High performance Krylov subspace method variants

and their behavior in finite precision

Erin Carson
New York University

HPCSE17, May 24, 2017

Collaborators

Miroslav Rozložník

Institute of Computer Science, Czech Academy of Sciences

Zdeněk Strakoš

Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University

Petr Tichý

Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University

Miroslav Tůma

Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University

Preprint NCMM/2016/08:

http://www.karlin.mff.cuni.cz/~strakos/download/2016 CarRozStrTicTum 16.pdf

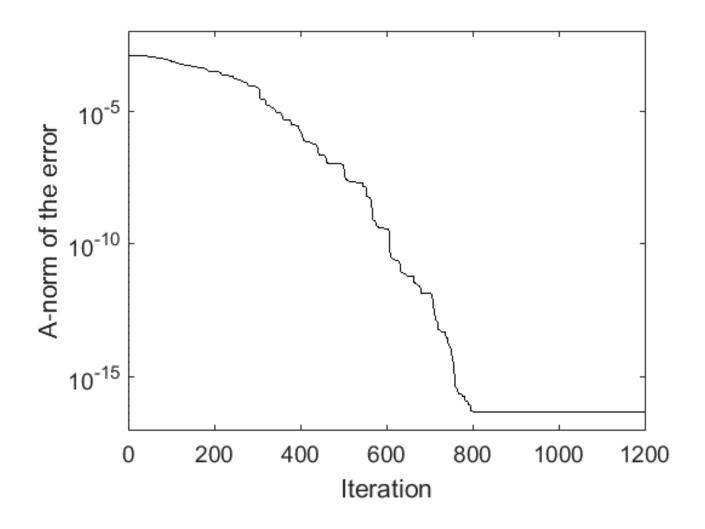
Conjugate Gradient method for solving Ax = b double precision ($\varepsilon = 2^{-53}$)

$$||x_i - x||_A = \sqrt{(x_i - x)^T A(x_i - x)}$$

$$x_i = x_{i-1} + \alpha_i p_i$$

$$r_i = r_{i-1} - \alpha_i A p_i$$

$$p_i = r_i + \beta_i p_i$$



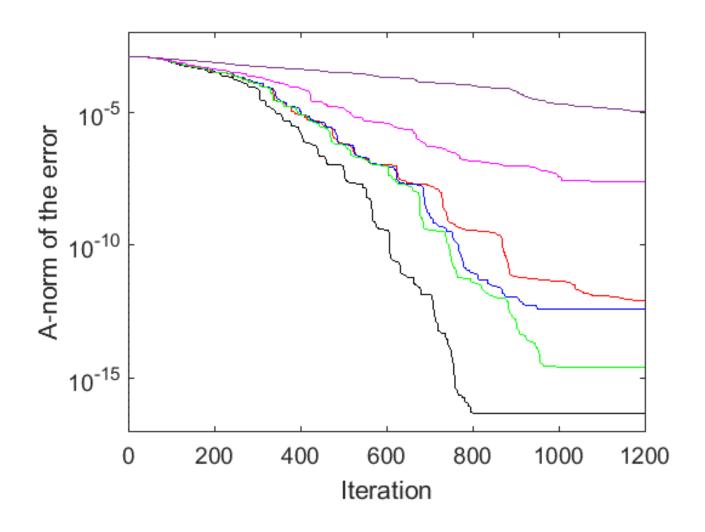
Conjugate Gradient method for solving Ax = b double precision ($\varepsilon = 2^{-53}$)

$$||x_i - x||_A = \sqrt{(x_i - x)^T A(x_i - x)}$$

$$x_i = x_{i-1} + \alpha_i p_i$$

$$r_i = r_{i-1} - \alpha_i A p_i$$

$$p_i = r_i + \beta_i p_i$$



Krylov subspace methods

- Linear systems Ax = b, eigenvalue problems, singular value problems, least squares, etc.
- Best for: A large & very sparse, stored implicitly, or only approximation needed
- Krylov Subspace Method is a projection process onto the Krylov subspace

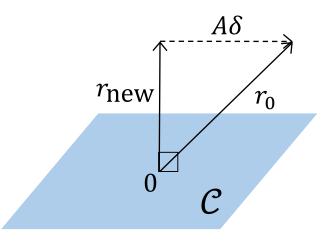
$$\mathcal{K}_i(A, r_0) = \text{span}\{r_0, Ar_0, A^2r_0, \dots, A^{i-1}r_0\}$$

where A is an $N \times N$ matrix and $r_0 = b - Ax_0$ is a length-N vector

- In each iteration,
 - Add a dimension to the Krylov subspace
 - Forms nested sequence of Krylov subspaces

$$\mathcal{K}_1(A,r_0) \subset \mathcal{K}_2(A,r_0) \subset \cdots \subset \mathcal{K}_i(A,r_0)$$

- Orthogonalize (with respect to some C_i)
- Select approximate solution $x_i \in x_0 + \mathcal{K}_i(A, r_0)$ using $r_i = b - Ax_i \perp C_i$



 Ex: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual (GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc.

A is symmetric positive definite, $C_i = \mathcal{K}_i(A, r_0)$

A is symmetric positive definite, $C_i = \mathcal{K}_i(A, r_0)$

$$r_i \perp \mathcal{K}_i(A, r_0) \iff \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

A is symmetric positive definite, $C_i = \mathcal{K}_i(A, r_0)$

$$r_i \perp \mathcal{K}_i(A, r_0) \iff \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

$$\implies r_{N+1} = 0$$

A is symmetric positive definite, $C_i = \mathcal{K}_i(A, r_0)$

$$r_i \perp \mathcal{K}_i(A, r_0) \iff \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

$$\implies r_{N+1} = 0$$

Connection with Lanczos

• With $v_1 = r_0/\|r_0\|$, i iterations of Lanczos produces $N \times i$ matrix $V_i = [v_1, \ldots, v_i]$, and $i \times i$ tridiagonal matrix T_i such that

$$AV_i = V_i T_i + \delta_{i+1} v_{i+1} e_i^T, \qquad T_i = V_i^* A V_i$$

• CG approximation x_i is obtained by solving the reduced model

$$T_i y_i = ||r_0||e_1, \qquad x_i = x_0 + V_i y_i$$

A is symmetric positive definite, $C_i = \mathcal{K}_i(A, r_0)$

$$r_i \perp \mathcal{K}_i(A, r_0) \iff \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

$$\implies r_{N+1} = 0$$

Connection with Lanczos

• With $v_1 = r_0/\|r_0\|$, i iterations of Lanczos produces $N \times i$ matrix $V_i = [v_1, \dots, v_i]$, and $i \times i$ tridiagonal matrix T_i such that

$$AV_i = V_i T_i + \delta_{i+1} v_{i+1} e_i^T, \qquad T_i = V_i^* A V_i$$

• CG approximation x_i is obtained by solving the reduced model

$$T_i y_i = ||r_0||e_1, \qquad x_i = x_0 + V_i y_i$$

 Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)

A is symmetric positive definite, $C_i = \mathcal{K}_i(A, r_0)$

$$r_i \perp \mathcal{K}_i(A, r_0) \iff \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

$$\Rightarrow r_{N+1} = 0$$

Connection with Lanczos

• With $v_1 = r_0/\|r_0\|$, i iterations of Lanczos produces $N \times i$ matrix $V_i = [v_1, \dots, v_i]$, and $i \times i$ tridiagonal matrix T_i such that

$$AV_i = V_i T_i + \delta_{i+1} v_{i+1} e_i^T, \qquad T_i = V_i^* A V_i$$

• CG approximation x_i is obtained by solving the reduced model

$$T_i y_i = ||r_0||e_1, \qquad x_i = x_0 + V_i y_i$$

- Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)
- ⇒ CG (and other Krylov subspace methods) are highly nonlinear
 - Good for convergence, bad for ease of finite precision analysis

Implementation of CG

- Standard implementation due to Hestenes and Stiefel (1952) (HSCG)
- Uses three 2-term recurrences for updating x_i, r_i, p_i

$$r_0 = b - Ax_0, \ p_0 = r_0$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^T r_{i-1}}{p_{i-1}^T A p_{i-1}}$$

$$x_i = x_{i-1} + \alpha_{i-1} p_{i-1}$$

$$r_i = r_{i-1} - \alpha_{i-1} A p_{i-1}$$

$$\beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}}$$

$$p_i = r_i + \beta_i p_{i-1}$$
 end

Implementation of CG

- Standard implementation due to Hestenes and Stiefel (1952) (HSCG)
- Uses three 2-term recurrences for updating x_i, r_i, p_i

$$r_{0} = b - Ax_{0}, \quad p_{0} = r_{0}$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}}$$

$$x_{i} = x_{i-1} + \alpha_{i-1} p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1} A p_{i-1}$$

$$\beta_{i} = \frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}}$$

$$p_{i} = r_{i} + \beta_{i} p_{i-1}$$

end

minimizes $||x - x_i||_A$ along line $z(\alpha) = x_{i-1} + \alpha p_{i-1}$

Implementation of CG

• Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

If

• Uses three 2-term recurrences for updating x_i , r_i , p_i

$$r_{0} = b - Ax_{0}, \quad p_{0} = r_{0}$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}}$$

$$x_{i} = x_{i-1} + \alpha_{i-1} p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1} A p_{i-1}$$

$$\beta_{i} = \frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}}$$

$$p_{i} = r_{i} + \beta_{i} p_{i-1}$$

minimizes $||x - x_i||_A$ along line $z(\alpha) = x_{i-1} + \alpha p_{i-1}$

 $p_i \perp_A p_j$ for $i \neq j$,

1-dimensional minimizations in each iteration give i-dimensional minimization over the whole subspace

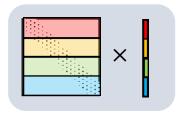
 $x_0 + \mathcal{K}_i(A, r_0) = x_0 + \text{span}\{p_0, \dots p_{i-1}\}$

Projection process in terms of communication:

Projection process in terms of communication:

"Add a dimension to \mathcal{K}_i "

- → Sparse matrix-vector multiplication (SpMV)
 - Must communicate vector entries w/ neighboring processors (P2P communication)

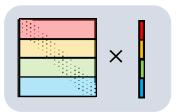


SpMV

Projection process in terms of communication:

"Add a dimension to \mathcal{K}_i "

- → Sparse matrix-vector multiplication (SpMV)
 - Must communicate vector entries w/ neighboring processors (P2P communication)



"Orthogonalize with respect to C_i "

- → Inner products
 - global synchronization (MPI_Allreduce)
 - all processors must exchange data and wait for all communication to finish before proceeding

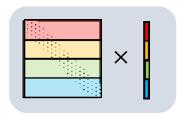
SpMV

orthogonalize

Projection process in terms of communication:

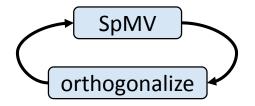
"Add a dimension to \mathcal{K}_i "

- → Sparse matrix-vector multiplication (SpMV)
 - Must communicate vector entries w/ neighboring processors (P2P communication)



"Orthogonalize with respect to C_i "

- → Inner products
 - global synchronization (MPI_Allreduce)
 - all processors must exchange data and wait for all communication to finish before proceeding



Dependencies between communication-bound kernels in each iteration limit performance!

