
MS4: Minimizing Communication in
Numerical Algorithms
Part I of II
Organizers: Oded Schwartz (Hebrew University of Jerusalem) and

Erin Carson (New York University)

Talks:

1. Communication-Avoiding Krylov Subspace Methods in Theory
and Practice (Erin Carson)

2. Enlarged GMRES for Reducing Communication When Solving
Reservoir Simulation Problems (Hussam Al Daas, Laura Grigori,
Pascal Henon, Philippe Ricoux)

3. CA-SVM: Communication-Avoiding Support Vector Machines
on Distributed Systems (Yang You)

4. Outline of a New Roadmap to Permissive Communication and
Applications That Can Benefit (James A. Edwards and Uzi
Vishkin)

Communication-Avoiding
Krylov Subspace Methods

in Theory and Practice
Erin Carson

Courant Institute @ NYU

April 12, 2016

SIAM PP 16

What is communication?

• Algorithms have two costs: computation and communication

• Communication : moving data between levels of memory hierarchy
(sequential), between processors (parallel)

• On today’s computers, communication is expensive, computation is cheap,
in terms of both time and energy!

2

Sequential Parallel

CPU
Cache

CPU
DRAM

DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

Future exascale systems

Petascale
Systems (2009)

Predicted Exascale
Systems

Factor
Improvement

System Peak 2 ⋅ 1015 flops/s 1018 flops/s ~1000

Node Memory
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency 1 𝜇s 0.5 𝜇s ~1

4

• Gaps between communication/computation cost only growing larger in
future systems

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

• Avoiding communication will be essential for applications at exascale!

Minimize communication to save energy

Source: John Shalf, LBL

Work in CA algorithms

• For both dense and sparse linear algebra…

• More recently, extending communication-avoiding ideas to
Machine Learning and optimization domains

• Prove lower bounds on communication cost of an algorithm

• Design new algorithms and implementations that meet
these those bounds

Lots of speedups…

• Up to 12x faster for 2.5D matmul on 64K core IBM BG/P

• Up to 3x faster for tensor contractions on 2K core Cray XE/6

• Up to 6.2x faster for All-Pairs-Shortest-Path on 24K core Cray CE6

• Up to 2.1x faster for 2.5D LU on 64K core IBM BG/P

• Up to 11.8x faster for direct N-body on 32K core IBM BG/P

• Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU

• Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere

• Up to 2x faster for 2.5D Strassen on 38K core Cray XT4

• Up to 4.2x faster for MiniGMG benchmark bottom solver, using CA-BICGSTAB (2.5x
for overall solve), 2.5x / 1.5x for combustion simulation code

• Up to 42x for Parallel Direct 3-Body

These and many more recent papers available at bebop.cs.berkeley.edu

bebop.cs.berkeley.edu

Krylov solvers: limited by communication
In terms of linear algebra operations:

Dependencies between communication-bound kernels
in each iteration limit performance!

SpMV

orthogonalize

8

×

×

“Add a dimension to 𝒦𝑚”
 Sparse Matrix-Vector Multiplication (SpMV)
• Parallel: comm. vector entries w/ neighbors
• Sequential: read 𝐴/vectors from slow memory

“Orthogonalize (with respect to some ℒ𝑚)”
 Inner products

Parallel: global reduction (All-Reduce)
Sequential: multiple reads/writes to slow
memory

Given: initial vector 𝑣1 with 𝑣1 2
= 1

𝑢1 = 𝐴𝑣1

for 𝑖 = 1, 2, … , until convergence do

𝛼𝑖 = 𝑣𝑖
𝑇𝑢𝑖

𝑤𝑖 = 𝑢𝑖 − 𝛼𝑖𝑣𝑖

𝛽𝑖+1 = 𝑤𝑖 2

𝑣𝑖+1 = 𝑤𝑖/𝛽𝑖+1

𝑢𝑖+1 = 𝐴𝑣𝑖+1 − 𝛽𝑖+1𝑣𝑖

end for

The classical Lanczos method

6

SpMV

Inner products

Communication-Avoiding KSMs

7

• Idea: Compute blocks of 𝑠 iterations at once

• Communicate every 𝑠 iterations instead of every iteration

• Reduces communication cost by 𝑶(𝒔)!

