convergence rate”

• Resurgence of interest in recent years due to growing problem sizes; growing 
relative cost of communication



Communication-Avoiding KSMs: CA-Lanczos
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• Main idea: Unroll iteration loop by a factor of 𝑠; split iteration loop into an outer 
loop (k) and an inner loop (j)

• Key observation: starting at some iteration 𝑖 ≡ 𝑠𝑘 + 𝑗,

𝑣𝑠𝑘+𝑗 , 𝑢𝑠𝑘+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑣𝑠𝑘+1 + 𝒦𝑠+1 𝐴, 𝑢𝑠𝑘+1 for    𝑗 ∈ 1, … , 𝑠 + 1

For each block of s steps:
• Compute “basis matrix”:  𝒴𝑘 such that 

span 𝒴𝑘 = 𝒦𝑠+1 𝐴, 𝑣𝑠𝑘+1 + 𝒦𝑠+1 𝐴, 𝑢𝑠𝑘+1

• 𝑂(𝑠) SpMVs, requires reading 𝐴/communicating vectors only once using 
“matrix powers kernel”

• Orthogonalize: 𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

• One global reduction

• Perform 𝑠 iterations of updates for 𝑛-vectors by updating their 𝑂 𝑠
coordinates in 𝒴𝑘

• No communication



via CA Matrix 
Powers Kernel

Global reduction 

to compute 𝒢𝑘
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Local 
computations: no 
communication!

The CA-Lanczos method
Given: initial vector 𝑣1 with 𝑣1 2

= 1

𝑢1 = 𝐴𝑣1

for 𝑘 = 0, 1, … , until convergence do
Compute 𝒴𝑘 ,      compute 𝒢𝑘 = 𝒴𝑘

𝑇𝒴𝑘

Let 𝑣𝑘,1
′ = 𝑒1, 𝑢𝑘,1

′ = 𝑒𝑠+2

for 𝑗 = 1, … , 𝑠 do

𝛼𝑠𝑘+𝑗 = 𝑣𝑘,𝑗
′𝑇 𝒢𝑘𝑢𝑘,𝑗

′

𝑤𝑘,𝑗
′ = 𝑢𝑘,𝑗

′ − 𝛼𝑠𝑘+𝑗𝑣𝑘,𝑗
′

𝛽𝑠𝑘+𝑗+1 = 𝑤𝑘,𝑗
′𝑇 𝒢𝑘𝑤𝑘,𝑗

′ 1/2

𝑣𝑘,𝑗+1
′ = 𝑤𝑘,𝑗

′ / 𝛽𝑠𝑘+𝑗+1

𝑢𝑘,𝑗+1
′ = ℬ𝑘𝑣𝑘,𝑗+1

′ − 𝛽𝑠𝑘+𝑗+1𝑣𝑘,𝑗
′

end for
Compute 𝑣𝑠𝑘+𝑠+1 = 𝒴𝑘𝑣𝑘,𝑠+1

′ , 𝑢𝑠𝑘+𝑠+1 = 𝒴𝑘𝑢𝑘,𝑠+1
′

end for



Complexity comparison
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Flops Words Moved Messages

SpMV Orth. SpMV Orth. SpMV Orth.

Classical 
CG

𝑠𝑛

𝑝

𝑠𝑛

𝑝 𝑠  𝑛 𝑝 𝑠 log2 𝑝 𝑠 𝑠 log2 𝑝

CA-CG
𝑠𝑛

𝑝
𝑠2𝑛

𝑝
𝑠  𝑛 𝑝 𝑠2 log2 𝑝 1 log2 𝑝

All values in the table meant in the Big-O sense (i.e., lower order terms 
and constants not included)

Example of parallel (per processor) complexity for 𝑠 iterations of  Classical 
Lanczos vs. CA-Lanczos for a 2D 9-point stencil:

(Assuming each of 𝑝 processors owns 𝑛/𝑝 rows of the matrix and 𝑠 ≤ 𝑛/𝑝)



𝑠

Time per iteration



From theory to practice
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• CA-KSMs are mathematically equivalent to classical KSMs

• Roundoff error bounds generally grow with increasing 𝑠

• But can behave much differently in finite precision!