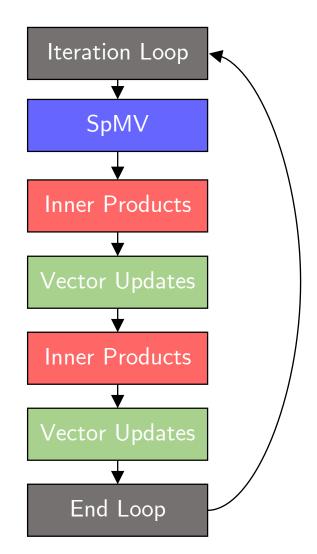
$$r_0 = b - Ax_0, \quad p_0 = r_0$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^T r_{i-1}}{p_{i-1}^T A p_{i-1}}$$

$$x_i = x_{i-1} + \alpha_{i-1} p_{i-1}$$

$$r_i = r_{i-1} - \alpha_{i-1} A p_{i-1}$$

$$\beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}}$$

$$p_i = r_i + \beta_i p_{i-1}$$
 end



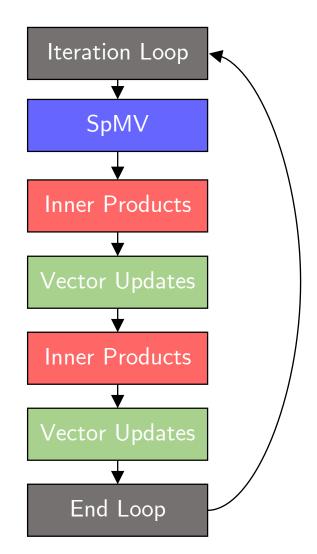
$$r_0 = b - Ax_0, \quad p_0 = r_0$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^T r_{i-1}}{p_{i-1}^T A p_{i-1}}$$

$$x_i = x_{i-1} + \alpha_{i-1} p_{i-1}$$

$$r_i = r_{i-1} - \alpha_{i-1} A p_{i-1}$$

$$\beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}}$$

$$p_i = r_i + \beta_i p_{i-1}$$
 end



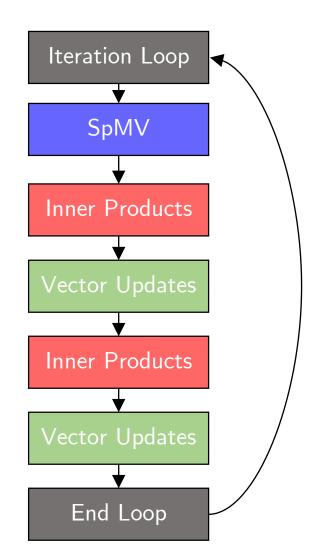
$$r_0 = b - Ax_0, \quad p_0 = r_0$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^T r_{i-1}}{p_{i-1}^T A p_{i-1}}$$

$$x_i = x_{i-1} + \alpha_{i-1} p_{i-1}$$

$$r_i = r_{i-1} - \alpha_{i-1} A p_{i-1}$$

$$\beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}}$$

$$p_i = r_i + \beta_i p_{i-1}$$
 end



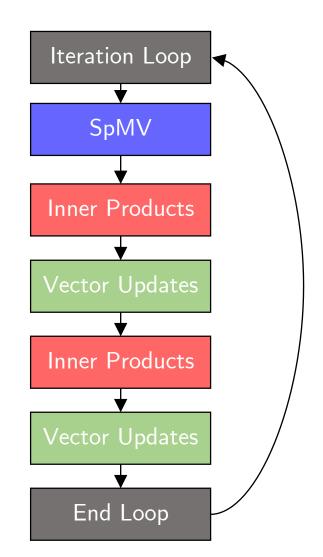
$$r_{0} = b - Ax_{0}, \quad p_{0} = r_{0}$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}}$$

$$x_{i} = x_{i-1} + \alpha_{i-1} p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1} A p_{i-1}$$

$$\beta_{i} = \frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}}$$

$$p_{i} = r_{i} + \beta_{i} p_{i-1}$$
 end



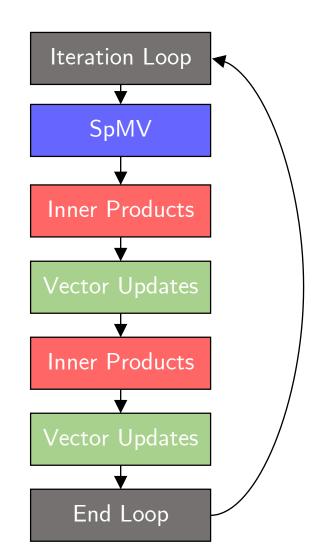
$$r_{0} = b - Ax_{0}, \quad p_{0} = r_{0}$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}}$$

$$x_{i} = x_{i-1} + \alpha_{i-1} p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1} A p_{i-1}$$

$$\beta_{i} = \frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}}$$

$$p_{i} = r_{i} + \beta_{i} p_{i-1}$$
 end

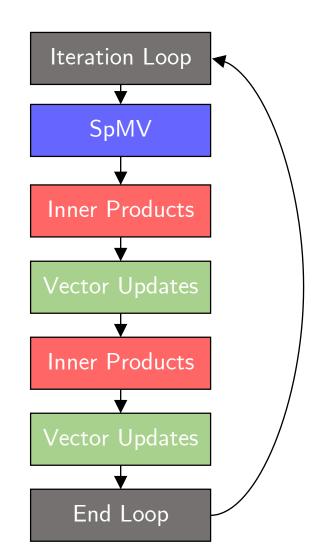


$$r_{0} = b - Ax_{0}, \quad p_{0} = r_{0}$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}}$$

$$x_{i} = x_{i-1} + \alpha_{i-1} p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1} A p_{i-1}$$

$$\beta_{i} = \frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}}$$
 end



	Petascale Systems (2009)
System Peak	$2 \cdot 10^{15}$ flops/s
Node Memory Bandwidth	25 GB/s
Total Node Interconnect Bandwidth	3.5 GB/s
Memory Latency	100 ns
Interconnect Latency	1 μ s

^{*}Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

	Petascale Systems (2009)	Predicted Exascale Systems
System Peak	$2 \cdot 10^{15}$ flops/s	10 ¹⁸ flops/s
Node Memory Bandwidth	25 GB/s	0.4-4 TB/s
Total Node Interconnect Bandwidth	3.5 GB/s	100-400 GB/s
Memory Latency	100 ns	50 ns
Interconnect Latency	1 μ s	0.5 μs

^{*}Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

	Petascale Systems (2009)	Predicted Exascale Systems	Factor Improvement
System Peak	$2 \cdot 10^{15}$ flops/s	10^{18} flops/s	~1000
Node Memory Bandwidth	25 GB/s	0.4-4 TB/s	~10-100
Total Node Interconnect Bandwidth	3.5 GB/s	100-400 GB/s	~100
Memory Latency	100 ns	50 ns	~1
Interconnect Latency	1μ s	0.5 μs	~1

^{*}Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

	Petascale Systems (2009)	Predicted Exascale Systems	Factor Improvement
System Peak	$2 \cdot 10^{15}$ flops/s	10^{18} flops/s	~1000
Node Memory Bandwidth	25 GB/s	0.4-4 TB/s	~10-100
Total Node Interconnect Bandwidth	3.5 GB/s	100-400 GB/s	~100
Memory Latency	100 ns	50 ns	~1
Interconnect Latency	1μ s	0.5 μs	~1

^{*}Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

- Gaps between communication/computation cost only growing larger in future systems
- Reducing time spent moving data/waiting for data will be essential for applications at exascale!

- Early work: CG with a single synchronization point per iteration
 - 3-term recurrence CG
 - Using modified computation of recurrence coefficients
 - Using auxiliary vectors

- Early work: CG with a single synchronization point per iteration
 - 3-term recurrence CG
 - Using modified computation of recurrence coefficients
 - Using auxiliary vectors
- Pipelined Krylov subspace methods
 - Uses modified coefficients and auxiliary vectors to reduce synchronization points to 1 per iteration
 - Modifications also allow decoupling of SpMV and inner products enables overlapping

- Early work: CG with a single synchronization point per iteration
 - 3-term recurrence CG
 - Using modified computation of recurrence coefficients
 - Using auxiliary vectors
- Pipelined Krylov subspace methods
 - Uses modified coefficients and auxiliary vectors to reduce synchronization points to 1 per iteration
 - Modifications also allow decoupling of SpMV and inner products enables overlapping
- s-step Krylov subspace methods
 - Compute iterations in blocks of s using a different Krylov subspace basis
 - Enables one synchronization per s iterations

Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal
 - Minimization no longer exact!

2. Loss of attainable accuracy

• Rounding errors cause true residual $b - Ax_i$ and updated residual r_i deviate!

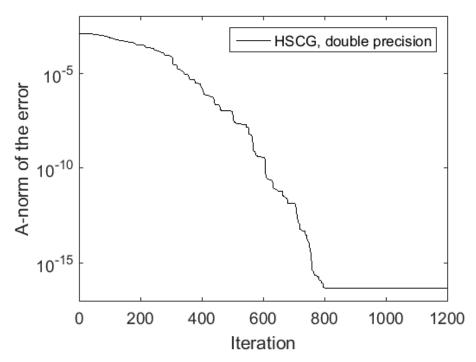
Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal
 - Minimization no longer exact!

2. Loss of attainable accuracy

• Rounding errors cause true residual $b - Ax_i$ and updated residual r_i deviate!



A: bcsstk03 from UFSMC, b: equal components in the eigenbasis of A and ||b|| = 1 $N = 112, \kappa(A) \approx 7e6$

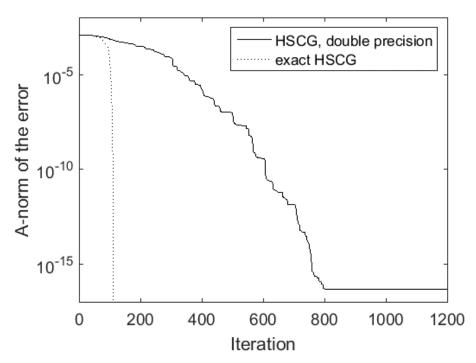
Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal
 - Minimization no longer exact!

2. Loss of attainable accuracy

• Rounding errors cause true residual $b - Ax_i$ and updated residual r_i deviate!