• (latency in parallel, latency and bandwidth in sequential)

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68)
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van

Rosendale, 1983; Chronopoulos and Gear, 1989
• Goals: increasing parallelism, avoiding I/O, increasing “convergence rate”

• Resurgence of interest in recent years due to growing problem sizes; growing
relative cost of communication

Communication-Avoiding KSMs: CA-Lanczos

8

• Main idea: Unroll iteration loop by a factor of 𝑠; split iteration loop into an outer
loop (k) and an inner loop (j)

• Key observation: starting at some iteration 𝑖 ≡ 𝑠𝑘 + 𝑗,

𝑣𝑠𝑘+𝑗 , 𝑢𝑠𝑘+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑣𝑠𝑘+1 + 𝒦𝑠+1 𝐴, 𝑢𝑠𝑘+1 for 𝑗 ∈ 1, … , 𝑠 + 1

For each block of s steps:
• Compute “basis matrix”: 𝒴𝑘 such that

span 𝒴𝑘 = 𝒦𝑠+1 𝐴, 𝑣𝑠𝑘+1 + 𝒦𝑠+1 𝐴, 𝑢𝑠𝑘+1

• 𝑂(𝑠) SpMVs, requires reading 𝐴/communicating vectors only once using
“matrix powers kernel”

• Orthogonalize: 𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

• One global reduction

• Perform 𝑠 iterations of updates for 𝑛-vectors by updating their 𝑂 𝑠
coordinates in 𝒴𝑘

• No communication

via CA Matrix
Powers Kernel

Global reduction

to compute 𝒢𝑘

10

Local
computations: no
communication!

The CA-Lanczos method
Given: initial vector 𝑣1 with 𝑣1 2

= 1

𝑢1 = 𝐴𝑣1

for 𝑘 = 0, 1, … , until convergence do
Compute 𝒴𝑘 , compute 𝒢𝑘 = 𝒴𝑘

𝑇𝒴𝑘

Let 𝑣𝑘,1
′ = 𝑒1, 𝑢𝑘,1

′ = 𝑒𝑠+2

for 𝑗 = 1, … , 𝑠 do

𝛼𝑠𝑘+𝑗 = 𝑣𝑘,𝑗
′𝑇 𝒢𝑘𝑢𝑘,𝑗

′

𝑤𝑘,𝑗
′ = 𝑢𝑘,𝑗

′ − 𝛼𝑠𝑘+𝑗𝑣𝑘,𝑗
′

𝛽𝑠𝑘+𝑗+1 = 𝑤𝑘,𝑗
′𝑇 𝒢𝑘𝑤𝑘,𝑗

′ 1/2

𝑣𝑘,𝑗+1
′ = 𝑤𝑘,𝑗

′ / 𝛽𝑠𝑘+𝑗+1

𝑢𝑘,𝑗+1
′ = ℬ𝑘𝑣𝑘,𝑗+1

′ − 𝛽𝑠𝑘+𝑗+1𝑣𝑘,𝑗
′

end for
Compute 𝑣𝑠𝑘+𝑠+1 = 𝒴𝑘𝑣𝑘,𝑠+1

′ , 𝑢𝑠𝑘+𝑠+1 = 𝒴𝑘𝑢𝑘,𝑠+1
′

end for

Complexity comparison

11

Flops Words Moved Messages

SpMV Orth. SpMV Orth. SpMV Orth.

Classical
CG

𝑠𝑛

𝑝

𝑠𝑛

𝑝 𝑠 𝑛 𝑝 𝑠 log2 𝑝 𝑠 𝑠 log2 𝑝

CA-CG
𝑠𝑛

𝑝
𝑠2𝑛

𝑝
𝑠 𝑛 𝑝 𝑠2 log2 𝑝 1 log2 𝑝

All values in the table meant in the Big-O sense (i.e., lower order terms
and constants not included)

Example of parallel (per processor) complexity for 𝑠 iterations of Classical
Lanczos vs. CA-Lanczos for a 2D 9-point stencil:

(Assuming each of 𝑝 processors owns 𝑛/𝑝 rows of the matrix and 𝑠 ≤ 𝑛/𝑝)

𝑠

Time per iteration

From theory to practice

13

• CA-KSMs are mathematically equivalent to classical KSMs

• Roundoff error bounds generally grow with increasing 𝑠

• But can behave much differently in finite precision!