• Two effects of roundoff error:

1. Decrease in accuracy → Tradeoff: increasing blocking factor 
𝑠 past a certain point: accuracy limited

2. Delay of convergence → Tradeoff: increasing blocking factor 
𝑠 past a certain point: no speedup expected



𝑠

Time per iteration

𝑠

Number of iterations



Optimizing iterative method runtime

• Want to minimize total time of iterative solver 

• Time per iteration determined by matrix/preconditioner structure, 
machine parameters, basis size, etc. 

• Number of iterations depends on numerical properties of the 
matrix/preconditioner, basis size

Runtime = (time/iteration) x (# iterations)



x

𝑠

Time per iteration

𝑠

Number of iterations

𝑠

Total Time

=



Optimizing iterative method runtime

• Want to minimize total time of iterative solver 

• Speed per iteration determined by matrix/preconditioner structure, 
machine parameters, basis size, etc. 

• Number of iterations depends on numerical properties of the 
matrix/preconditioner, basis size

• Traditional auto-tuners tune kernels (e.g., SpMV and QR) to optimize speed 
per iteration

• This misses a big part of the equation!

• Goal: Combine offline auto-tuning with online techniques for achieving 
desired accuracy and a good convergence rate

• Requires a better understanding of behavior of iterative methods in finite 
precision

Runtime = (time/iteration) x (# iterations)



Main results

• Bounds on accuracy and convergence rate for CA methods 
can be written in terms of those for classical methods times 
an amplification factor

• Amplification factor depends on condition number of 
the s-step bases 𝒴𝑘 computed in each outer iteration

• These bounds can be used to design techniques to improve 
accuracy and convergence rate while still avoiding 
communication



Attainable accuracy of (CA)-CG

• Results for CG (Greenbaum, van der Vorst and Ye, others):

𝑏 − 𝐴𝑥𝑚 − 𝑟𝑚 ≤ 𝜀𝑁∗  

𝑖=0

𝑚

1 + 2𝑁 𝐴  𝑥𝑖 +  𝑟𝑖

• Results for CA-CG:

𝑏 − 𝐴𝑥𝑚 − 𝑟𝑚 ≤ 𝜀𝚪𝒌𝑁∗  

𝑖=0

𝑚

1 + 2𝑁 𝐴  𝑥𝑖 +  𝑟𝑖

where Γ𝑘 = max
ℓ≤𝑘

𝒴ℓ
+

2 ⋅ 𝒴ℓ 2

• Bound can be used for designing a “Residual Replacement” 
strategy for CA-CG  (based on van der Vorst and Ye, 1999)

• In tests, CA-CG accuracy improved up to 7 orders of 
magnitude for little additional cost



• Chris Paige’s results for classical Lanczos:
loss of orthogonality  eigenvalue convergence

if  𝜀𝑛 ≤
1
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Convergence and accuracy of CA-Lanczos
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and use it to design a better algorithm!

• This (and other results of Paige) also hold for CA-Lanczos if:

2𝜀 𝑛+11𝑠+15 Γ2 ≤
1

12
,       where Γ = max

ℓ≤𝑘
𝒴ℓ

+
2 ∙ 𝒴ℓ 2

• i.e., max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2 ≤ 24𝜖 𝑛 + 11𝑠 + 15
−  1 2

• We could approximate this constraint:

𝜅 𝒴𝑘 ≤ 1/ 𝜖𝑛



Dynamic basis size
• Auto-tune to find best 𝑠 based on machine, sparsity structure; use this as 𝑠max

• In each outer iteration, select largest 𝑠 ≤ 𝑠max such that 𝜅(𝒴𝑘) ≤ 1/ 𝜖𝑛

• Benefit: Maintain acceptable convergence rate regardless of user’s choice of s

• Cost: Incremental condition number estimation in each outer iteration; 
potentially wasted SpMVs in each outer iteration

s values used = (6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 4, 5, 5) 
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MS12: Minimizing Communication in 
Numerical Algorithms
Part II of II