A: bcsstk03 from UFSMC, b: equal components in the eigenbasis of A and ||b|| = 1 $N = 112, \kappa(A) \approx 7e6$

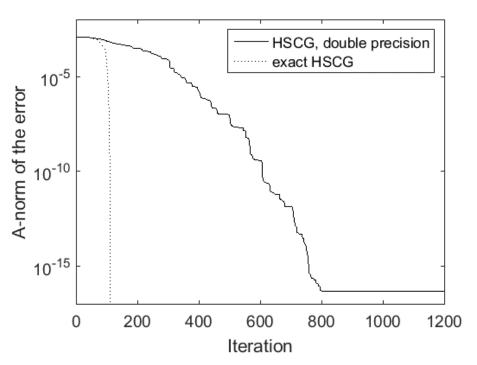
Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal
 - Minimization no longer exact!

2. Loss of attainable accuracy

• Rounding errors cause true residual $b - Ax_i$ and updated residual r_i deviate!



A: bcsstk03 from UFSMC, b: equal components in the eigenbasis of A and ||b|| = 1 $N = 112, \kappa(A) \approx 7e6$

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough summary of early developments in finite precision analysis of Lanczos and CG

• Synchronization-reducing variants are designed to reduce the time/iteration

- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!

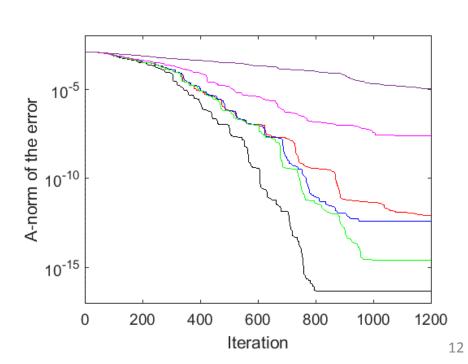
- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!
- What we really want to minimize is the runtime, subject to some constraint on accuracy,

runtime = $(time/iteration) \times (\# iterations)$

- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!
- What we really want to minimize is the runtime, subject to some constraint on accuracy,

runtime = $(time/iteration) \times (\# iterations)$

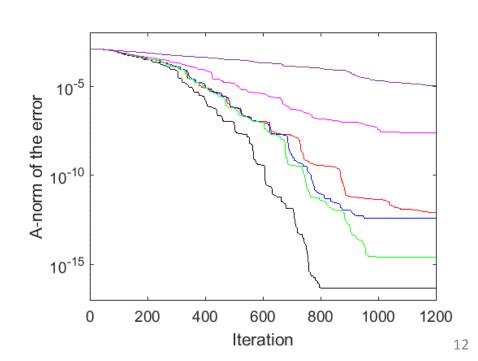
 Changes to how the recurrences are computed can exacerbate finite precision effects of convergence delay and loss of accuracy



- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!
- What we really want to minimize is the runtime, subject to some constraint on accuracy,

runtime = $(time/iteration) \times (\# iterations)$

- Changes to how the recurrences are computed can exacerbate finite precision effects of convergence delay and loss of accuracy
- Crucial that we understand and take into account how algorithm modifications will affect the convergence rate and attainable accuracy!



• Accuracy depends on the size of the true residual: $||b - A\hat{x}_i||$

- Accuracy depends on the size of the true residual: $||b A\hat{x}_i||$
- Rounding errors cause the true residual, $b A\hat{x}_i$, and the updated residual, \hat{r}_i , to deviate

- Accuracy depends on the size of the true residual: $||b A\hat{x}_i||$
- Rounding errors cause the **true residual**, $b A\hat{x}_i$, and the **updated residual**, \hat{r}_i , to deviate
- Writing $b A\hat{x}_i = \hat{r}_i + b A\hat{x}_i \hat{r}_i$,

$$||b - A\hat{x}_i|| \le ||\hat{r}_i|| + ||b - A\hat{x}_i - \hat{r}_i||$$

- Accuracy depends on the size of the true residual: $||b A\hat{x}_i||$
- Rounding errors cause the **true residual**, $b A\hat{x}_i$, and the **updated residual**, \hat{r}_i , to deviate
- Writing $b A\hat{x}_i = \hat{r}_i + b A\hat{x}_i \hat{r}_i$,

$$||b - A\hat{x}_i|| \le ||\hat{r}_i|| + ||b - A\hat{x}_i - \hat{r}_i||$$

• As $\|\hat{r}_i\| \to 0$, $\|b - A\hat{x}_i\|$ depends on $\|b - A\hat{x}_i - \hat{r}_i\|$

- Accuracy depends on the size of the true residual: $||b A\hat{x}_i||$
- Rounding errors cause the **true residual**, $b A\hat{x}_i$, and the **updated residual**, \hat{r}_i , to deviate
- Writing $b A\hat{x}_i = \hat{r}_i + b A\hat{x}_i \hat{r}_i$,

$$||b - A\hat{x}_i|| \le ||\hat{r}_i|| + ||b - A\hat{x}_i - \hat{r}_i||$$

• As $\|\hat{r}_i\| \to 0$, $\|b - A\hat{x}_i\|$ depends on $\|b - A\hat{x}_i - \hat{r}_i\|$

Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994, 1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht and Strakoš (2000).

$$\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_i$$

and
$$\hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1} A \hat{p}_{i-1} - \boldsymbol{\delta r_i}$$

$$\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_i$$

and
$$\hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1} A \hat{p}_{i-1} - \delta r_i$$

• Let
$$f_i \equiv b - A\hat{x}_i - \hat{r}_i$$

$$\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_i$$

and
$$\hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1} A \hat{p}_{i-1} - \delta r_i$$

• Let
$$f_i \equiv b - A\hat{x}_i - \hat{r}_i$$

$$f_i = b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_i) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_i)$$

$$\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_i$$

and
$$\hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1} A \hat{p}_{i-1} - \boldsymbol{\delta r_i}$$

• Let
$$f_i \equiv b - A\hat{x}_i - \hat{r}_i$$

$$f_{i} = b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_{i}) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_{i})$$

= $f_{i-1} + A\delta x_{i} + \delta r_{i}$

$$\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_i \quad \text{and} \quad \hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_i$$

• Let
$$f_i \equiv b - A\hat{x}_i - \hat{r}_i$$

$$f_i = b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_i) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_i)$$
$$= f_{i-1} + A\delta x_i + \delta r_i$$
$$= f_0 + \sum_{m=1}^{i} (A\delta x_m + \delta r_m)$$

• In finite precision HSCG, iterates are updated by

$$\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_i$$

and

$$\hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1} A \hat{p}_{i-1} - \delta r_i$$

• Let
$$f_i \equiv b - A\hat{x}_i - \hat{r}_i$$

$$f_{i} = b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_{i}) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_{i})$$

$$= f_{i-1} + A\delta x_{i} + \delta r_{i}$$

$$= f_{0} + \sum_{m=1}^{i} (A\delta x_{m} + \delta r_{m})$$

$$||f_i|| \le O(\varepsilon) \sum_{m=0}^{i} N_A ||A|| ||\hat{x}_m|| + ||\hat{r}_m||$$

van der Vorst and Ye, 2000

$$\|f_i\| \le O(\varepsilon) \|A\| \big(\|x\| + \max_{m=0,\dots,i} \|\hat{x}_m\| \big)$$

Greenbaum, 1997

$$||f_i|| \le O(\varepsilon) N_A |||A|||||A^{-1}|| \sum_{m=0}^i ||\hat{r}_m||$$

Sleijpen and van der Vorst, 1995

Early approaches to reducing synchronization

 Goal: Reduce the 2 synchronization points per iteration in HSCG to 1 synchronization point per iteration

Early approaches to reducing synchronization

- Goal: Reduce the 2 synchronization points per iteration in HSCG to 1 synchronization point per iteration
- Compute β_i from α_{i-1} and Ap_{i-1} using relation

$$||r_i||^2 = \alpha_{i-1}^2 ||Ap_{i-1}||^2 - ||r_{i-1}||^2$$

- Can then also merge the updates of x_i , r_i , and p_i
- Developed independently by Johnson (1983, 1984), van Rosendale (1983, 1984), Saad (1985)
- Many other similar approaches

Early approaches to reducing synchronization

- Goal: Reduce the 2 synchronization points per iteration in HSCG to 1 synchronization point per iteration
- Compute β_i from α_{i-1} and Ap_{i-1} using relation

$$||r_i||^2 = \alpha_{i-1}^2 ||Ap_{i-1}||^2 - ||r_{i-1}||^2$$

- Can then also merge the updates of x_i , r_i , and p_i
- Developed independently by Johnson (1983, 1984), van Rosendale (1983, 1984), Saad (1985)
- Many other similar approaches
- Could also compute α_{i-1} from β_{i-1} :

$$\alpha_{i-1} = \left(\frac{r_{i-1}^T A r_{i-1}}{r_{i-1}^T r_{i-1}} - \frac{\beta_{i-1}}{\alpha_{i-2}}\right)^{-1}$$

• What is the effect of changing the way the recurrence coefficients (α and β) are computed in HSCG?

- What is the effect of changing the way the recurrence coefficients (α and β) are computed in HSCG?
- Notice that neither α nor β appear in the bounds on $||f_i||$

$$f_{i} = b - A\hat{x}_{i} - \hat{r}_{i}$$

= $b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_{i}) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_{i})$

- What is the effect of changing the way the recurrence coefficients (α and β) are computed in HSCG?
- Notice that neither α nor β appear in the bounds on $||f_i||$

$$f_{i} = b - A\hat{x}_{i} - \hat{r}_{i} = b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_{i}) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_{i})$$

• As long as the same $\hat{\alpha}_{i-1}$ is used in updating \hat{x}_i and \hat{r}_i ,

$$f_i = f_{i-1} + A\delta x_i + \delta r_i$$

still holds

- What is the effect of changing the way the recurrence coefficients (α and β) are computed in HSCG?
- Notice that neither α nor β appear in the bounds on $||f_i||$

$$f_{i} = b - A\hat{x}_{i} - \hat{r}_{i}$$

= $b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_{i}) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_{i})$

• As long as the same $\hat{\alpha}_{i-1}$ is used in updating \hat{x}_i and \hat{r}_i ,

$$f_i = f_{i-1} + A\delta x_i + \delta r_i$$

still holds

• Rounding errors made in computing $\hat{\alpha}_{i-1}$ do not contribute to the residual gap

- What is the effect of changing the way the recurrence coefficients (α and β) are computed in HSCG?
- Notice that neither α nor β appear in the bounds on $||f_i||$

$$f_{i} = b - A\hat{x}_{i} - \hat{r}_{i}$$

= $b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_{i}) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_{i})$

• As long as the same $\hat{\alpha}_{i-1}$ is used in updating \hat{x}_i and \hat{r}_i ,

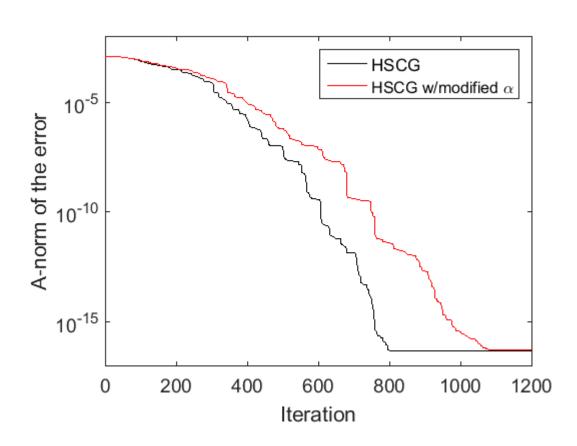
$$f_i = f_{i-1} + A\delta x_i + \delta r_i$$

still holds

- Rounding errors made in computing $\hat{\alpha}_{i-1}$ do not contribute to the residual gap
- But may change computed \hat{x}_i , \hat{r}_i , which can affect convergence rate...