• Two effects of roundoff error:

1. Decrease in accuracy → Tradeoff: increasing blocking factor
𝑠 past a certain point: accuracy limited

2. Delay of convergence → Tradeoff: increasing blocking factor
𝑠 past a certain point: no speedup expected

𝑠

Time per iteration

𝑠

Number of iterations

Optimizing iterative method runtime

• Want to minimize total time of iterative solver

• Time per iteration determined by matrix/preconditioner structure,
machine parameters, basis size, etc.

• Number of iterations depends on numerical properties of the
matrix/preconditioner, basis size

Runtime = (time/iteration) x (# iterations)

x

𝑠

Time per iteration

𝑠

Number of iterations

𝑠

Total Time

=

Optimizing iterative method runtime

• Want to minimize total time of iterative solver

• Speed per iteration determined by matrix/preconditioner structure,
machine parameters, basis size, etc.

• Number of iterations depends on numerical properties of the
matrix/preconditioner, basis size

• Traditional auto-tuners tune kernels (e.g., SpMV and QR) to optimize speed
per iteration

• This misses a big part of the equation!

• Goal: Combine offline auto-tuning with online techniques for achieving
desired accuracy and a good convergence rate

• Requires a better understanding of behavior of iterative methods in finite
precision

Runtime = (time/iteration) x (# iterations)

Main results

• Bounds on accuracy and convergence rate for CA methods
can be written in terms of those for classical methods times
an amplification factor

• Amplification factor depends on condition number of
the s-step bases 𝒴𝑘 computed in each outer iteration

• These bounds can be used to design techniques to improve
accuracy and convergence rate while still avoiding
communication

Attainable accuracy of (CA)-CG

• Results for CG (Greenbaum, van der Vorst and Ye, others):

𝑏 − 𝐴𝑥𝑚 − 𝑟𝑚 ≤ 𝜀𝑁∗

𝑖=0

𝑚

1 + 2𝑁 𝐴 𝑥𝑖 + 𝑟𝑖

• Results for CA-CG:

𝑏 − 𝐴𝑥𝑚 − 𝑟𝑚 ≤ 𝜀𝚪𝒌𝑁∗

𝑖=0

𝑚

1 + 2𝑁 𝐴 𝑥𝑖 + 𝑟𝑖

where Γ𝑘 = max
ℓ≤𝑘

𝒴ℓ
+

2 ⋅ 𝒴ℓ 2

• Bound can be used for designing a “Residual Replacement”
strategy for CA-CG (based on van der Vorst and Ye, 1999)

• In tests, CA-CG accuracy improved up to 7 orders of
magnitude for little additional cost

• Chris Paige’s results for classical Lanczos:
loss of orthogonality eigenvalue convergence

if 𝜀𝑛 ≤
1

12

Convergence and accuracy of CA-Lanczos

18

and use it to design a better algorithm!

• This (and other results of Paige) also hold for CA-Lanczos if:

2𝜀 𝑛+11𝑠+15 Γ2 ≤
1

12
, where Γ = max

ℓ≤𝑘
𝒴ℓ

+
2 ∙ 𝒴ℓ 2

• i.e., max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2 ≤ 24𝜖 𝑛 + 11𝑠 + 15
− 1 2

• We could approximate this constraint:

𝜅 𝒴𝑘 ≤ 1/ 𝜖𝑛

Dynamic basis size
• Auto-tune to find best 𝑠 based on machine, sparsity structure; use this as 𝑠max

• In each outer iteration, select largest 𝑠 ≤ 𝑠max such that 𝜅(𝒴𝑘) ≤ 1/ 𝜖𝑛

• Benefit: Maintain acceptable convergence rate regardless of user’s choice of s

• Cost: Incremental condition number estimation in each outer iteration;
potentially wasted SpMVs in each outer iteration

s values used = (6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 4, 5, 5)

MS4: Minimizing Communication in
Numerical Algorithms
Part I of II
Talks:

1. Communication-Avoiding Krylov Subspace Methods
in Theory and Practice (Erin Carson)

2. Enlarged GMRES for Reducing Communication When
Solving Reservoir Simulation Problems (Hussam Al
Daas, Laura Grigori, Pascal Henon, Philippe Ricoux)