1. Communication-Efficient Evaluation of Matrix 
Polynomials (Sivan A. Toledo)

2. Communication-Optimal Loop Nests (Nicholas 
Knight)

3. Write-Avoiding Algorithms (Harsha Vardhan
Simhadri)

4. Lower Bound Techniques for Communication in 
the Memory Hierarchy (Gianfranco Bilardi)

3:20 PM - 5:00 PM, Room: Salle des theses



Thank you!
Email: erinc@cims.nyu.edu

Website: http://cims.nyu.edu/~erinc/

Matlab code: https://github.com/eccarson/ca-ksms



Residual Replacement Strategy

• Improve accuracy by replacing updated residual 𝒓𝒎 by the true residual 

𝒃 − 𝑨𝒙𝒎 in certain iterations

• Related work for classical CG: van der Vorst and Ye (1999)
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• Based on derived bound on deviation of residuals, can devise a residual 
replacement strategy for CA-CG and CA-BICG 

• Choose when to replace 𝑟𝑚 with 𝑏 − 𝐴𝑥𝑚 to meet two constraints: 

1. 𝑏 − 𝐴𝑥𝑚 − 𝑟𝑚 is small  

2. Convergence rate is maintained (avoid large perturbations to finite 

precision CG recurrence)

• Implementation has negligible cost → residual replacement strategy allows 
both speed and accuracy!



if 𝑑𝑠𝑘+𝑗−1 ≤  𝜀 𝑟𝑠𝑘+𝑗−1 𝐚𝐧𝐝 𝑑𝑠𝑘+𝑗 >  𝜀 𝑟𝑠𝑘+𝑗 𝐚𝐧𝐝 𝑑𝑠𝑘+𝑗 > 1.1𝑑𝑖𝑛𝑖𝑡

𝑧 = 𝑧 + 𝑌𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘

𝑥𝑠𝑘+𝑗 = 0

𝑟𝑠𝑘+𝑗 = 𝑏 − 𝐴𝑧

𝑑𝑖𝑛𝑖𝑡 = 𝑑𝑠𝑘+𝑗= 𝜀 1 + 2𝑁′ 𝐴 𝑧 + 𝑟𝑠𝑘+𝑗

𝑝𝑠𝑘+𝑗 = 𝑌𝑘𝑝𝑘,𝑗
′

break from inner loop and begin new outer loop

end

Residual Replacement for CA-CG

• Use computable bound for 𝑏 − 𝐴𝑥𝑠𝑘+𝑗 − 𝑟𝑠𝑘+𝑗 to update 𝑑𝑠𝑘+𝑗, an estimate 
of error in computing 𝑟𝑠𝑘+𝑗, in each iteration

• Set threshold  𝜀 ≈ 𝜀, replace whenever 𝑑𝑠𝑘+𝑗/ 𝑟𝑠𝑘+𝑗 reaches threshold
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Pseudo-code for residual replacement with group update for CA-CG:

group update of approximate solution

set updated residual to true residual



• In each iteration, update error estimate 𝑑𝑠𝑘+𝑗 by:

A Computable Bound for CA-CG

otherwise

𝑗 = 𝑠

where  𝑁′ = max 𝑁, 2𝑠 + 1 .

Estimated only once𝑶(𝒔𝟐) flops per 𝒔 iterations; no communication
𝑶(𝒔𝟑) flops per 𝒔 iterations; ≤1 reduction per 𝒔 iterations 

to compute  𝒀𝒌
𝑻  𝒀𝒌

Extra computation all lower order terms; 
communication only increased by at most factor of 2!
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+𝜀  
𝐴  𝑥𝑠𝑘+𝑠 + 2+2𝑁′ 𝐴  𝑌𝑘 ∙  𝑥𝑘,𝑠

′ +𝑁′  𝑌𝑘 ∙  𝑟𝑘,𝑠
′ ,

0,

𝑑𝑠𝑘+𝑗 ≡ 𝑑𝑠𝑘+𝑗−1

+𝜀 4+𝑁′ 𝐴  𝑌𝑘 ∙  𝑥𝑘,𝑗
′ +  𝑌𝑘 ∙ 𝐵𝑘 ∙  𝑥𝑘,𝑗

′ +  𝑌𝑘 ∙  𝑟𝑘,𝑗
′



CG true
CG updated
CA-CG (monomial) true
CA-CG (monomial) updated

Model Problem: 2D Poisson, n = 262K, nnz = 1.3M, cond(A) ≈ 104

CG true
CG updated
CA-CG (monomial) true
CA-CG (monomial) updated
CA-CG (Newton) true
CA-CG (Newton) updated
CA-CG (Chebyshev) true
CA-CG (Chebyshev) updated