Example: HSCG with modified formula for α_{i-1}

$$\alpha_{i-1} = \left(\frac{r_{i-1}^T A r_{i-1}}{r_{i-1}^T r_{i-1}} - \frac{\beta_{i-1}}{\alpha_{i-2}}\right)^{-1}$$



HSCG recurrences can be written as

$$AP_i = R_{i+1}\underline{L}_i, \qquad R_i = P_iU_i$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$AR_i = R_{i+1}\underline{T_i}, \qquad \underline{T_i} = \underline{L_i}U_i$$

HSCG recurrences can be written as

$$AP_i = R_{i+1}\underline{L}_i, \qquad R_i = P_iU_i$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$AR_i = R_{i+1}\underline{T_i}, \qquad \underline{T_i} = \underline{L_i}U_i$$

- First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young (1981)
- Motivated by relation to three-term recurrences for orthogonal polynomials

$$\begin{array}{l} r_0=b-Ax_0, \ \ p_0=r_0, \ \ x_{-1}=x_0, \ \ r_{-1}=r_0, \ \ e_{-1}=0 \\ \text{for } i=1:\text{nmax} \\ q_{i-1}=\frac{(r_{i-1},Ar_{i-1})}{(r_{i-1},r_{i-1})}-e_{i-2} \\ x_i=x_{i-1}+\frac{1}{q_{i-1}}(r_{i-1}+e_{i-2}(x_{i-1}-x_{i-2})) \\ r_i=r_{i-1}+\frac{1}{q_{i-1}}(-Ar_{i-1}+e_{i-2}(r_{i-1}-r_{i-2})) \\ e_{i-1}=q_{i-1}\frac{(r_i,r_i)}{(r_{i-1},r_{i-1})} \\ \text{end} \end{array}$$

HSCG recurrences can be written as

$$AP_i = R_{i+1}\underline{L}_i, \qquad R_i = P_iU_i$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$AR_i = R_{i+1}\underline{T_i}, \qquad \underline{T_i} = \underline{L_i}U_i$$

- First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young (1981)
- Motivated by relation to three-term recurrences for orthogonal polynomials

$$\begin{array}{l} r_0=b-Ax_0, \ \ p_0=r_0, \ \ x_{-1}=x_0, \ \ r_{-1}=r_0, \ \ e_{-1}=0 \\ \text{for } i=1:\text{nmax} \\ \\ q_{i-1}=\frac{(r_{i-1},Ar_{i-1})}{(r_{i-1},r_{i-1})}-e_{i-2} \\ x_i=x_{i-1}+\frac{1}{q_{i-1}}(r_{i-1}+e_{i-2}(x_{i-1}-x_{i-2})) \\ r_i=r_{i-1}+\frac{1}{q_{i-1}}(-Ar_{i-1}+e_{i-2}(r_{i-1}-r_{i-2})) \\ e_{i-1}=q_{i-1}\frac{(r_i,r_i)}{(r_{i-1},r_{i-1})} \\ \text{end} \end{array}$$

Can be accomplished with a single synchronization point on parallel computers (Strakoš 1985, 1987)

HSCG recurrences can be written as

$$AP_i = R_{i+1}\underline{L}_i, \qquad R_i = P_iU_i$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$AR_i = R_{i+1}\underline{T_i}, \qquad \underline{T_i} = \underline{L_i}U_i$$

- First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young (1981)
- Motivated by relation to three-term recurrences for orthogonal polynomials

$$r_0 = b - Ax_0, \quad p_0 = r_0, \quad x_{-1} = x_0, \quad r_{-1} = r_0, \quad e_{-1} = 0 \\ \text{for } i = 1 : \text{nmax} \\ q_{i-1} = \frac{(r_{i-1}, Ar_{i-1})}{(r_{i-1}, r_{i-1})} - e_{i-2} \\ x_i = x_{i-1} + \frac{1}{q_{i-1}} (r_{i-1} + e_{i-2}(x_{i-1} - x_{i-2})) \\ r_i = r_{i-1} + \frac{1}{q_{i-1}} (-Ar_{i-1} + e_{i-2}(r_{i-1} - r_{i-2})) \\ e_{i-1} = q_{i-1} \frac{(r_i, r_i)}{(r_{i-1}, r_{i-1})} \\ \text{end}$$

Can be accomplished with a single synchronization point on parallel computers (Strakoš 1985, 1987)

• Similar approach (computing α_i using β_{i-1}) used by D'Azevedo, Eijkhout, Romaine (1992, 1993)

Attainable accuracy of STCG

- Analyzed by Gutknecht and Strakoš (2000)
- Attainable accuracy for STCG can be much worse than for HSCG

Attainable accuracy of STCG

- Analyzed by Gutknecht and Strakoš (2000)
- Attainable accuracy for STCG can be much worse than for HSCG
- Residual gap bounded by sum of local errors PLUS local errors multiplied by factors which depend on

$$\max_{0 \le \ell < j \le i} \frac{\|r_j\|^2}{\|r_\ell\|^2}$$

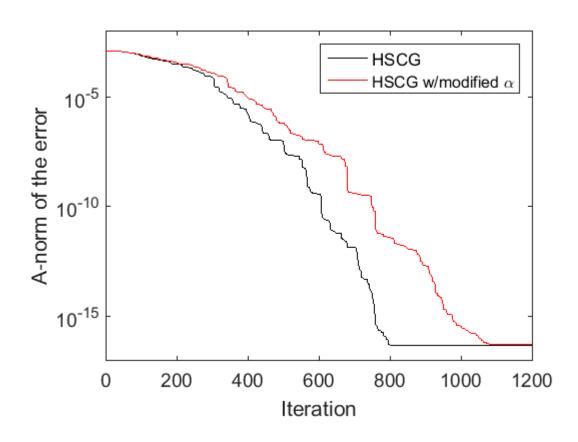
Attainable accuracy of STCG

- Analyzed by Gutknecht and Strakoš (2000)
- Attainable accuracy for STCG can be much worse than for HSCG
- Residual gap bounded by sum of local errors PLUS local errors multiplied by factors which depend on

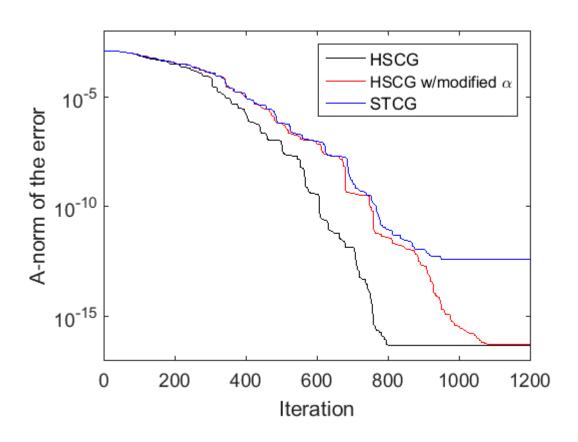
$$\max_{0 \le \ell < j \le i} \frac{\left\| r_j \right\|^2}{\| r_\ell \|^2}$$

- ⇒ Large residual oscillations can cause these factors to be large!
- ⇒ Local errors can be amplified!

STCG



STCG



Chronopoulos and Gear's CG (ChG CG)

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_0 = b - Ax_0, \ p_0 = r_0,$$

$$s_0 = Ap_0, \ \alpha_0 = (r_0, r_0)/(p_0, s_0)$$
for $i = 1$:nmax
$$x_i = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_i = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_i = Ar_i$$

$$\beta_i = \frac{(r_i, r_i)}{(r_{i-1}, r_{i-1})}$$

$$\alpha_i = \frac{(r_i, r_i)}{(w_i, r_i) - (\beta_i/\alpha_{i-1})(r_i, r_i)}$$

$$p_i = r_i + \beta_i p_{i-1}$$

$$s_i = w_i + \beta_i s_{i-1}$$
end

Chronopoulos and Gear's CG (ChG CG)

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_0 = b - Ax_0, \ p_0 = r_0,$$

$$s_0 = Ap_0, \ \alpha_0 = (r_0, r_0)/(p_0, s_0)$$
for $i = 1$:nmax
$$x_i = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_i = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_i = Ar_i$$

$$\beta_i = \frac{(r_i, r_i)}{(r_{i-1}, r_{i-1})}$$

$$\alpha_i = \frac{(r_i, r_i)}{(w_i, r_i) - (\beta_i/\alpha_{i-1})(r_i, r_i)}$$

$$p_i = r_i + \beta_i p_{i-1}$$

$$s_i = w_i + \beta_i s_{i-1}$$
end

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_0 = b - Ax_0, \ p_0 = r_0,$$

$$s_0 = Ap_0, \ \alpha_0 = (r_0, r_0)/(p_0, s_0)$$
for $i = 1$:nmax
$$x_i = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_i = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_i = Ar_i$$

$$\beta_i = \frac{(r_i, r_i)}{(r_{i-1}, r_{i-1})}$$

$$\alpha_i = \frac{(r_i, r_i)}{(w_i, r_i) - (\beta_i/\alpha_{i-1})(r_i, r_i)}$$

$$p_i = r_i + \beta_i p_{i-1}$$
si = wi + \beta_i s_{i-1}

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

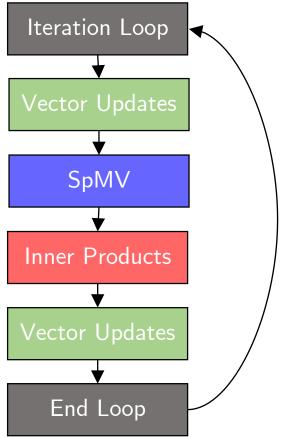
$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$
end



- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_0 = b - Ax_0, \ p_0 = r_0,$$

$$s_0 = Ap_0, \ \alpha_0 = (r_0, r_0)/(p_0, s_0)$$
for $i = 1$:nmax
$$x_i = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_i = r_{i-1} - \alpha_{i-1}s_{i-1}$$

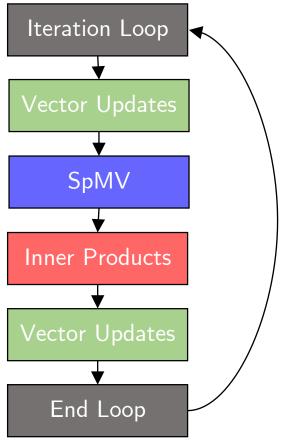
$$w_i = Ar_i$$

$$\beta_i = \frac{(r_i, r_i)}{(r_{i-1}, r_{i-1})}$$

$$\alpha_i = \frac{(r_i, r_i)}{(w_i, r_i) - (\beta_i/\alpha_{i-1})(r_i, r_i)}$$

$$p_i = r_i + \beta_i p_{i-1}$$

$$s_i = w_i + \beta_i s_{i-1}$$
end



- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

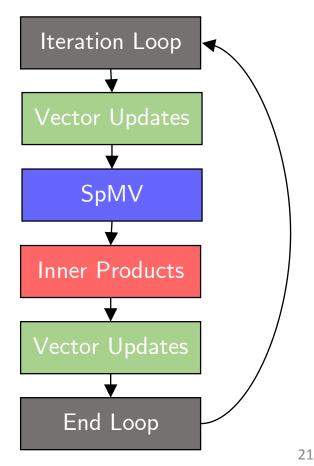
$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$
end



- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

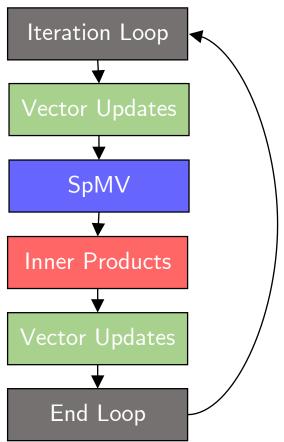
$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$
end



- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

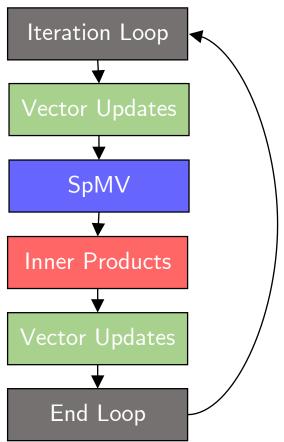
$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$
end



Pipelined CG (GVCG)

- Pipelined CG of Ghysels and Vanroose (2014)
- Similar to Chronopoulos and Gear approach
 - Uses auxiliary vector $s_i \equiv Ap_i$ and same formula for α_i

Pipelined CG (GVCG)

- Pipelined CG of Ghysels and Vanroose (2014)
- Similar to Chronopoulos and Gear approach
 - Uses auxiliary vector $s_i \equiv Ap_i$ and same formula for α_i
- Also uses auxiliary vectors for Ar_i and A^2r_i to remove sequential dependency between SpMV and inner products

Pipelined CG (GVCG)

- Pipelined CG of Ghysels and Vanroose (2014)
- Similar to Chronopoulos and Gear approach
 - Uses auxiliary vector $s_i \equiv Ap_i$ and same formula for α_i
- Also uses auxiliary vectors for Ar_i and A^2r_i to remove sequential dependency between SpMV and inner products
 - Allows the use of nonblocking (asynchronous) MPI communication to overlap SpMV and inner products
 - Hides the latency of global communications

$$\begin{split} r_0 &= b - Ax_0, \ p_0 = r_0 \\ s_0 &= Ap_0, w_0 = Ar_0, z_0 = Aw_0, \\ \alpha_0 &= r_0^T r_0/p_0^T s_0 \\ \text{for } i &= 1 \text{:nmax} \\ x_i &= x_{i-1} + \alpha_{i-1} p_{i-1} \\ r_i &= r_{i-1} - \alpha_{i-1} s_{i-1} \\ w_i &= w_{i-1} - \alpha_{i-1} z_{i-1} \\ q_i &= Aw_i \\ \beta_i &= \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}} \\ \alpha_i &= \frac{r_i^T r_i}{w_i^T r_i - (\beta_i/\alpha_{i-1}) r_i^T r_i} \\ p_i &= r_i + \beta_i p_{i-1} \\ s_i &= w_i + \beta_i s_{i-1} \\ z_i &= q_i + \beta_i z_{i-1} \end{split}$$

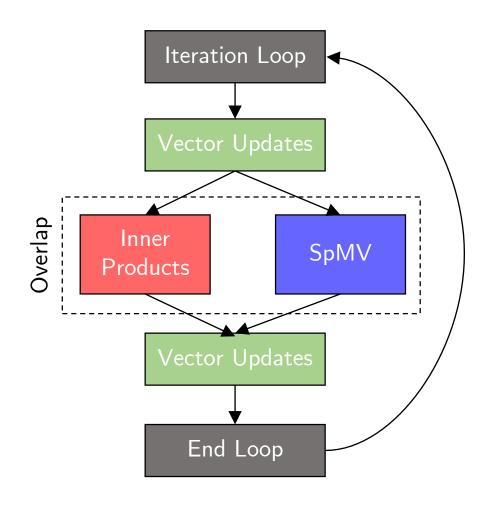
end

$$\begin{split} r_0 &= b - Ax_0, \ p_0 = r_0 \\ s_0 &= Ap_0, w_0 = Ar_0, z_0 = Aw_0, \\ \alpha_0 &= r_0^T r_0/p_0^T s_0 \\ \text{for } i &= 1 \text{:nmax} \\ x_i &= x_{i-1} + \alpha_{i-1} p_{i-1} \\ r_i &= r_{i-1} - \alpha_{i-1} s_{i-1} \\ w_i &= w_{i-1} - \alpha_{i-1} z_{i-1} \\ q_i &= Aw_i \\ \beta_i &= \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}} \\ \alpha_i &= \frac{r_i^T r_i}{w_i^T r_i - (\beta_i/\alpha_{i-1}) r_i^T r_i} \\ p_i &= r_i + \beta_i p_{i-1} \\ s_i &= w_i + \beta_i s_{i-1} \\ z_i &= q_i + \beta_i z_{i-1} \end{split}$$

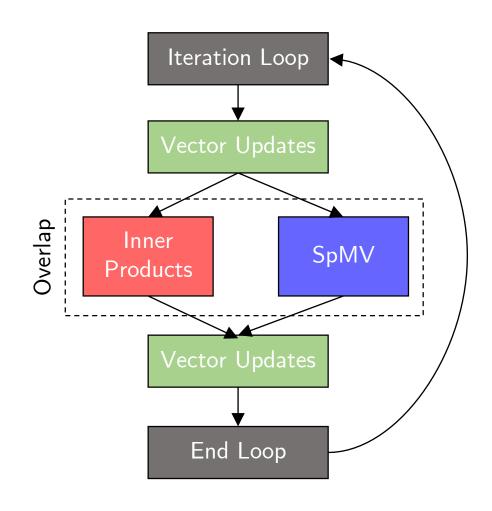
end

23

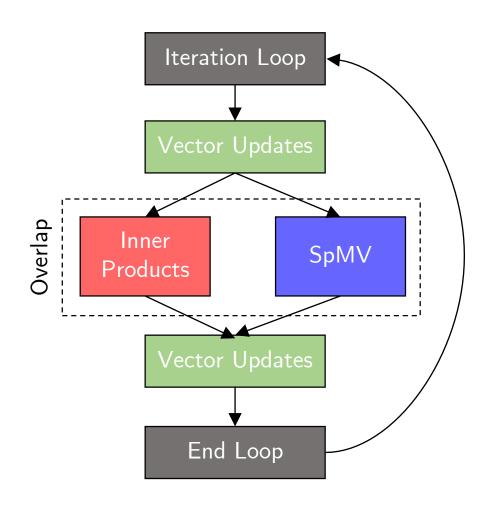
$$\begin{split} r_0 &= b - Ax_0, \ p_0 = r_0 \\ s_0 &= Ap_0, w_0 = Ar_0, z_0 = Aw_0, \\ \alpha_0 &= r_0^T r_0/p_0^T s_0 \\ \text{for } i &= 1 \text{:nmax} \\ x_i &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_i &= r_{i-1} - \alpha_{i-1}s_{i-1} \\ w_i &= w_{i-1} - \alpha_{i-1}z_{i-1} \\ q_i &= Aw_i \\ \beta_i &= \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}} \\ \alpha_i &= \frac{r_i^T r_i}{w_i^T r_i - (\beta_i/\alpha_{i-1}) r_i^T r_i} \\ p_i &= r_i + \beta_i p_{i-1} \\ s_i &= w_i + \beta_i s_{i-1} \\ z_i &= q_i + \beta_i z_{i-1} \end{split}$$
 end



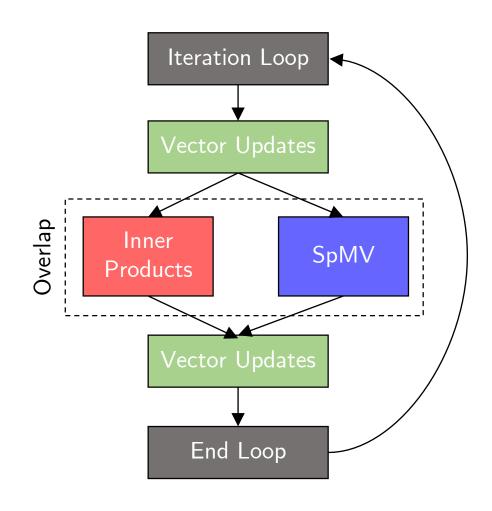
$$\begin{split} r_0 &= b - Ax_0, \ p_0 = r_0 \\ s_0 &= Ap_0, w_0 = Ar_0, z_0 = Aw_0, \\ \alpha_0 &= r_0^T r_0/p_0^T s_0 \\ \\ \text{for } i &= 1 \text{:nmax} \\ \\ x_i &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_i &= r_{i-1} - \alpha_{i-1}s_{i-1} \\ w_i &= w_{i-1} - \alpha_{i-1}z_{i-1} \\ q_i &= Aw_i \\ \beta_i &= \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}} \\ \alpha_i &= \frac{r_i^T r_i}{w_i^T r_i - (\beta_i/\alpha_{i-1})r_i^T r_i} \\ p_i &= r_i + \beta_i p_{i-1} \\ s_i &= w_i + \beta_i s_{i-1} \\ z_i &= q_i + \beta_i z_{i-1} \\ \end{split}$$
 end