3. CA-SVM: Communication-Avoiding Support Vector
Machines on Distributed Systems (Yang You)

4. Outline of a New Roadmap to Permissive
Communication and Applications That Can Benefit
(James A. Edwards and Uzi Vishkin)

MS12: Minimizing Communication in
Numerical Algorithms
Part II of II

1. Communication-Efficient Evaluation of Matrix
Polynomials (Sivan A. Toledo)

2. Communication-Optimal Loop Nests (Nicholas
Knight)

3. Write-Avoiding Algorithms (Harsha Vardhan
Simhadri)

4. Lower Bound Techniques for Communication in
the Memory Hierarchy (Gianfranco Bilardi)

3:20 PM - 5:00 PM, Room: Salle des theses

Thank you!
Email: erinc@cims.nyu.edu

Website: http://cims.nyu.edu/~erinc/

Matlab code: https://github.com/eccarson/ca-ksms

Residual Replacement Strategy

• Improve accuracy by replacing updated residual 𝒓𝒎 by the true residual

𝒃 − 𝑨𝒙𝒎 in certain iterations

• Related work for classical CG: van der Vorst and Ye (1999)

27

• Based on derived bound on deviation of residuals, can devise a residual
replacement strategy for CA-CG and CA-BICG

• Choose when to replace 𝑟𝑚 with 𝑏 − 𝐴𝑥𝑚 to meet two constraints:

1. 𝑏 − 𝐴𝑥𝑚 − 𝑟𝑚 is small

2. Convergence rate is maintained (avoid large perturbations to finite

precision CG recurrence)

• Implementation has negligible cost → residual replacement strategy allows
both speed and accuracy!

if 𝑑𝑠𝑘+𝑗−1 ≤ 𝜀 𝑟𝑠𝑘+𝑗−1 𝐚𝐧𝐝 𝑑𝑠𝑘+𝑗 > 𝜀 𝑟𝑠𝑘+𝑗 𝐚𝐧𝐝 𝑑𝑠𝑘+𝑗 > 1.1𝑑𝑖𝑛𝑖𝑡

𝑧 = 𝑧 + 𝑌𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘

𝑥𝑠𝑘+𝑗 = 0

𝑟𝑠𝑘+𝑗 = 𝑏 − 𝐴𝑧

𝑑𝑖𝑛𝑖𝑡 = 𝑑𝑠𝑘+𝑗= 𝜀 1 + 2𝑁′ 𝐴 𝑧 + 𝑟𝑠𝑘+𝑗

𝑝𝑠𝑘+𝑗 = 𝑌𝑘𝑝𝑘,𝑗
′

break from inner loop and begin new outer loop

end

Residual Replacement for CA-CG

• Use computable bound for 𝑏 − 𝐴𝑥𝑠𝑘+𝑗 − 𝑟𝑠𝑘+𝑗 to update 𝑑𝑠𝑘+𝑗, an estimate
of error in computing 𝑟𝑠𝑘+𝑗, in each iteration

• Set threshold 𝜀 ≈ 𝜀, replace whenever 𝑑𝑠𝑘+𝑗/ 𝑟𝑠𝑘+𝑗 reaches threshold

28

Pseudo-code for residual replacement with group update for CA-CG:

group update of approximate solution

set updated residual to true residual

• In each iteration, update error estimate 𝑑𝑠𝑘+𝑗 by:

A Computable Bound for CA-CG

otherwise

𝑗 = 𝑠

where 𝑁′ = max 𝑁, 2𝑠 + 1 .

Estimated only once𝑶(𝒔𝟐) flops per 𝒔 iterations; no communication
𝑶(𝒔𝟑) flops per 𝒔 iterations; ≤1 reduction per 𝒔 iterations

to compute 𝒀𝒌
𝑻 𝒀𝒌

Extra computation all lower order terms;
communication only increased by at most factor of 2!