CA-CG Convergence, s = 8 CA-CG Convergence, s = 16

Better basis 
choice allows 

higher s values
But can still see 
loss of accuracy
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CG true
CG updated
CA-CG (monomial) true
CA-CG (monomial) updated
CA-CG (Newton) true
CA-CG (Newton) updated
CA-CG (Chebyshev) true
CA-CG (Chebyshev) updated

“consph” matrix (3D FEM), From UFL Sparse Matrix Collection

𝑛 = 8.3 × 104, nnz = 6.0 × 106, 𝜅 𝐴 = 9.7 × 103, 𝐴 2 = 9.7

For real problems, loss of 
accuracy becomes evident 

even with better bases

CA-CG Convergence, s = 12



CG true
CG updated
CA-CG (monomial) true
CA-CG (monomial) updated
CA-CG (Newton) true
CA-CG (Newton) updated
CA-CG (Chebyshev) true
CA-CG (Chebyshev) updated

Model Problem: 2D Poisson (5 pt stencil), 
n = 262K, nnz = 1.3M, cond(A) ≈ 104

CA-CG Convergence, s = 4 CA-CG Convergence, s = 8

CA-CG Convergence, s = 16



Model Problem: 2D Poisson (5 pt stencil), 
n = 262K, nnz = 1.3M, cond(A) ≈ 10^4

CG-RR true
CG-RR updated
CA-CG-RR (monomial) true
CA-CG-RR (monomial) updated
CA-CG-RR (Newton) true
CA-CG-RR (Newton) updated
CA-CG-RR (Chebyshev) true
CA-CG-RR (Chebyshev) updated

Residual Replacement 
can improve accuracy 
orders of magnitude 

for negligible cost

Maximum 
replacement steps 

(extra communication 
steps) for any test: 8

CA-CG Convergence, s = 4 CA-CG Convergence, s = 8

CA-CG Convergence, s = 16
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“consph” matrix (3D FEM), From UFL Sparse Matrix Collection

𝑛 = 8.3 × 104, nnz = 6.0 × 106, 𝜅 𝐴 = 9.7 × 103, 𝐴 2 = 9.7

CA-CG Convergence, s = 12

CG-RR true
CG-RR updated
CA-CG-RR (monomial) true
CA-CG-RR (monomial) updated
CA-CG-RR (Newton) true
CA-CG-RR (Newton) updated
CA-CG-RR (Chebyshev) true
CA-CG-RR (Chebyshev) updated

Maximum number of 
replacements: 4
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Coarse-grid Krylov Solver on NERSC’s Hopper (Cray XE6)

Weak Scaling: 43 points per process (0 slope ideal)

Solver performance and scalability limited by communication!



Avoids communication:

• In serial, by exploiting temporal locality:

• Reading 𝐴, reading vectors

• In parallel, by doing only 1 ‘expand’ phase 
(instead of 𝑠).

• Requires sufficiently low ‘surface-to-volume’ 
ratio

Tridiagonal Example:

The Matrix Powers Kernel (Demmel et al., 2007)

36

Sequential

Parallel

A3v
A2v
Av

v

A3v
A2v
Av

v

black = local elements
red = 1-level dependencies
green = 2-level dependencies
blue = 3-level dependencies

Also works for 
general graphs!



Choosing a Polynomial Basis
• Recall: in each outer loop of CA-CG, we compute bases for some Krylov

subspaces,  𝒦𝑚 𝐴, 𝑣 = span{𝑣, 𝐴𝑣, … , 𝐴𝑚−1𝑣}
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• Two choices based on spectral information that usually lead to well-
conditioned bases:

• Newton polynomials 

• Chebyshev polynomials

• Simple loop unrolling gives monomial basis 𝑌 = 𝑝, 𝐴𝑝, 𝐴2𝑝, 𝐴3𝑝, …

• Condition number can grow exponentially with 𝑠

• Condition number = ratio of largest to smallest eigenvalues, 
𝜆max/𝜆min

• Recognized early on that this negatively affects convergence 
(Leland, 1989)

• Improve basis condition number to improve convergence:  Use different 
polynomials to compute a basis for the same subspace. 