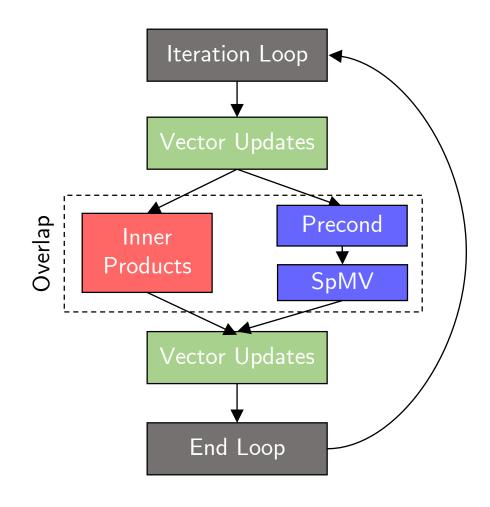
$$\begin{split} r_0 &= b - Ax_0, \ p_0 = r_0 \\ s_0 &= Ap_0, w_0 = Ar_0, z_0 = Aw_0, \\ \alpha_0 &= r_0^T r_0/p_0^T s_0 \\ \text{for } i &= 1 \text{:nmax} \\ & x_i = x_{i-1} + \alpha_{i-1} p_{i-1} \\ & r_i = r_{i-1} - \alpha_{i-1} s_{i-1} \\ & w_i = w_{i-1} - \alpha_{i-1} z_{i-1} \\ & q_i = Aw_i \\ & \beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}} \\ & \alpha_i = \frac{r_i^T r_i}{w_i^T r_i - (\beta_i/\alpha_{i-1}) r_i^T r_i} \\ & p_i = r_i + \beta_i p_{i-1} \\ & s_i = w_i + \beta_i s_{i-1} \\ & z_i = q_i + \beta_i z_{i-1} \end{split}$$
 end



$$\begin{split} r_0 &= b - Ax_0, \ p_0 = r_0 \\ s_0 &= Ap_0, w_0 = Ar_0, z_0 = Aw_0, \\ \alpha_0 &= r_0^T r_0/p_0^T s_0 \\ \text{for } i &= 1 \text{:nmax} \\ & x_i = x_{i-1} + \alpha_{i-1} p_{i-1} \\ & r_i = r_{i-1} - \alpha_{i-1} s_{i-1} \\ & w_i = w_{i-1} - \alpha_{i-1} z_{i-1} \\ & q_i = Aw_i \\ & \beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}} \\ & \alpha_i = \frac{r_i^T r_i}{w_i^T r_i - (\beta_i/\alpha_{i-1}) r_i^T r_i} \\ & p_i = r_i + \beta_i p_{i-1} \\ & s_i = w_i + \beta_i s_{i-1} \\ & z_i = q_i + \beta_i z_{i-1} \end{split}$$
 end



$$\begin{split} r_0 &= b - Ax_0, \ p_0 = r_0 \\ s_0 &= Ap_0, w_0 = Ar_0, z_0 = Aw_0, \\ \alpha_0 &= r_0^T r_0/p_0^T s_0 \\ \text{for } i &= 1 \text{:nmax} \\ & x_i = x_{i-1} + \alpha_{i-1} p_{i-1} \\ & r_i = r_{i-1} - \alpha_{i-1} s_{i-1} \\ & w_i = w_{i-1} - \alpha_{i-1} z_{i-1} \\ & q_i = Aw_i \\ & \beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}} \\ & \alpha_i = \frac{r_i^T r_i}{w_i^T r_i - (\beta_i/\alpha_{i-1}) r_i^T r_i} \\ & p_i = r_i + \beta_i p_{i-1} \\ & s_i = w_i + \beta_i s_{i-1} \\ & z_i = q_i + \beta_i z_{i-1} \end{split}$$
 end



What is the effect of adding auxiliary recurrences to the CG method?

- What is the effect of adding auxiliary recurrences to the CG method?
- To isolate the effects, we consider a simplified version of a pipelined method

$$r_0 = b - Ax_0, p_0 = r_0, s_0 = Ap_0$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{(r_{i-1}, r_{i-1})}{(p_{i-1}, s_{i-1})}$$

$$x_i = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_i = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$\beta_i = \frac{(r_i, r_i)}{(r_{i-1}, r_{i-1})}$$

$$p_i = r_i + \beta_i p_{i-1}$$

$$s_i = Ar_i + \beta_i s_{i-1}$$
 end

- What is the effect of adding auxiliary recurrences to the CG method?
- To isolate the effects, we consider a simplified version of a pipelined method
 - Uses same update formulas for α and β as HSCG, but uses additional recurrence for Ap_i

$$r_0 = b - Ax_0, p_0 = r_0, s_0 = Ap_0$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{(r_{i-1}, r_{i-1})}{(p_{i-1}, s_{i-1})}$$

$$x_i = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_i = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$\beta_i = \frac{(r_i, r_i)}{(r_{i-1}, r_{i-1})}$$

$$p_i = r_i + \beta_i p_{i-1}$$

$$s_i = Ar_i + \beta_i s_{i-1}$$
 end

$$\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_i$$
 $\hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \delta r_i$

$$\hat{x}_{i} = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} \qquad \hat{r}_{i} = \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \delta r_{i}$$

$$f_{i} = \hat{r}_{i} - (b - A\hat{x}_{i})$$

$$\hat{x}_{i} = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} \qquad \hat{r}_{i} = \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \delta r_{i}$$

$$f_{i} = \hat{r}_{i} - (b - A\hat{x}_{i})$$

$$= f_{i-1} - \hat{\alpha}_{i-1}(\hat{s}_{i-1} - A\hat{p}_{i-1}) + \delta r_{i} + A\delta x_{i}$$

$$\hat{x}_{i} = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} \qquad \hat{r}_{i} = \hat{r}_{i-1} - \hat{\alpha}_{i-1}\,\hat{s}_{i-1} + \delta r_{i}$$

$$f_{i} = \hat{r}_{i} - (b - A\hat{x}_{i})$$

$$= f_{i-1} - \hat{\alpha}_{i-1}(\hat{s}_{i-1} - A\hat{p}_{i-1}) + \delta r_{i} + A\delta x_{i}$$

$$= f_{0} + \sum_{m=1}^{i} (\delta r_{m} + A\delta x_{m}) - G_{i}d_{i}$$

where

$$G_i = \hat{S}_i - A\hat{P}_i, \quad d_i = [\hat{\alpha}_0, \dots, \hat{\alpha}_{i-1}]^T$$

$$\hat{x}_{i} = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} \qquad \hat{r}_{i} = \hat{r}_{i-1} - \hat{\alpha}_{i-1}\,\hat{s}_{i-1} + \delta r_{i}$$

$$f_{i} = \hat{r}_{i} - (b - A\hat{x}_{i})$$

$$= f_{i-1} - \hat{\alpha}_{i-1}(\hat{s}_{i-1} - A\hat{p}_{i-1}) + \delta r_{i} + A\delta x_{i}$$

$$= f_{0} + \sum_{m=1}^{i} (\delta r_{m} + A\delta x_{m}) - G_{i}d_{i}$$

where

$$G_i = \hat{S}_i - A\hat{P}_i, \quad d_i = [\hat{\alpha}_0, \dots, \hat{\alpha}_{i-1}]^T$$

$$\hat{x}_{i} = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} \qquad \hat{r}_{i} = \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \delta r_{i}$$

$$f_{i} = \hat{r}_{i} - (b - A\hat{x}_{i})$$

$$= f_{i-1} - \hat{\alpha}_{i-1}(\hat{s}_{i-1} - A\hat{p}_{i-1}) + \delta r_{i} + A\delta x_{i}$$

$$= f_{0} + \sum_{m=1}^{i} (\delta r_{m} + A\delta x_{m}) - G_{i}d_{i}$$

where

$$G_i = \hat{S}_i - A\hat{P}_i, \quad d_i = [\hat{\alpha}_0, \dots, \hat{\alpha}_{i-1}]^T$$

$$||G_i|| \le \frac{O(\varepsilon)}{1 - O(\varepsilon)} \left(\kappa(\widehat{U}_i) ||A|| ||\widehat{P}_i|| + ||A|| ||\widehat{R}_i|| ||\widehat{U}_i^{-1}|| \right)$$

$$\widehat{U}_{i} = \begin{bmatrix} 1 & -\widehat{\beta}_{1} & 0 & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & 1 & -\widehat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix} \qquad \widehat{U}_{i}^{-1} = \begin{bmatrix} 1 & \beta_{1} & \dots & \dots & \beta_{1}\beta_{2} & \dots & \beta_{i-1} \\ 0 & 1 & \widehat{\beta}_{2} & \dots & \widehat{\beta}_{2} & \dots & \widehat{\beta}_{i-1} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 1 & & \widehat{\beta}_{i-1} \\ 0 & \dots & \dots & 0 & & 1 \end{bmatrix}$$

$$\|G_i\| \le \frac{O(\varepsilon)}{1 - O(\varepsilon)} \left(\kappa(\widehat{U}_i) \|A\| \|\widehat{P}_i\| + \|A\| \|\widehat{R}_i\| \|\widehat{U}_i^{-1}\| \right)$$

$$\widehat{U}_{i} = \begin{bmatrix} 1 & -\widehat{\beta}_{1} & 0 & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & 1 & -\widehat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix} \qquad \widehat{U}_{i}^{-1} = \begin{bmatrix} 1 & \beta_{1} & \dots & \dots & \beta_{1}\beta_{2} & \dots & \beta_{i-1} \\ 0 & 1 & \widehat{\beta}_{2} & \dots & \widehat{\beta}_{2} & \dots & \widehat{\beta}_{i-1} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 1 & \widehat{\beta}_{i-1} \\ 0 & \dots & \dots & 0 & 1 \end{bmatrix}$$

$$\beta_{\ell} \beta_{\ell+1} \cdots \beta_{j} = \frac{\|r_{j}\|^{2}}{\|r_{\ell-1}\|^{2}}, \qquad \ell < j$$

$$\|G_i\| \le \frac{O(\varepsilon)}{1 - O(\varepsilon)} \left(\kappa(\widehat{U}_i) \|A\| \|\widehat{P}_i\| + \|A\| \|\widehat{R}_i\| \|\widehat{U}_i^{-1}\| \right)$$

$$\widehat{U}_{i} = \begin{bmatrix} 1 & -\widehat{\beta}_{1} & 0 & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & 1 & -\widehat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix} \qquad \widehat{U}_{i}^{-1} = \begin{bmatrix} 1 & \beta_{1} & \dots & \dots & \beta_{1}\beta_{2} & \dots & \beta_{i-1} \\ 0 & 1 & \widehat{\beta}_{2} & \dots & \widehat{\beta}_{2} & \dots & \widehat{\beta}_{i-1} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 1 & & \widehat{\beta}_{i-1} \\ 0 & \dots & \dots & 0 & & 1 \end{bmatrix}$$

$$\beta_{\ell} \beta_{\ell+1} \cdots \beta_j = \frac{\|r_j\|^2}{\|r_{\ell-1}\|^2}, \qquad \ell < j$$

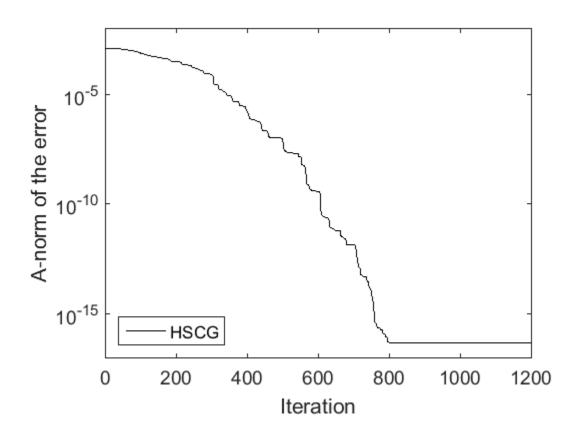
- Residual oscillations can cause these factors to be large!
- Errors in computed recurrence coefficients can be amplified!

