
High performance Krylov
subspace method variants

Erin Carson

New York University

HPCSE17, May 24, 2017

and their behavior in finite precision

Collaborators

Miroslav Rozložník
Institute of Computer Science, Czech Academy of Sciences

Zdeněk Strakoš
Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles
University

Petr Tichý
Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles
University

Miroslav Tůma
Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles
University

Preprint NCMM/2016/08:
http://www.karlin.mff.cuni.cz/~strakos/download/2016_CarRozStrTicTum_16.pdf

2

http://www.karlin.mff.cuni.cz/~strakos/download/2016_CarRozStrTicTum_16.pdf

Conjugate Gradient method for solving Ax = b
double precision (𝜀 = 2−53)

𝑥𝑖 − 𝑥 𝐴 = 𝑥𝑖 − 𝑥 𝑇𝐴(𝑥𝑖 − 𝑥)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖𝑝𝑖

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖𝐴𝑝𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖

3

Conjugate Gradient method for solving Ax = b
double precision (𝜀 = 2−53)

𝑥𝑖 − 𝑥 𝐴 = 𝑥𝑖 − 𝑥 𝑇𝐴(𝑥𝑖 − 𝑥)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖𝑝𝑖

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖𝐴𝑝𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖

3

Krylov subspace methods

• In each iteration,

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑖(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑖)

• Select approximate solution 𝑥𝑖 ∈ 𝑥0 + 𝒦𝑖(𝐴, 𝑟0)

using 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 ⊥ 𝒞𝑖

• Ex: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual
(GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc.

• Krylov Subspace Method is a projection process onto the Krylov subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 = 𝑏 − 𝐴𝑥0 is a length-𝑁 vector

𝒞

𝑟new

𝐴𝛿

𝑟0

0

• Linear systems 𝐴𝑥 = 𝑏, eigenvalue problems, singular value problems, least squares, etc.
• Best for: 𝐴 large & very sparse, stored implicitly, or only approximation needed

4

The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

5

The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴

5

The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴

⟹ 𝑟𝑁+1 = 0

5

The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴

⟹ 𝑟𝑁+1 = 0

Connection with Lanczos

• With 𝑣1 = 𝑟0/ 𝑟0 , 𝑖 iterations of Lanczos produces 𝑁 × 𝑖 matrix 𝑉𝑖 =
𝑣1, … , 𝑣𝑖 , and 𝑖 × 𝑖 tridiagonal matrix 𝑇𝑖 such that

𝐴𝑉𝑖 = 𝑉𝑖𝑇𝑖 + 𝛿𝑖+1𝑣𝑖+1𝑒𝑖
𝑇 , 𝑇𝑖 = 𝑉𝑖

∗𝐴𝑉𝑖

• CG approximation 𝑥𝑖 is obtained by solving the reduced model

𝑇𝑖𝑦𝑖 = 𝑟0 𝑒1, 𝑥𝑖 = 𝑥0 + 𝑉𝑖𝑦𝑖

5

The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴

⟹ 𝑟𝑁+1 = 0

Connection with Lanczos

• With 𝑣1 = 𝑟0/ 𝑟0 , 𝑖 iterations of Lanczos produces 𝑁 × 𝑖 matrix 𝑉𝑖 =
𝑣1, … , 𝑣𝑖 , and 𝑖 × 𝑖 tridiagonal matrix 𝑇𝑖 such that

𝐴𝑉𝑖 = 𝑉𝑖𝑇𝑖 + 𝛿𝑖+1𝑣𝑖+1𝑒𝑖
𝑇 , 𝑇𝑖 = 𝑉𝑖

∗𝐴𝑉𝑖

• CG approximation 𝑥𝑖 is obtained by solving the reduced model

𝑇𝑖𝑦𝑖 = 𝑟0 𝑒1, 𝑥𝑖 = 𝑥0 + 𝑉𝑖𝑦𝑖

• Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-
Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)

5

The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴

⟹ 𝑟𝑁+1 = 0

Connection with Lanczos

• With 𝑣1 = 𝑟0/ 𝑟0 , 𝑖 iterations of Lanczos produces 𝑁 × 𝑖 matrix 𝑉𝑖 =
𝑣1, … , 𝑣𝑖 , and 𝑖 × 𝑖 tridiagonal matrix 𝑇𝑖 such that

𝐴𝑉𝑖 = 𝑉𝑖𝑇𝑖 + 𝛿𝑖+1𝑣𝑖+1𝑒𝑖
𝑇 , 𝑇𝑖 = 𝑉𝑖

∗𝐴𝑉𝑖

• CG approximation 𝑥𝑖 is obtained by solving the reduced model

𝑇𝑖𝑦𝑖 = 𝑟0 𝑒1, 𝑥𝑖 = 𝑥0 + 𝑉𝑖𝑦𝑖

• Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-
Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)