History of 𝑠-step Krylov Methods
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1983

Van 
Rosendale: 

CG

1988

Walker: 
GMRES

Chronopoulos
and Gear: CG

1990 1991 1992

First termed 
“s-step 

methods”

de Sturler: 
GMRES

1989

Bai, Hu, and Reichel:
GMRES

Chronopoulos
and Kim: 

Nonsymm. 
Lanczos

Joubert and 
Carey: GMRES

Erhel:
GMRES

Toledo: CG

de Sturler and 
van der Vorst: 

GMRES

1995 2001

Chronopoulos
and Kinkaid: 

Orthodir

Chronopoulos and 
Kim: Orthomin, 

GMRES Chronopoulos: 
MINRES, GCR, 

Orthomin

Kim and 
Chronopoulos:  
Arndoli, Symm. 

Lanczos

Leland: 
CG



Recent Years…
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2010 2011 2014

Hoemmen:
Arnoldi, 
GMRES, 

Lanczos, CG

First termed 
“CA” methods; first TSQR, 

general matrix powers 
kernel

Carson, 
Knight, and 
Demmel: 

BICG, CGS, 
BICGSTAB

Ballard, Carson, 
Demmel, Hoemmen, 

Knight, Schwartz:
Arnoldi, GMRES, 

Nonsymm. Lanczos

Carson and 
Demmel: 2-term 

Lanczos

Carson and 
Demmel:
CG-RR, 

BICG-RR

First theoretical 
results on finite 

precision behavior

2012 2013

Feuerriegel
and Bücker: 
Lanczos, 
BICG, QMR

Grigori, 
Moufawad, Nataf: 

CG

First 
CA-BICGSTAB 

method



The Amplification Term Γ
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• Roundoff errors in CA variant follow same pattern as classical variant, but 
amplified by factor of Γ or Γ2

• Theoretically confirms observations on importance of basis conditioning 
(dating back to late ‘80s)

• Need 𝒴 |𝑦′| 2 ≤ Γ 𝒴𝑦′ 2 to hold for the computed basis 𝒴
and coordinate vector 𝑦′ in every bound.

• A loose bound for the amplification term:

Γ ≤ max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2 ≤ 2𝑠+1 ∙ max
ℓ≤𝑘

𝜅 𝒴ℓ

• What we really need: 𝒴 |𝑦′| 2 ≤ Γ 𝒴𝑦′ 2 to hold for the computed basis 𝒴
and coordinate vector 𝑦′ in every bound.

• Tighter bound on 𝚪 possible; requires some light bookkeeping 

• Example:

Γ𝑘,𝑗 ≡ max
𝑥∈{  𝑤𝑘,𝑗

′ , 𝑢𝑘,𝑗
′ ,  𝑣𝑘,𝑗

′ ,  𝑣𝑘,𝑗−1
′ }

 𝒴𝑘 𝑥
2

 𝒴𝑘𝑥
2



More Current Work
• 2.5D symmetric eigensolver (Solomonik et al.)

• Write-Avoiding algorithms (talk by Harsha Vardhan
Simhadri in afternoon session)

• CA sparse RRLU (Grigori, Cayrols, Demmel)

• CA Parallel Sparse-Dense Matrix-Matrix 
Multiplication (Koanantakool et al.)

• Lower bounds for general programs that access 
arrays (talk by Nick Knight in afternoon session)

• CA Support Vector Machines (talk by Yang You)

• CA-RRQR (Demmel, Grigori, Gu, Xiang)

• CA-SBR (Ballard, Demmel, Knight)



Dynamic basis size
• Auto-tune to find best 𝑠 based on machine, matrix sparsity structure; use this as 𝑠max

• In each outer iteration, select largest 𝑠 ≤ 𝑠max such that 

𝜅(𝒴𝑘) ≤ 1/ 𝜖𝑛

• Benefit: Maintain acceptable convergence rate regardless of user’s choice of s

• Cost: Incremental condition number estimation in each outer iteration; potentially 
wasted SpMVs in each outer iteration

s values used = (6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4)