29

+𝜀
𝐴 𝑥𝑠𝑘+𝑠 + 2+2𝑁′ 𝐴 𝑌𝑘 ∙ 𝑥𝑘,𝑠

′ +𝑁′ 𝑌𝑘 ∙ 𝑟𝑘,𝑠
′ ,

0,

𝑑𝑠𝑘+𝑗 ≡ 𝑑𝑠𝑘+𝑗−1

+𝜀 4+𝑁′ 𝐴 𝑌𝑘 ∙ 𝑥𝑘,𝑗
′ + 𝑌𝑘 ∙ 𝐵𝑘 ∙ 𝑥𝑘,𝑗

′ + 𝑌𝑘 ∙ 𝑟𝑘,𝑗
′

CG true
CG updated
CA-CG (monomial) true
CA-CG (monomial) updated

Model Problem: 2D Poisson, n = 262K, nnz = 1.3M, cond(A) ≈ 104

CG true
CG updated
CA-CG (monomial) true
CA-CG (monomial) updated
CA-CG (Newton) true
CA-CG (Newton) updated
CA-CG (Chebyshev) true
CA-CG (Chebyshev) updated

CA-CG Convergence, s = 8 CA-CG Convergence, s = 16

Better basis
choice allows

higher s values
But can still see
loss of accuracy

31

CG true
CG updated
CA-CG (monomial) true
CA-CG (monomial) updated
CA-CG (Newton) true
CA-CG (Newton) updated
CA-CG (Chebyshev) true
CA-CG (Chebyshev) updated

“consph” matrix (3D FEM), From UFL Sparse Matrix Collection

𝑛 = 8.3 × 104, nnz = 6.0 × 106, 𝜅 𝐴 = 9.7 × 103, 𝐴 2 = 9.7

For real problems, loss of
accuracy becomes evident

even with better bases

CA-CG Convergence, s = 12

CG true
CG updated
CA-CG (monomial) true
CA-CG (monomial) updated
CA-CG (Newton) true
CA-CG (Newton) updated
CA-CG (Chebyshev) true
CA-CG (Chebyshev) updated

Model Problem: 2D Poisson (5 pt stencil),
n = 262K, nnz = 1.3M, cond(A) ≈ 104

CA-CG Convergence, s = 4 CA-CG Convergence, s = 8

CA-CG Convergence, s = 16

Model Problem: 2D Poisson (5 pt stencil),
n = 262K, nnz = 1.3M, cond(A) ≈ 10^4

CG-RR true
CG-RR updated
CA-CG-RR (monomial) true
CA-CG-RR (monomial) updated
CA-CG-RR (Newton) true
CA-CG-RR (Newton) updated
CA-CG-RR (Chebyshev) true
CA-CG-RR (Chebyshev) updated

Residual Replacement
can improve accuracy
orders of magnitude

for negligible cost

Maximum
replacement steps

(extra communication
steps) for any test: 8

CA-CG Convergence, s = 4 CA-CG Convergence, s = 8

CA-CG Convergence, s = 16

34

“consph” matrix (3D FEM), From UFL Sparse Matrix Collection

𝑛 = 8.3 × 104, nnz = 6.0 × 106, 𝜅 𝐴 = 9.7 × 103, 𝐴 2 = 9.7

CA-CG Convergence, s = 12

CG-RR true
CG-RR updated
CA-CG-RR (monomial) true
CA-CG-RR (monomial) updated
CA-CG-RR (Newton) true
CA-CG-RR (Newton) updated
CA-CG-RR (Chebyshev) true
CA-CG-RR (Chebyshev) updated

Maximum number of
replacements: 4

35

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0 512 1024 1536 2048 2560 3072 3584 4096

Ti
m

e
 (

se
co

n
d

s)

Processes (6 threads each)

Bottom Solver Time (total)

MPI_AllReduce Time (total)

Solver Time

Communication Time

Coarse-grid Krylov Solver on NERSC’s Hopper (Cray XE6)

Weak Scaling: 43 points per process (0 slope ideal)

Solver performance and scalability limited by communication!

Avoids communication:

• In serial, by exploiting temporal locality:

• Reading 𝐴, reading vectors

• In parallel, by doing only 1 ‘expand’ phase
(instead of 𝑠).

• Requires sufficiently low ‘surface-to-volume’
ratio

Tridiagonal Example:

The Matrix Powers Kernel (Demmel et al., 2007)

36

Sequential

Parallel

A3v
A2v
Av

v

A3v
A2v
Av

v

black = local elements
red = 1-level dependencies
green = 2-level dependencies
blue = 3-level dependencies

Also works for
general graphs!