⇒ CG (and other Krylov subspace methods) are highly nonlinear

• Good for convergence, bad for ease of finite precision analysis 5

Implementation of CG

• Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end
6

Implementation of CG

• Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

minimizes 𝑥 − 𝑥𝑖 𝐴 along line
𝑧 𝛼 = 𝑥𝑖−1 + 𝛼𝑝𝑖−1

6

Implementation of CG

• Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

minimizes 𝑥 − 𝑥𝑖 𝐴 along line
𝑧 𝛼 = 𝑥𝑖−1 + 𝛼𝑝𝑖−1

𝑥0 + 𝒦𝑖 𝐴, 𝑟0 = 𝑥0 + span{𝑝0, … 𝑝𝑖−1}

If

𝑝𝑖 ⊥𝐴 𝑝𝑗 for 𝑖 ≠ 𝑗,

1-dimensional minimizations in each
iteration give 𝑖-dimensional
minimization over the whole subspace

6

Projection process in terms of communication:

Communication in CG

7

Projection process in terms of communication:

“Add a dimension to 𝒦𝑖”
 Sparse matrix-vector multiplication (SpMV)
• Must communicate vector entries w/ neighboring

processors (P2P communication)

SpMV

×

Communication in CG

7

“Orthogonalize with respect to 𝒞𝑖”

 Inner products

• global synchronization (MPI_Allreduce)

• all processors must exchange data and wait for all
communication to finish before proceeding

Projection process in terms of communication:

“Add a dimension to 𝒦𝑖”
 Sparse matrix-vector multiplication (SpMV)
• Must communicate vector entries w/ neighboring

processors (P2P communication)

SpMV

orthogonalize

×

×

Communication in CG

7

“Orthogonalize with respect to 𝒞𝑖”

 Inner products

• global synchronization (MPI_Allreduce)

• all processors must exchange data and wait for all
communication to finish before proceeding

Projection process in terms of communication:

“Add a dimension to 𝒦𝑖”
 Sparse matrix-vector multiplication (SpMV)
• Must communicate vector entries w/ neighboring

processors (P2P communication)

Dependencies between communication-bound kernels
in each iteration limit performance!

SpMV

orthogonalize

×

×

Communication in CG

7

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

8

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

8

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

8

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

8

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

8

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

8

Future exascale systems

Petascale
Systems (2009)

Predicted Exascale
Systems

Factor
Improvement

System Peak ~1000

Node Memory
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency ~1
*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

9

Future exascale systems

Petascale
Systems (2009)

Predicted Exascale
Systems

Factor
Improvement

System Peak ~1000

Node Memory
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency ~1
*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

9

Future exascale systems

Petascale
Systems (2009)

Predicted Exascale
Systems

Factor
Improvement

System Peak ~1000

Node Memory
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency ~1
*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

9

Future exascale systems

Petascale
Systems (2009)

Predicted Exascale
Systems

Factor
Improvement

System Peak ~1000

Node Memory
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency ~1

• Gaps between communication/computation cost only growing larger in
future systems

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

• Reducing time spent moving data/waiting for data will be essential for
applications at exascale! 9

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing
synchronization in CG:

10

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing
synchronization in CG:

• Early work: CG with a single synchronization point per iteration

• 3-term recurrence CG

• Using modified computation of recurrence coefficients

• Using auxiliary vectors

10

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing
synchronization in CG:

• Early work: CG with a single synchronization point per iteration

• 3-term recurrence CG

• Using modified computation of recurrence coefficients

• Using auxiliary vectors

• Pipelined Krylov subspace methods

• Uses modified coefficients and auxiliary vectors to reduce synchronization points
to 1 per iteration

• Modifications also allow decoupling of SpMV and inner products - enables
overlapping

10

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing
synchronization in CG:

• Early work: CG with a single synchronization point per iteration

• 3-term recurrence CG

• Using modified computation of recurrence coefficients

• Using auxiliary vectors

• Pipelined Krylov subspace methods

• Uses modified coefficients and auxiliary vectors to reduce synchronization points
to 1 per iteration

• Modifications also allow decoupling of SpMV and inner products - enables
overlapping

• s-step Krylov subspace methods

• Compute iterations in blocks of s using a different Krylov subspace basis

• Enables one synchronization per s iterations
10

The effects of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank

deficiency
• Residuals no longer orthogonal

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

11

The effects of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank

deficiency
• Residuals no longer orthogonal

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

11

The effects of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank

deficiency
• Residuals no longer orthogonal

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

11

The effects of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank

deficiency
• Residuals no longer orthogonal

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough
summary of early developments in finite precision analysis of Lanczos and CG