Finite precision Lanczos process: (𝐴 is 𝑛 × 𝑛 with at most 𝑁 nonzeros per row)

𝐴  𝑉𝑚 =  𝑉𝑚
 𝑇𝑚 +  𝛽𝑚+1  𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿  𝑉𝑚

 𝑉𝑚 =  𝑣1, … ,  𝑣𝑚 ,       𝛿  𝑉𝑚 = 𝛿  𝑣1, … , 𝛿  𝑣𝑚 ,          𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱  𝛽𝑚

 𝛽𝑚  𝛼𝑚

(CA-)Lanczos Convergence Analysis

Classical Lanczos (Paige, 1976): 

for 𝑖 ∈ {1, … , 𝑚},
𝛿  𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇  𝑣𝑖+1 − 1 ≤  𝜀0 2

 𝛽𝑖+1
2 +  𝛼𝑖

2 +  𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2
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where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

CA-Lanczos (C., 2015):

𝜀0 = 𝑂 𝜀𝑛

𝜀1 = 𝑂 𝜀𝑁𝜃

𝜀0 = 𝑂 𝜀𝑛𝚪𝟐

𝜀1 = 𝑂 𝜀𝑁𝜃𝚪

Γ = max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2



Paige’s Results for Classical Lanczos (1980)

• Using bounds on local rounding errors in Lanczos, showed that

1. The computed eigenvalues always lie between the extreme 
eigenvalues of 𝐴 to within a small multiple of machine 
precision.

2. At least one small interval containing an eigenvalue of 𝐴 is 
found by the 𝑛th iteration.

3. The algorithm behaves numerically like Lanczos with full 
reorthogonalization until a very close eigenvalue 
approximation is found.

4. The loss of orthogonality among basis vectors follows a 
rigorous pattern and implies that some computed eigenvalues 
have converged.

Do the same statements hold for CA-Lanczos?
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𝐴  𝑉𝑚 =  𝑉𝑚
 𝑇𝑚 +  𝛽𝑚+1  𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿  𝑉𝑚

 𝑉𝑚 =  𝑣1, … ,  𝑣𝑚 ,       𝛿  𝑉𝑚 = 𝛿  𝑣1, … , 𝛿  𝑣𝑚 ,          𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱  𝛽𝑚

 𝛽𝑚  𝛼𝑚

Paige’s Lanczos Convergence Analysis

Classic Lanczos rounding 
error result of Paige (1976): 

 These results form the basis for Paige’s influential results in (Paige, 1980). 

𝜀0 = 𝑂 𝜀𝑛 𝜀1 = 𝑂 𝜀𝑁𝜃

for 𝑖 ∈ {1, … , 𝑚},
𝛿  𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇  𝑣𝑖+1 − 1 ≤  𝜀0 2

 𝛽𝑖+1
2 +  𝛼𝑖

2 +  𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2
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where 𝜎 ≡ 𝐴 2,    𝜃𝜎 ≡ 𝐴 2, 𝜀0 ≡ 2𝜀 𝑛 + 4 , and 𝜀1 ≡ 2𝜀 𝑁𝜃 + 7



CA-Lanczos Convergence Analysis

for 𝑖 ∈ {1, … , 𝑚=𝑠𝑘+𝑗},
𝛿  𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇  𝑣𝑖+1 − 1 ≤  𝜀0 2

 𝛽𝑖+1
2 +  𝛼𝑖

2 +  𝛽𝑖
2 − 𝐴  𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

For CA-Lanczos, 
we have:

(vs. 𝑂 𝜀𝑛 for Lanczos)

(vs. 𝑂 𝜀𝑁𝜃 for Lanczos)
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Let  Γ ≡ max
ℓ≤𝑘

𝑌ℓ
+

2 ∙ 𝑌ℓ 2 ≤ 2𝑠+1 ∙ max
ℓ≤𝑘

𝜅 𝑌ℓ .