Choosing a Polynomial Basis
• Recall: in each outer loop of CA-CG, we compute bases for some Krylov

subspaces, 𝒦𝑚 𝐴, 𝑣 = span{𝑣, 𝐴𝑣, … , 𝐴𝑚−1𝑣}

37

• Two choices based on spectral information that usually lead to well-
conditioned bases:

• Newton polynomials

• Chebyshev polynomials

• Simple loop unrolling gives monomial basis 𝑌 = 𝑝, 𝐴𝑝, 𝐴2𝑝, 𝐴3𝑝, …

• Condition number can grow exponentially with 𝑠

• Condition number = ratio of largest to smallest eigenvalues,
𝜆max/𝜆min

• Recognized early on that this negatively affects convergence
(Leland, 1989)

• Improve basis condition number to improve convergence: Use different
polynomials to compute a basis for the same subspace.

History of 𝑠-step Krylov Methods

38

1983

Van
Rosendale:

CG

1988

Walker:
GMRES

Chronopoulos
and Gear: CG

1990 1991 1992

First termed
“s-step

methods”

de Sturler:
GMRES

1989

Bai, Hu, and Reichel:
GMRES

Chronopoulos
and Kim:

Nonsymm.
Lanczos

Joubert and
Carey: GMRES

Erhel:
GMRES

Toledo: CG

de Sturler and
van der Vorst:

GMRES

1995 2001

Chronopoulos
and Kinkaid:

Orthodir

Chronopoulos and
Kim: Orthomin,

GMRES Chronopoulos:
MINRES, GCR,

Orthomin

Kim and
Chronopoulos:
Arndoli, Symm.

Lanczos

Leland:
CG

Recent Years…

39

2010 2011 2014

Hoemmen:
Arnoldi,
GMRES,

Lanczos, CG

First termed
“CA” methods; first TSQR,

general matrix powers
kernel

Carson,
Knight, and
Demmel:

BICG, CGS,
BICGSTAB

Ballard, Carson,
Demmel, Hoemmen,

Knight, Schwartz:
Arnoldi, GMRES,

Nonsymm. Lanczos

Carson and
Demmel: 2-term

Lanczos

Carson and
Demmel:
CG-RR,

BICG-RR

First theoretical
results on finite

precision behavior

2012 2013

Feuerriegel
and Bücker:
Lanczos,
BICG, QMR

Grigori,
Moufawad, Nataf:

CG

First
CA-BICGSTAB

method

The Amplification Term Γ

16

• Roundoff errors in CA variant follow same pattern as classical variant, but
amplified by factor of Γ or Γ2

• Theoretically confirms observations on importance of basis conditioning
(dating back to late ‘80s)

• Need 𝒴 |𝑦′| 2 ≤ Γ 𝒴𝑦′ 2 to hold for the computed basis 𝒴
and coordinate vector 𝑦′ in every bound.

• A loose bound for the amplification term:

Γ ≤ max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2 ≤ 2𝑠+1 ∙ max
ℓ≤𝑘

𝜅 𝒴ℓ

• What we really need: 𝒴 |𝑦′| 2 ≤ Γ 𝒴𝑦′ 2 to hold for the computed basis 𝒴
and coordinate vector 𝑦′ in every bound.

• Tighter bound on 𝚪 possible; requires some light bookkeeping

• Example:

Γ𝑘,𝑗 ≡ max
𝑥∈{ 𝑤𝑘,𝑗

′ , 𝑢𝑘,𝑗
′ , 𝑣𝑘,𝑗

′ , 𝑣𝑘,𝑗−1
′ }

 𝒴𝑘 𝑥
2

 𝒴𝑘𝑥
2

More Current Work
• 2.5D symmetric eigensolver (Solomonik et al.)

• Write-Avoiding algorithms (talk by Harsha Vardhan
Simhadri in afternoon session)

• CA sparse RRLU (Grigori, Cayrols, Demmel)

• CA Parallel Sparse-Dense Matrix-Matrix
Multiplication (Koanantakool et al.)