11

• Synchronization-reducing variants are designed to reduce the time/iteration

Optimizing high performance iterative solvers

12

• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

Optimizing high performance iterative solvers

12

• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

• What we really want to minimize is the runtime, subject to some constraint
on accuracy,

runtime = (time/iteration) x (# iterations)

Optimizing high performance iterative solvers

12

• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

• What we really want to minimize is the runtime, subject to some constraint
on accuracy,

runtime = (time/iteration) x (# iterations)

Optimizing high performance iterative solvers

• Changes to how the recurrences are
computed can exacerbate finite
precision effects of convergence delay
and loss of accuracy

12

• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

• What we really want to minimize is the runtime, subject to some constraint
on accuracy,

runtime = (time/iteration) x (# iterations)

Optimizing high performance iterative solvers

• Changes to how the recurrences are
computed can exacerbate finite
precision effects of convergence delay
and loss of accuracy

• Crucial that we understand and take
into account how algorithm
modifications will affect the
convergence rate and attainable
accuracy!

12

• Accuracy depends on the size of the true residual: 𝑏 − 𝐴 𝑥𝑖

Maximum attainable accuracy

13

• Accuracy depends on the size of the true residual: 𝑏 − 𝐴 𝑥𝑖

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

Maximum attainable accuracy

13

• Accuracy depends on the size of the true residual: 𝑏 − 𝐴 𝑥𝑖

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

• Writing 𝑏 − 𝐴 𝑥𝑖 = 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖,

𝑏 − 𝐴 𝑥𝑖 ≤ 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

Maximum attainable accuracy

13

• Accuracy depends on the size of the true residual: 𝑏 − 𝐴 𝑥𝑖

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

• Writing 𝑏 − 𝐴 𝑥𝑖 = 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖,

𝑏 − 𝐴 𝑥𝑖 ≤ 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• As 𝑟𝑖 → 0, 𝑏 − 𝐴 𝑥𝑖 depends on 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

Maximum attainable accuracy

13

• Accuracy depends on the size of the true residual: 𝑏 − 𝐴 𝑥𝑖

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

• Writing 𝑏 − 𝐴 𝑥𝑖 = 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖,

𝑏 − 𝐴 𝑥𝑖 ≤ 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• As 𝑟𝑖 → 0, 𝑏 − 𝐴 𝑥𝑖 depends on 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994,
1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst
and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht
and Strakoš (2000).

Maximum attainable accuracy

13

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

Maximum attainable accuracy of HSCG

14

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

Maximum attainable accuracy of HSCG

14

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

Maximum attainable accuracy of HSCG

14

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

Maximum attainable accuracy of HSCG

14

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

= 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

14

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

= 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

𝑓𝑖 ≤ 𝑂(𝜀) 𝐴 𝑥 + max
𝑚=0,…,𝑖

 𝑥𝑚 Greenbaum, 1997

𝑓𝑖 ≤ 𝑂 𝜀 𝑚=0
𝑖 𝑁𝐴 𝐴 𝑥𝑚 + 𝑟𝑚 van der Vorst and Ye, 2000

𝑓𝑖 ≤ 𝑂 𝜀 𝑁𝐴 𝐴 𝐴−1 𝑚=0
𝑖 𝑟𝑚 Sleijpen and van der Vorst, 1995

14

Early approaches to reducing synchronization

• Goal: Reduce the 2 synchronization points per iteration in HSCG to
1 synchronization point per iteration

15

Early approaches to reducing synchronization

• Goal: Reduce the 2 synchronization points per iteration in HSCG to
1 synchronization point per iteration

• Compute 𝛽𝑖 from 𝛼𝑖−1 and 𝐴𝑝𝑖−1 using relation

𝑟𝑖
2 = 𝛼𝑖−1

2 𝐴𝑝𝑖−1
2 − 𝑟𝑖−1

2

• Can then also merge the updates of 𝑥𝑖, 𝑟𝑖, and 𝑝𝑖

• Developed independently by Johnson (1983, 1984), van
Rosendale (1983, 1984), Saad (1985)

• Many other similar approaches

15

Early approaches to reducing synchronization

• Goal: Reduce the 2 synchronization points per iteration in HSCG to
1 synchronization point per iteration

• Compute 𝛽𝑖 from 𝛼𝑖−1 and 𝐴𝑝𝑖−1 using relation

𝑟𝑖
2 = 𝛼𝑖−1

2 𝐴𝑝𝑖−1
2 − 𝑟𝑖−1

2

• Can then also merge the updates of 𝑥𝑖, 𝑟𝑖, and 𝑝𝑖

• Developed independently by Johnson (1983, 1984), van
Rosendale (1983, 1984), Saad (1985)

• Many other similar approaches

• Could also compute 𝛼𝑖−1 from 𝛽𝑖−1:

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1

𝛼𝑖−2

−1

15

Modified recurrence coefficient computation

• What is the effect of changing the way the recurrence coefficients (𝛼
and 𝛽) are computed in HSCG?