𝜀0 ≡ 2𝜀 𝑛+11𝑠+15 Γ2 = 𝑂 𝜀𝑛Γ2 ,

𝜀1 ≡ 2𝜀 N+2𝑠+5 𝜃 + 4𝑠+9 𝜏 + 10𝑠+16 Γ = 𝑂 𝜀𝑁𝜃Γ ,

where  𝜎 ≡ 𝐴 2, 𝜃𝜎 ≡ 𝐴 2,   𝜏𝜎 ≡ max
ℓ≤𝑘

𝐵ℓ 2



Residual Replacement Strategy

• van der Vorst and Ye (1999): improve accuracy by replacing updated 

residual 𝒓𝒎 by the true residual 𝒃 − 𝑨𝒙𝒎 in certain iterations
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• Choose when to replace 𝑟𝑚 with 𝑏 − 𝐴𝑥𝑚 to meet two constraints: 

1. 𝑏 − 𝐴𝑥𝑚 − 𝑟𝑚 is small  

2. Convergence rate is maintained (avoid large perturbations to finite 

precision CG recurrence)

• Requires monitoring estimate of deviation of residuals

• We can use the same strategy for CA-CG

• Implementation has negligible cost → residual replacement strategy can 
allow both speed and accuracy!



CG true
CG updated
CA-CG (monomial) true
CA-CG (monomial) updated
CA-CG (Newton) true
CA-CG (Newton) updated
CA-CG (Chebyshev) true
CA-CG (Chebyshev) updated

Model Problem: 2D Poisson (5 pt stencil), 
n = 262K, nnz = 1.3M, cond(A) ≈ 104

CA-CG Convergence, s = 4 CA-CG Convergence, s = 8

CA-CG Convergence, s = 16



Model Problem: 2D Poisson (5 pt stencil), 
n = 262K, nnz = 1.3M, cond(A) ≈ 10^4

CG-RR true
CG-RR updated
CA-CG-RR (monomial) true
CA-CG-RR (monomial) updated
CA-CG-RR (Newton) true
CA-CG-RR (Newton) updated
CA-CG-RR (Chebyshev) true
CA-CG-RR (Chebyshev) updated

Residual Replacement 
can improve accuracy 
orders of magnitude 

for negligible cost

Maximum 
replacement steps 

(extra communication 
steps) for any test: 8

CA-CG Convergence, s = 4 CA-CG Convergence, s = 8

CA-CG Convergence, s = 16



Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 512^2 grid



Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 1024^2 grid



Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 2048^2 grid



Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 16^2 grid per process



Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 32^2 grid per process



Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 64^2 grid per process



Communication-Avoiding Krylov Method Speedups
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• Recent results: CA-BICGSTAB used as geometric multigrid (GMG) bottom-solve 
(Williams, Carson, et al., IPDPS ‘14)

• Plot: Net time spent on different operations over one GMG bottom solve using 
24,576 cores, 643 points/core on fine grid, 43 points/core on coarse grid

• Hopper at NERSC (Cray XE6),  4  6-core Opteron chips per node, Gemini network, 
3D torus

• CA-BICGSTAB with 𝒔 = 𝟒

• 3D Helmholtz equation 

𝑎𝛼𝑢 − 𝑏𝛻 ⋅ 𝛽𝛻𝑢 = 𝑓

𝛼 = 𝛽 = 1.0, 𝑎 = 𝑏 = 0.9

4.2x speedup in Krylov solve;  
2.5x in overall GMG solve

• Implemented in BoxLib: applied to 
low-Mach number combustion and 3D 
N-body dark matter simulation apps



Benchmark timing breakdown
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• Plot: Net time spent across all bottom solves at 24,576 cores, for 
BICGSTAB and CA-BICGSTAB with 𝑠 = 4

• 11.2x reduction in MPI_AllReduce time (red)

– BICGSTAB requires 6𝑠 more MPI_AllReduce’s than CA-BICGSTAB 

– Less than theoretical 24x 
since messages in CA-
BICGSTAB are larger, not 
always latency-limited

• P2P (blue) communication 
doubles for CA-BICGSTAB

– Basis computation 
requires twice as many 
SpMVs (P2P) per iteration 
as BICGSTAB
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Representation of Matrix Structures
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Example: stencil with 
variable coefficients

explicit structure
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implicit structure
explicit values

implicit structure
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Example: stencil with 
constant coefficients

Example: Laplacian
matrix of a graph

Example: general 
sparse matrix

Hoemmen (2010), Fig 2.5
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