• Lower bounds for general programs that access
arrays (talk by Nick Knight in afternoon session)

• CA Support Vector Machines (talk by Yang You)

• CA-RRQR (Demmel, Grigori, Gu, Xiang)

• CA-SBR (Ballard, Demmel, Knight)

Dynamic basis size
• Auto-tune to find best 𝑠 based on machine, matrix sparsity structure; use this as 𝑠max

• In each outer iteration, select largest 𝑠 ≤ 𝑠max such that

𝜅(𝒴𝑘) ≤ 1/ 𝜖𝑛

• Benefit: Maintain acceptable convergence rate regardless of user’s choice of s

• Cost: Incremental condition number estimation in each outer iteration; potentially
wasted SpMVs in each outer iteration

s values used = (6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4)

Finite precision Lanczos process: (𝐴 is 𝑛 × 𝑛 with at most 𝑁 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚
 𝑇𝑚 + 𝛽𝑚+1 𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿 𝑉𝑚

 𝑉𝑚 = 𝑣1, … , 𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 𝑣1, … , 𝛿 𝑣𝑚 , 𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱ 𝛽𝑚

 𝛽𝑚 𝛼𝑚

(CA-)Lanczos Convergence Analysis

Classical Lanczos (Paige, 1976):

for 𝑖 ∈ {1, … , 𝑚},
𝛿 𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1
2 + 𝛼𝑖

2 + 𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

15

where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

CA-Lanczos (C., 2015):

𝜀0 = 𝑂 𝜀𝑛

𝜀1 = 𝑂 𝜀𝑁𝜃

𝜀0 = 𝑂 𝜀𝑛𝚪𝟐

𝜀1 = 𝑂 𝜀𝑁𝜃𝚪

Γ = max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2

Paige’s Results for Classical Lanczos (1980)

• Using bounds on local rounding errors in Lanczos, showed that

1. The computed eigenvalues always lie between the extreme
eigenvalues of 𝐴 to within a small multiple of machine
precision.

2. At least one small interval containing an eigenvalue of 𝐴 is
found by the 𝑛th iteration.

3. The algorithm behaves numerically like Lanczos with full
reorthogonalization until a very close eigenvalue
approximation is found.

4. The loss of orthogonality among basis vectors follows a
rigorous pattern and implies that some computed eigenvalues
have converged.

Do the same statements hold for CA-Lanczos?

44

𝐴 𝑉𝑚 = 𝑉𝑚
 𝑇𝑚 + 𝛽𝑚+1 𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿 𝑉𝑚

 𝑉𝑚 = 𝑣1, … , 𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 𝑣1, … , 𝛿 𝑣𝑚 , 𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱ 𝛽𝑚

 𝛽𝑚 𝛼𝑚

Paige’s Lanczos Convergence Analysis

Classic Lanczos rounding
error result of Paige (1976):

 These results form the basis for Paige’s influential results in (Paige, 1980).

𝜀0 = 𝑂 𝜀𝑛 𝜀1 = 𝑂 𝜀𝑁𝜃

for 𝑖 ∈ {1, … , 𝑚},
𝛿 𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1
2 + 𝛼𝑖

2 + 𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

45

where 𝜎 ≡ 𝐴 2, 𝜃𝜎 ≡ 𝐴 2, 𝜀0 ≡ 2𝜀 𝑛 + 4 , and 𝜀1 ≡ 2𝜀 𝑁𝜃 + 7

CA-Lanczos Convergence Analysis

for 𝑖 ∈ {1, … , 𝑚=𝑠𝑘+𝑗},
𝛿 𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1
2 + 𝛼𝑖

2 + 𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

For CA-Lanczos,
we have:

(vs. 𝑂 𝜀𝑛 for Lanczos)

(vs. 𝑂 𝜀𝑁𝜃 for Lanczos)

46

Let Γ ≡ max
ℓ≤𝑘

𝑌ℓ
+

2 ∙ 𝑌ℓ 2 ≤ 2𝑠+1 ∙ max
ℓ≤𝑘

𝜅 𝑌ℓ .