16

Modified recurrence coefficient computation

• What is the effect of changing the way the recurrence coefficients (𝛼
and 𝛽) are computed in HSCG?

• Notice that neither 𝛼 nor 𝛽 appear in the bounds on 𝑓𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

= 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

16

Modified recurrence coefficient computation

• What is the effect of changing the way the recurrence coefficients (𝛼
and 𝛽) are computed in HSCG?

• Notice that neither 𝛼 nor 𝛽 appear in the bounds on 𝑓𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

= 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

• As long as the same 𝛼𝑖−1 is used in updating 𝑥𝑖 and 𝑟𝑖,

𝑓𝑖 = 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

still holds

16

Modified recurrence coefficient computation

• What is the effect of changing the way the recurrence coefficients (𝛼
and 𝛽) are computed in HSCG?

• Notice that neither 𝛼 nor 𝛽 appear in the bounds on 𝑓𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

= 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

• As long as the same 𝛼𝑖−1 is used in updating 𝑥𝑖 and 𝑟𝑖,

𝑓𝑖 = 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

still holds

• Rounding errors made in computing 𝛼𝑖−1 do not contribute to the
residual gap

16

Modified recurrence coefficient computation

• What is the effect of changing the way the recurrence coefficients (𝛼
and 𝛽) are computed in HSCG?

• But may change computed 𝑥𝑖, 𝑟𝑖, which can affect convergence rate...

• Notice that neither 𝛼 nor 𝛽 appear in the bounds on 𝑓𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

= 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

• As long as the same 𝛼𝑖−1 is used in updating 𝑥𝑖 and 𝑟𝑖,

𝑓𝑖 = 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

still holds

• Rounding errors made in computing 𝛼𝑖−1 do not contribute to the
residual gap

16

Modified recurrence coefficient computation

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1

𝛼𝑖−2

−1

Example: HSCG with modified formula for 𝛼𝑖−1

17

CG with two three-term recurrences (STCG)
• HSCG recurrences can be written as

𝐴𝑃𝑖 = 𝑅𝑖+1𝐿𝑖 , 𝑅𝑖 = 𝑃𝑖𝑈𝑖

we can combine these to obtain a 3-term recurrence for the residuals (STCG):
𝐴𝑅𝑖 = 𝑅𝑖+1𝑇𝑖 , 𝑇𝑖 = 𝐿𝑖𝑈𝑖

18

CG with two three-term recurrences (STCG)
• HSCG recurrences can be written as

𝐴𝑃𝑖 = 𝑅𝑖+1𝐿𝑖 , 𝑅𝑖 = 𝑃𝑖𝑈𝑖

we can combine these to obtain a 3-term recurrence for the residuals (STCG):
𝐴𝑅𝑖 = 𝑅𝑖+1𝑇𝑖 , 𝑇𝑖 = 𝐿𝑖𝑈𝑖

• First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young
(1981)

• Motivated by relation to three-term recurrences for orthogonal polynomials

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0, 𝑥−1= 𝑥0, 𝑟−1= 𝑟0, 𝑒−1= 0
for 𝑖 = 1:nmax

𝑞𝑖−1 =
(𝑟𝑖−1,𝐴𝑟𝑖−1)

(𝑟𝑖−1,𝑟𝑖−1)
− 𝑒𝑖−2

𝑥𝑖 = 𝑥𝑖−1 +
1

𝑞𝑖−1
𝑟𝑖−1 + 𝑒𝑖−2(𝑥𝑖−1 − 𝑥𝑖−2)

𝑟𝑖 = 𝑟𝑖−1 +
1

𝑞𝑖−1
−𝐴𝑟𝑖−1 + 𝑒𝑖−2(𝑟𝑖−1 − 𝑟𝑖−2)

𝑒𝑖−1 = 𝑞𝑖−1
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

end

18

CG with two three-term recurrences (STCG)
• HSCG recurrences can be written as

𝐴𝑃𝑖 = 𝑅𝑖+1𝐿𝑖 , 𝑅𝑖 = 𝑃𝑖𝑈𝑖

we can combine these to obtain a 3-term recurrence for the residuals (STCG):
𝐴𝑅𝑖 = 𝑅𝑖+1𝑇𝑖 , 𝑇𝑖 = 𝐿𝑖𝑈𝑖

Can be accomplished with
a single synchronization
point on parallel
computers (Strakoš 1985,
1987)

• First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young
(1981)

• Motivated by relation to three-term recurrences for orthogonal polynomials

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0, 𝑥−1= 𝑥0, 𝑟−1= 𝑟0, 𝑒−1= 0
for 𝑖 = 1:nmax

𝑞𝑖−1 =
(𝑟𝑖−1,𝐴𝑟𝑖−1)

(𝑟𝑖−1,𝑟𝑖−1)
− 𝑒𝑖−2

𝑥𝑖 = 𝑥𝑖−1 +
1

𝑞𝑖−1
𝑟𝑖−1 + 𝑒𝑖−2(𝑥𝑖−1 − 𝑥𝑖−2)

𝑟𝑖 = 𝑟𝑖−1 +
1

𝑞𝑖−1
−𝐴𝑟𝑖−1 + 𝑒𝑖−2(𝑟𝑖−1 − 𝑟𝑖−2)

𝑒𝑖−1 = 𝑞𝑖−1
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

end

18

CG with two three-term recurrences (STCG)
• HSCG recurrences can be written as

𝐴𝑃𝑖 = 𝑅𝑖+1𝐿𝑖 , 𝑅𝑖 = 𝑃𝑖𝑈𝑖

we can combine these to obtain a 3-term recurrence for the residuals (STCG):
𝐴𝑅𝑖 = 𝑅𝑖+1𝑇𝑖 , 𝑇𝑖 = 𝐿𝑖𝑈𝑖

Can be accomplished with
a single synchronization
point on parallel
computers (Strakoš 1985,
1987)

• Similar approach (computing 𝛼𝑖 using 𝛽𝑖−1) used by D'Azevedo, Eijkhout, Romaine
(1992, 1993)

• First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young
(1981)

• Motivated by relation to three-term recurrences for orthogonal polynomials

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0, 𝑥−1= 𝑥0, 𝑟−1= 𝑟0, 𝑒−1= 0
for 𝑖 = 1:nmax

𝑞𝑖−1 =
(𝑟𝑖−1,𝐴𝑟𝑖−1)

(𝑟𝑖−1,𝑟𝑖−1)
− 𝑒𝑖−2

𝑥𝑖 = 𝑥𝑖−1 +
1

𝑞𝑖−1
𝑟𝑖−1 + 𝑒𝑖−2(𝑥𝑖−1 − 𝑥𝑖−2)

𝑟𝑖 = 𝑟𝑖−1 +
1

𝑞𝑖−1
−𝐴𝑟𝑖−1 + 𝑒𝑖−2(𝑟𝑖−1 − 𝑟𝑖−2)

𝑒𝑖−1 = 𝑞𝑖−1
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

end

18

Attainable accuracy of STCG

• Analyzed by Gutknecht and Strakoš (2000)

• Attainable accuracy for STCG can be much worse than for
HSCG

19

Attainable accuracy of STCG

• Analyzed by Gutknecht and Strakoš (2000)

• Attainable accuracy for STCG can be much worse than for
HSCG

• Residual gap bounded by sum of local errors PLUS local errors
multiplied by factors which depend on

max
0≤ℓ<𝑗≤𝑖

𝑟𝑗
2

𝑟ℓ
2

19

Attainable accuracy of STCG

• Analyzed by Gutknecht and Strakoš (2000)

• Attainable accuracy for STCG can be much worse than for
HSCG

• Residual gap bounded by sum of local errors PLUS local errors
multiplied by factors which depend on

max
0≤ℓ<𝑗≤𝑖

𝑟𝑗
2

𝑟ℓ
2

⇒ Large residual oscillations can cause these factors to be large!

⇒ Local errors can be amplified!

19

STCG

20

STCG

20

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 21

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 21

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 21

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 21

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 21

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 21

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 21

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 21

Pipelined CG (GVCG)

• Pipelined CG of Ghysels and Vanroose (2014)

• Similar to Chronopoulos and Gear approach

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and same formula for 𝛼𝑖

22

Pipelined CG (GVCG)

• Pipelined CG of Ghysels and Vanroose (2014)

• Similar to Chronopoulos and Gear approach

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and same formula for 𝛼𝑖

• Also uses auxiliary vectors for 𝐴𝑟𝑖 and 𝐴2𝑟𝑖 to remove sequential
dependency between SpMV and inner products

22

Pipelined CG (GVCG)

• Pipelined CG of Ghysels and Vanroose (2014)

• Similar to Chronopoulos and Gear approach

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and same formula for 𝛼𝑖

• Also uses auxiliary vectors for 𝐴𝑟𝑖 and 𝐴2𝑟𝑖 to remove sequential
dependency between SpMV and inner products

• Allows the use of nonblocking (asynchronous) MPI communication to
overlap SpMV and inner products

• Hides the latency of global communications

22

GVCG (Ghysels and Vanroose 2014)

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
23

GVCG (Ghysels and Vanroose 2014)

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
23

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
23

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
23

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
23

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
23

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
23

Precond

Attainable accuracy of pipelined CG

• What is the effect of adding auxiliary recurrences to the CG method?