𝜀0 ≡ 2𝜀 𝑛+11𝑠+15 Γ2 = 𝑂 𝜀𝑛Γ2 ,

𝜀1 ≡ 2𝜀 N+2𝑠+5 𝜃 + 4𝑠+9 𝜏 + 10𝑠+16 Γ = 𝑂 𝜀𝑁𝜃Γ ,

where 𝜎 ≡ 𝐴 2, 𝜃𝜎 ≡ 𝐴 2, 𝜏𝜎 ≡ max
ℓ≤𝑘

𝐵ℓ 2

Residual Replacement Strategy

• van der Vorst and Ye (1999): improve accuracy by replacing updated

residual 𝒓𝒎 by the true residual 𝒃 − 𝑨𝒙𝒎 in certain iterations

47

• Choose when to replace 𝑟𝑚 with 𝑏 − 𝐴𝑥𝑚 to meet two constraints:

1. 𝑏 − 𝐴𝑥𝑚 − 𝑟𝑚 is small

2. Convergence rate is maintained (avoid large perturbations to finite

precision CG recurrence)

• Requires monitoring estimate of deviation of residuals

• We can use the same strategy for CA-CG

• Implementation has negligible cost → residual replacement strategy can
allow both speed and accuracy!

CG true
CG updated
CA-CG (monomial) true
CA-CG (monomial) updated
CA-CG (Newton) true
CA-CG (Newton) updated
CA-CG (Chebyshev) true
CA-CG (Chebyshev) updated

Model Problem: 2D Poisson (5 pt stencil),
n = 262K, nnz = 1.3M, cond(A) ≈ 104

CA-CG Convergence, s = 4 CA-CG Convergence, s = 8

CA-CG Convergence, s = 16

Model Problem: 2D Poisson (5 pt stencil),
n = 262K, nnz = 1.3M, cond(A) ≈ 10^4

CG-RR true
CG-RR updated
CA-CG-RR (monomial) true
CA-CG-RR (monomial) updated
CA-CG-RR (Newton) true
CA-CG-RR (Newton) updated
CA-CG-RR (Chebyshev) true
CA-CG-RR (Chebyshev) updated

Residual Replacement
can improve accuracy
orders of magnitude

for negligible cost

Maximum
replacement steps

(extra communication
steps) for any test: 8

CA-CG Convergence, s = 4 CA-CG Convergence, s = 8

CA-CG Convergence, s = 16

Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 512^2 grid

Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 1024^2 grid

Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 2048^2 grid

Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 16^2 grid per process

Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 32^2 grid per process

Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 64^2 grid per process

Communication-Avoiding Krylov Method Speedups

56

• Recent results: CA-BICGSTAB used as geometric multigrid (GMG) bottom-solve
(Williams, Carson, et al., IPDPS ‘14)

• Plot: Net time spent on different operations over one GMG bottom solve using
24,576 cores, 643 points/core on fine grid, 43 points/core on coarse grid

• Hopper at NERSC (Cray XE6), 4 6-core Opteron chips per node, Gemini network,
3D torus

• CA-BICGSTAB with 𝒔 = 𝟒

• 3D Helmholtz equation

𝑎𝛼𝑢 − 𝑏𝛻 ⋅ 𝛽𝛻𝑢 = 𝑓

𝛼 = 𝛽 = 1.0, 𝑎 = 𝑏 = 0.9

4.2x speedup in Krylov solve;
2.5x in overall GMG solve

• Implemented in BoxLib: applied to
low-Mach number combustion and 3D
N-body dark matter simulation apps

Benchmark timing breakdown

57

• Plot: Net time spent across all bottom solves at 24,576 cores, for
BICGSTAB and CA-BICGSTAB with 𝑠 = 4

• 11.2x reduction in MPI_AllReduce time (red)

– BICGSTAB requires 6𝑠 more MPI_AllReduce’s than CA-BICGSTAB

– Less than theoretical 24x
since messages in CA-
BICGSTAB are larger, not
always latency-limited

• P2P (blue) communication
doubles for CA-BICGSTAB

– Basis computation
requires twice as many
SpMVs (P2P) per iteration
as BICGSTAB

0.000

0.250

0.500

0.750

1.000

1.250

1.500

BICGSTAB CA-BICGSTAB

Ti
m

e
 (

se
co

n
d

s)

Breakdown of Bottom Solver

MPI (collectives)
MPI (P2P)
BLAS3
BLAS1
applyOp
residual

Representation of Matrix Structures

R
ep

re
se

n
ta

ti
o

n
 o

f
M

at
ri

x
V

al
u

es

Example: stencil with
variable coefficients

explicit structure
explicit values

explicit structure
implicit values

implicit structure
explicit values

implicit structure
implicit values

Example: stencil with
constant coefficients

Example: Laplacian
matrix of a graph

Example: general
sparse matrix

Hoemmen (2010), Fig 2.5
58