24

Attainable accuracy of pipelined CG

• What is the effect of adding auxiliary recurrences to the CG method?

• To isolate the effects, we consider a simplified version of a pipelined
method

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0, 𝑠0 = 𝐴𝑝0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
(𝑟𝑖−1,𝑟𝑖−1)

(𝑝𝑖−1,𝑠𝑖−1)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝐴𝑟𝑖 + 𝛽𝑖𝑠𝑖−1

end
24

Attainable accuracy of pipelined CG

• What is the effect of adding auxiliary recurrences to the CG method?

• To isolate the effects, we consider a simplified version of a pipelined
method

• Uses same update formulas for 𝛼 and 𝛽 as HSCG, but uses
additional recurrence for 𝐴𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0, 𝑠0 = 𝐴𝑝0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
(𝑟𝑖−1,𝑟𝑖−1)

(𝑝𝑖−1,𝑠𝑖−1)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝐴𝑟𝑖 + 𝛽𝑖𝑠𝑖−1

end
24

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

25

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

25

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

25

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

25

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

25

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

25

Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

26

Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗

26

Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!

𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗

26

Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!

• Very similar to the results for attainable accuracy in the 3-term STCG
• Seemingly innocuous change can cause drastic loss of accuracy

𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗

26

Simple pipelined CG

27

Simple pipelined CG

27

effect of using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖

Simple pipelined CG

27

effect of changing formula for recurrence coefficient 𝛼 and
using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖

Simple pipelined CG

27

effect of changing formula for recurrence coefficient 𝛼 and
using auxiliary vectors 𝑠𝑖 ≡ 𝐴𝑝𝑖, 𝑤𝑖 ≡ 𝐴𝑟𝑖 , 𝑧𝑖 ≡ 𝐴2𝑟𝑖

s-step CG

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

28

s-step CG

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…

28

s-step CG

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68)

28

s-step CG

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68)
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van

Rosendale (1983); Chronopoulos and Gear (1989)

28

s-step CG

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68)
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van

Rosendale (1983); Chronopoulos and Gear (1989)

• Resurgence of interest in recent years due to growing problem sizes;
growing relative cost of communication

28

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

29

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

s steps of s-step CG:

29

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

s steps of s-step CG:

Expand solution space 𝒔 dimensions at once

Compute “basis” matrix 𝒴 such that span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖 according to

the recurrence 𝐴𝒴 = 𝒴 ℬ

29

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

s steps of s-step CG:

Expand solution space 𝒔 dimensions at once

Compute “basis” matrix 𝒴 such that span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖 according to

the recurrence 𝐴𝒴 = 𝒴 ℬ

Compute inner products between basis vectors in one synchronization
𝒢 = 𝒴𝑇𝒴

29

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

s steps of s-step CG:

Expand solution space 𝒔 dimensions at once

Compute “basis” matrix 𝒴 such that span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖 according to

the recurrence 𝐴𝒴 = 𝒴 ℬ

Compute inner products between basis vectors in one synchronization
𝒢 = 𝒴𝑇𝒴

Compute s iterations of vector updates
Perform 𝑠 iterations of vector updates by updating coordinates in basis 𝒴:

𝑥𝑖+𝑗 − 𝑥𝑖 = 𝒴𝑥𝑗
′, 𝑟𝑖+𝑗 = 𝒴𝑟𝑗

′, 𝑝𝑖+𝑗 = 𝒴𝑝𝑗
′

29

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

30

𝐴𝑝𝑖+𝑗

×𝑛

𝑛

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

30

𝐴𝑝𝑖+𝑗

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

=

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

30

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

𝐴𝑝𝑖+𝑗

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

30

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

(𝑟𝑖+𝑗 , 𝑟𝑖+𝑗)

𝐴𝑝𝑖+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

30

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

(𝑟𝑖+𝑗 , 𝑟𝑖+𝑗)

𝐴𝑝𝑖+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

= 𝑟𝑗
′𝑇𝒴𝑇𝒴𝑟𝑗

′

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

30

→

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

𝑟𝑗
′𝑇𝒢𝑟𝑗

′

× ×

(𝑟𝑖+𝑗 , 𝑟𝑖+𝑗)

𝐴𝑝𝑖+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

= 𝑟𝑗
′𝑇𝒴𝑇𝒴𝑟𝑗

′ =

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

30

s-step CG
𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
31

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
31

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
31

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
31

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
31

Sources of local roundoff error in s-step CG

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ = 𝑥𝑘,𝑗−1

′ + 𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ = 𝑟𝑘,𝑗−1

′ − ℬ𝑘 𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with 𝑞𝑘,𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑘,𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 = 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 = 𝒴𝑘 𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

32

Sources of local roundoff error in s-step CG

Error in computing
𝑠-step basis

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ = 𝑥𝑘,𝑗−1

′ + 𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ = 𝑟𝑘,𝑗−1

′ − ℬ𝑘 𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with 𝑞𝑘,𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑘,𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 = 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 = 𝒴𝑘 𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

32

Sources of local roundoff error in s-step CG

Error in computing
𝑠-step basis

Error in updating
coefficient vectors

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ = 𝑥𝑘,𝑗−1

′ + 𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ = 𝑟𝑘,𝑗−1

′ − ℬ𝑘 𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with 𝑞𝑘,𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑘,𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 = 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 = 𝒴𝑘 𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

32

Error in
basis change

Sources of local roundoff error in s-step CG

Error in computing
𝑠-step basis

Error in updating
coefficient vectors

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ = 𝑥𝑘,𝑗−1

′ + 𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ = 𝑟𝑘,𝑗−1

′ − ℬ𝑘 𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with 𝑞𝑘,𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑘,𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 = 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 = 𝒴𝑘 𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

32

• We can write the gap between the true and updated residuals 𝑓 in terms
of these errors:

Attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper

bound on 𝑓𝑠𝑘+𝑗 .

𝑓𝑠𝑘+𝑗 = 𝑓0

−

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠 + 𝜓𝑠ℓ+𝑠 +

𝑖=1

𝑠

𝐴 𝒴ℓ𝜉ℓ,𝑖 + 𝒴ℓ𝜂ℓ,𝑖 − Δ𝒴ℓ 𝑞ℓ,𝑖−1
′

−𝐴𝜙𝑠𝑘+𝑗 − 𝜓𝑠𝑘+𝑗 −

𝑖=1

𝑗

𝐴 𝒴𝑘𝜉𝑘,𝑖 + 𝒴𝑘𝜂𝑘,𝑖 − Δ𝒴ℓ 𝑞𝑘,𝑖−1
′

33

• We can write the gap between the true and updated residuals 𝑓 in terms
of these errors:

Attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper

bound on 𝑓𝑠𝑘+𝑗 .

33

𝑓𝑠𝑘+𝑗 = 𝑓0

−

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠 + 𝜓𝑠ℓ+𝑠 +

𝑖=1

𝑠

𝐴 𝒴ℓ𝜉ℓ,𝑖 + 𝒴ℓ𝜂ℓ,𝑖 − Δ𝒴ℓ 𝑞ℓ,𝑖−1
′

−𝐴𝜙𝑠𝑘+𝑗 − 𝜓𝑠𝑘+𝑗 −

𝑖=1

𝑗

𝐴 𝒴𝑘𝜉𝑘,𝑖 + 𝒴𝑘𝜂𝑘,𝑖 − Δ𝒴ℓ 𝑞𝑘,𝑖−1
′

• We can write the gap between the true and updated residuals 𝑓 in terms
of these errors:

Attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper

bound on 𝑓𝑠𝑘+𝑗 .

33

𝑓𝑠𝑘+𝑗 = 𝑓0

−

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠 + 𝜓𝑠ℓ+𝑠 +

𝑖=1

𝑠

𝐴 𝒴ℓ𝜉ℓ,𝑖 + 𝒴ℓ𝜂ℓ,𝑖 − Δ𝒴ℓ 𝑞ℓ,𝑖−1
′

−𝐴𝜙𝑠𝑘+𝑗 − 𝜓𝑠𝑘+𝑗 −

𝑖=1

𝑗

𝐴 𝒴𝑘𝜉𝑘,𝑖 + 𝒴𝑘𝜂𝑘,𝑖 − Δ𝒴ℓ 𝑞𝑘,𝑖−1
′

• We can write the gap between the true and updated residuals 𝑓 in terms
of these errors:

Attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper

bound on 𝑓𝑠𝑘+𝑗 .

33

𝑓𝑠𝑘+𝑗 = 𝑓0

−

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠 + 𝜓𝑠ℓ+𝑠 +

𝑖=1

𝑠

𝐴 𝒴ℓ𝜉ℓ,𝑖 + 𝒴ℓ𝜂ℓ,𝑖 − Δ𝒴ℓ 𝑞ℓ,𝑖−1
′

−𝐴𝜙𝑠𝑘+𝑗 − 𝜓𝑠𝑘+𝑗 −

𝑖=1

𝑗

𝐴 𝒴𝑘𝜉𝑘,𝑖 + 𝒴𝑘𝜂𝑘,𝑖 − Δ𝒴ℓ 𝑞𝑘,𝑖−1
′

For CG:

Attainable accuracy of s-step CG

𝑓𝑖 ≤ 𝑓0 + 𝜀

𝑚=1

𝑖

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

34

For CG:

Attainable accuracy of s-step CG

𝑓𝑠𝑘+𝑗 ≤ 𝑓0 + 𝜀𝒄 𝚪𝒌

𝑚=1

𝑠𝑘+𝑗

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 𝜀

𝑚=1

𝑖

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

where 𝑐 is a low-degree polynomial in 𝑠, and

 Γ𝑘 = max
ℓ≤𝑘

Γℓ , where Γℓ = 𝒴ℓ
+ ⋅ 𝒴ℓ

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

(see C., 2015)

34

s-step CG

35

s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

35

s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

35

s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

Can also use other, more well-conditioned bases to improve convergence rate
and accuracy (see, e.g. Philippe and Reichel, 2012).

35

s-step CG

• Even assuming perfect parallel scalability with s (which is usually not the case
due to extra SpMVs and inner products), already at 𝑠 = 4 we are worse than
HSCG in terms of number of synchronizations!

36

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

37

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

37

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

37

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

If application only requires
𝑥 − 𝑥𝑖 𝐴 ≤ 10−10,

any of these methods will work!

Speedups for real applications
• s-step BICGSTAB bottom-solver implemented in BoxLib (AMR framework

from LBL)

Low Mach Number Combustion Code (LMC): gas-phase combustion simulation

• Compared GMG with BICGSTAB vs. GMG with s-step BICGSTAB (s=4) on a
Cray XE6 for two different applications

• Up to 2.5x speedup in bottom solve; up to 1.5x in overall MG solve

38

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

3.0x

64 512 4096 32768 48 384 3072 24576

Flat MPI MPI+OpenMP

P
e

rf
o

rm
a

n
c

e
 B

e
n

e
fi

t
fr

o
m

 s
-s

te
p

 B
IC

G
S

T
A

B

LMC - 3D mac_project Solve

Bottom Solver

MG Solver (overall)

(see Williams et al., IPDPS 2014)

Conclusions and takeaways

• Think of the bigger picture

• Much focus on modifying methods to speed up iterations

• But the speed of an iteration only part of the runtime:

runtime = (time/iteration) x (#iterations)

39

Conclusions and takeaways

• Think of the bigger picture

• Much focus on modifying methods to speed up iterations

• But the speed of an iteration only part of the runtime:

runtime = (time/iteration) x (#iterations)

• And a solver that can't solve to required accuracy is useless!

39

Conclusions and takeaways

• Think of the bigger picture

• Much focus on modifying methods to speed up iterations

• But the speed of an iteration only part of the runtime:

runtime = (time/iteration) x (#iterations)

• And a solver that can't solve to required accuracy is useless!

• Solver runtime is only part of a larger scientific code

39

Conclusions and takeaways

• Think of the bigger picture

• Much focus on modifying methods to speed up iterations

• But the speed of an iteration only part of the runtime:

runtime = (time/iteration) x (#iterations)

• And a solver that can't solve to required accuracy is useless!

• Solver runtime is only part of a larger scientific code

• Design and implementation of iterative solvers requires a holistic approach

• Selecting the right method, parameters, stopping criteria

• Selecting the right preconditioner (closely linked with the discretization!
see Málek and Strakoš, 2015)

39

Conclusions and takeaways

• Think of the bigger picture

• Much focus on modifying methods to speed up iterations

• But the speed of an iteration only part of the runtime:

runtime = (time/iteration) x (#iterations)

• And a solver that can't solve to required accuracy is useless!

• Solver runtime is only part of a larger scientific code

• Design and implementation of iterative solvers requires a holistic approach

• Selecting the right method, parameters, stopping criteria

• Selecting the right preconditioner (closely linked with the discretization!
see Málek and Strakoš, 2015)

• Key challenge: identify problems (or classes of problems) for which
synchronization-reducing Krylov subspace methods can reduce runtime
while meeting application-specific accuracy constraints

⇒ Requires understanding the effects of finite precision computations on
convergence rate and accuracy

39

Thank You!

erinc@cims.nyu.edu

math.nyu.edu/~erinc