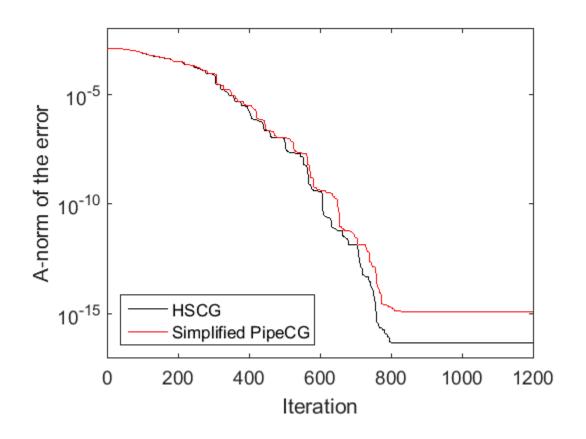
$$||G_i|| \le \frac{O(\varepsilon)}{1 - O(\varepsilon)} \left(\kappa(\widehat{U}_i) ||A|| ||\widehat{P}_i|| + ||A|| ||\widehat{R}_i|| ||\widehat{U}_i^{-1}|| \right)$$

$$\widehat{U}_{i} = \begin{bmatrix} 1 & -\widehat{\beta}_{1} & 0 & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & 1 & -\widehat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix} \qquad \widehat{U}_{i}^{-1} = \begin{bmatrix} 1 & \beta_{1} & \dots & \dots & \beta_{1}\beta_{2} & \dots & \beta_{i-1} \\ 0 & 1 & \widehat{\beta}_{2} & \dots & \widehat{\beta}_{2} & \dots & \widehat{\beta}_{i-1} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 1 & & \widehat{\beta}_{i-1} \\ 0 & \dots & \dots & 0 & & 1 \end{bmatrix}$$

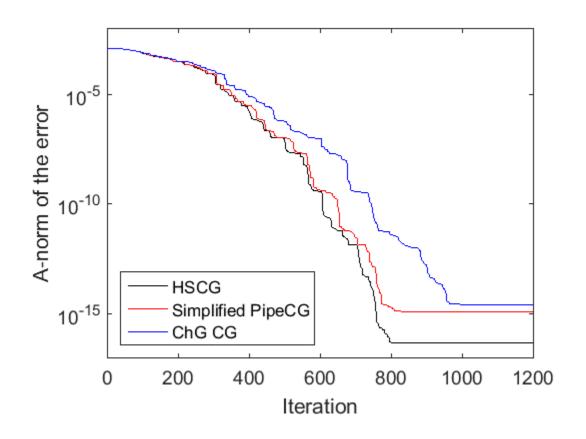
$$\beta_{\ell} \beta_{\ell+1} \cdots \beta_j = \frac{\|r_j\|^2}{\|r_{\ell-1}\|^2}, \qquad \ell < j$$

- Residual oscillations can cause these factors to be large!
- Errors in computed recurrence coefficients can be amplified!
- Very similar to the results for attainable accuracy in the 3-term STCG
- Seemingly innocuous change can cause drastic loss of accuracy

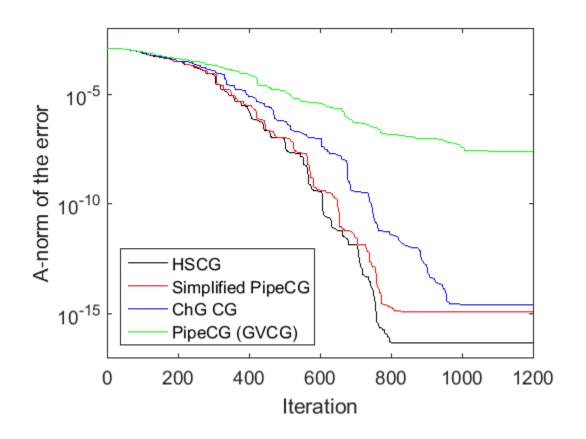




effect of using auxiliary vector $s_i \equiv Ap_i$



effect of changing formula for recurrence coefficient α and using auxiliary vector $s_i \equiv Ap_i$



effect of changing formula for recurrence coefficient α and using auxiliary vectors $s_i \equiv Ap_i$, $w_i \equiv Ar_i$, $z_i \equiv A^2r_i$

s-step CG

- Idea: Compute blocks of s iterations at once
 - Compute updates in a different basis
 - Communicate every s iterations instead of every iteration
 - Reduces number of synchronizations per iteration by a factor of s

s-step CG

- Idea: Compute blocks of s iterations at once
 - Compute updates in a different basis
 - Communicate every s iterations instead of every iteration
 - Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...

s-step CG

- Idea: Compute blocks of s iterations at once
 - Compute updates in a different basis
 - Communicate every s iterations instead of every iteration
 - Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
 - Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)

- Idea: Compute blocks of s iterations at once
 - Compute updates in a different basis
 - Communicate every s iterations instead of every iteration
 - Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
 - Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale (1983); Chronopoulos and Gear (1989)

- Idea: Compute blocks of s iterations at once
 - Compute updates in a different basis
 - Communicate every s iterations instead of every iteration
 - Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
 - Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale (1983); Chronopoulos and Gear (1989)

Resurgence of interest in recent years due to growing problem sizes;
 growing relative cost of communication

Key observation: After iteration i, for $j \in \{0, ..., s\}$,

$$x_{i+j} - x_i$$
, r_{i+j} , $p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$

Key observation: After iteration i, for $j \in \{0, ..., s\}$,

$$x_{i+j} - x_i$$
, r_{i+j} , $p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$

s steps of s-step CG:

Key observation: After iteration i, for $j \in \{0, ..., s\}$,

$$x_{i+j} - x_i$$
, r_{i+j} , $p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$

s steps of s-step CG:

Expand solution space s dimensions at once

Compute "basis" matrix $\mathcal Y$ such that $\operatorname{span}(\mathcal Y)=\mathcal K_{s+1}(A,p_i)+\mathcal K_s(A,r_i)$ according to the recurrence $A\underline{\mathcal Y}=\mathcal Y\,\mathcal B$

Key observation: After iteration i, for $j \in \{0, ..., s\}$,

$$x_{i+j} - x_i$$
, r_{i+j} , $p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$

s steps of s-step CG:

Expand solution space s dimensions at once

Compute "basis" matrix $\mathcal Y$ such that $\operatorname{span}(\mathcal Y)=\mathcal K_{s+1}(A,p_i)+\mathcal K_s(A,r_i)$ according to the recurrence $A\underline{\mathcal Y}=\mathcal Y\,\mathcal B$

Compute inner products between basis vectors in one synchronization

$$G = \mathcal{Y}^T \mathcal{Y}$$

Key observation: After iteration i, for $j \in \{0,...,s\}$,

$$x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$$

s steps of s-step CG:

Expand solution space s dimensions at once

Compute "basis" matrix $\mathcal Y$ such that $\operatorname{span}(\mathcal Y)=\mathcal K_{s+1}(A,p_i)+\mathcal K_s(A,r_i)$ according to the recurrence $A\underline{\mathcal Y}=\mathcal Y\,\mathcal B$

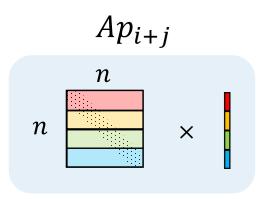
Compute inner products between basis vectors in one synchronization

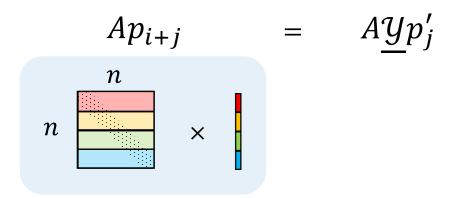
$$G = Y^T Y$$

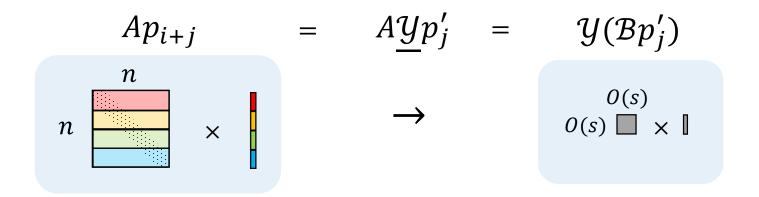
Compute s iterations of vector updates

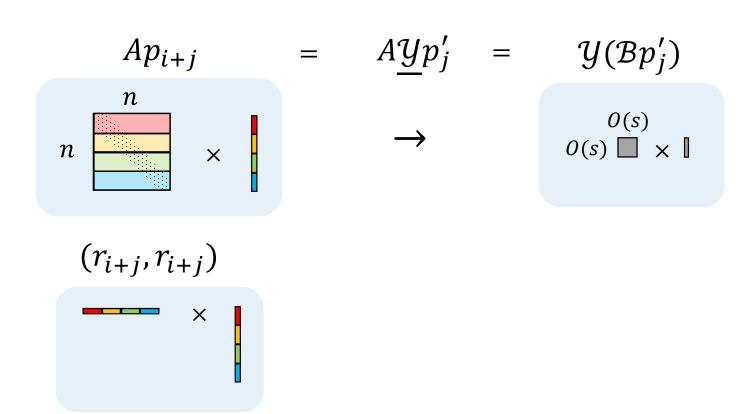
Perform s iterations of vector updates by updating coordinates in basis y:

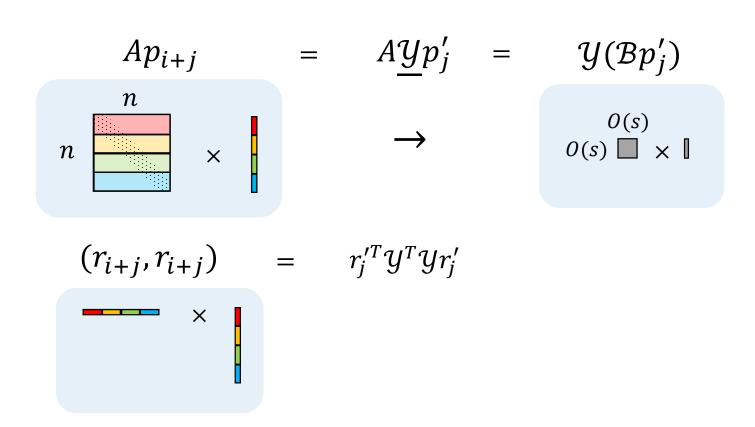
$$x_{i+j} - x_i = \mathcal{Y}x'_j$$
, $r_{i+j} = \mathcal{Y}r'_j$, $p_{i+j} = \mathcal{Y}p'_j$







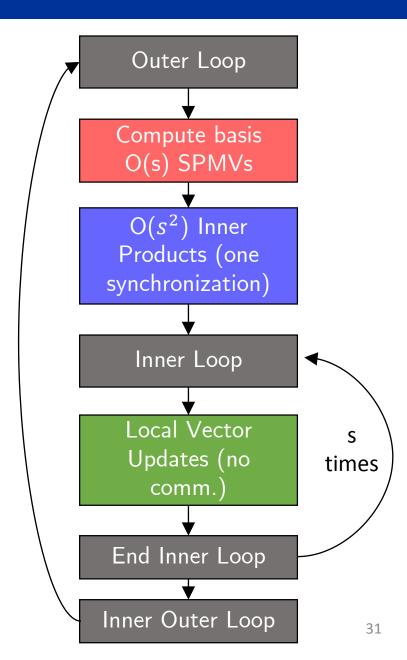




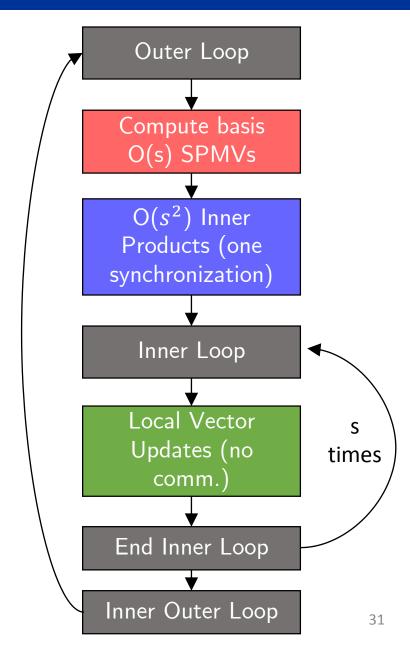
end

```
r_0 = b - Ax_0, p_0 = r_0
for k = 0:nmax/s
              Compute \mathcal{Y}_k and \mathcal{B}_k such that A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k and
                      \operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})
             G_k = Y_k^T Y_k
             x'_0 = 0, r'_0 = e_{s+2}, p'_0 = e_1
             for j = 1: s
                          \alpha_{sk+j-1} = \frac{r_{j-1}'^T \mathcal{G}_k r_{j-1}'}{p_{j-1}'^T \mathcal{G}_k \mathcal{B}_k p_{j-1}'}
                          x'_{i} = x'_{i-1} + \alpha_{sk+j-1}p'_{i-1}
                          r'_{i} = r'_{i-1} - \alpha_{sk+i-1} \mathcal{B}_{k} p'_{i-1}
                          \beta_{sk+j} = \frac{r_{j}'^{T} \mathcal{G}_{k} r_{j}'}{r_{i-1}'^{T} \mathcal{G}_{k} r_{i-1}'}
                           p_i' = r_i' + \beta_{sk+i} p_{i-1}'
              end
[x_{s(k+1)}-x_{sk},r_{s(k+1)},p_{s(k+1)}]=\mathcal{Y}_k[x_s',r_s',p_s']
```

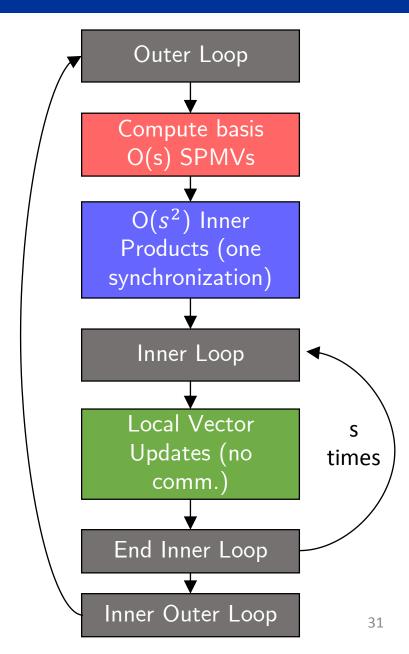
```
r_0 = b - Ax_0, p_0 = r_0
for k = 0:nmax/s
             Compute \mathcal{Y}_k and \mathcal{B}_k such that A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k and
                     \operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})
            G_k = Y_k^T Y_k
            x_0' = 0, r_0' = e_{s+2}, p_0' = e_1
            for j = 1: s
                         \alpha_{sk+j-1} = \frac{r_{j-1}'^T \mathcal{G}_k r_{j-1}'}{p_{j-1}'^T \mathcal{G}_k \mathcal{B}_k p_{j-1}'}
                         x'_{i} = x'_{i-1} + \alpha_{sk+j-1}p'_{i-1}
                         r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'
                        \beta_{sk+j} = \frac{r_j'^T G_k r_j'}{r_{i-1}'^T G_k r_{i-1}'}
                          p_i' = r_i' + \beta_{sk+i} p_{i-1}'
             end
[x_{s(k+1)}-x_{sk},r_{s(k+1)},p_{s(k+1)}]=\mathcal{Y}_k[x_s',r_s',p_s']
end
```



```
r_0 = b - Ax_0, p_0 = r_0
for k = 0:nmax/s
             Compute \mathcal{Y}_k and \mathcal{B}_k such that A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k and
                     \operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})
            G_k = Y_k^T Y_k
            x'_0 = 0, r'_0 = e_{s+2}, p'_0 = e_1
            for j = 1: s
                        \alpha_{sk+j-1} = \frac{r_{j-1}'^T \mathcal{G}_k r_{j-1}'}{p_{j-1}'^T \mathcal{G}_k \mathcal{B}_k p_{j-1}'}
                         x'_{i} = x'_{i-1} + \alpha_{sk+j-1}p'_{i-1}
                        r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'
                        \beta_{sk+j} = \frac{r_j'^T G_k r_j'}{r_{i-1}'^T G_k r_{i-1}'}
                         p_i' = r_i' + \beta_{sk+i} p_{i-1}'
            end
[x_{s(k+1)}-x_{sk},r_{s(k+1)},p_{s(k+1)}]=\mathcal{Y}_k[x_s',r_s',p_s']
end
```



```
r_0 = b - Ax_0, p_0 = r_0
for k = 0:nmax/s
             Compute \mathcal{Y}_k and \mathcal{B}_k such that A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k and
                     \operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})
            G_k = Y_k^T Y_k
            x_0' = 0, r_0' = e_{s+2}, p_0' = e_1
            for j = 1: s
                        \alpha_{sk+j-1} = \frac{r_{j-1}'^T \mathcal{G}_k r_{j-1}'}{p_{j-1}'^T \mathcal{G}_k \mathcal{B}_k p_{j-1}'}
                         x'_{i} = x'_{i-1} + \alpha_{sk+j-1}p'_{i-1}
                        r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'
                        \beta_{sk+j} = \frac{r_j'^T G_k r_j'}{r_{i-1}'^T G_k r_{i-1}'}
                         p_i' = r_i' + \beta_{sk+i} p_{i-1}'
            end
[x_{s(k+1)}-x_{sk},r_{s(k+1)},p_{s(k+1)}]=\mathcal{Y}_k[x_s',r_s',p_s']
end
```



end

$$r_0 = b - Ax_0, p_0 = r_0$$
 for $k = 0$:nmax/ s Compute \mathcal{Y}_k and \mathcal{B}_k such that $A\underline{\mathcal{Y}}_k = \mathcal{Y}_k\mathcal{B}_k$ and span $(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$
$$\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$$

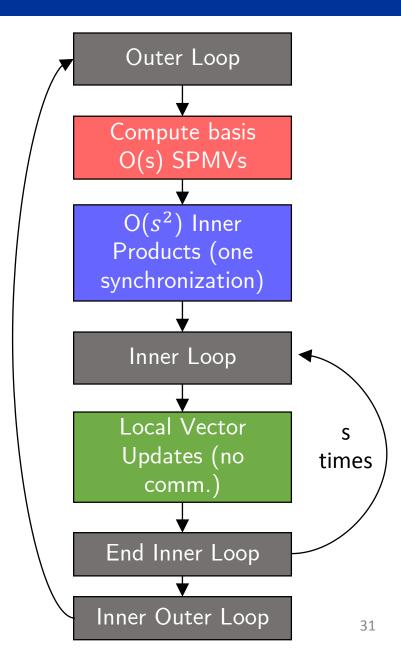
$$x_0' = 0, r_0' = e_{s+2}, p_0' = e_1$$
 for $j = 1$: s
$$\alpha_{sk+j-1} = \frac{r_{j-1}'' \mathcal{G}_k r_{j-1}'}{p_{j-1}'' \mathcal{G}_k \mathcal{B}_k p_{j-1}'}$$

$$x_j' = x_{j-1}' + \alpha_{sk+j-1} p_{j-1}'$$

$$r_j' = r_{j-1}' - \alpha_{sk+j-1} \mathcal{B}_k p_{j-1}'$$

$$\beta_{sk+j} = \frac{r_j'^T \mathcal{G}_k r_j'}{r_{j-1}'' \mathcal{G}_k r_{j-1}'}$$

$$p_j' = r_j' + \beta_{sk+j} p_{j-1}'$$
 end
$$[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k [x_s', r_s', p_s']$$



Computing the *s*-step Krylov subspace basis:

$$A\underline{\widehat{\mathcal{Y}}}_k = \widehat{\mathcal{Y}}_k \mathcal{B}_k + \Delta \mathcal{Y}_k$$

Updating coordinate vectors in the inner loop:

$$\begin{split} \hat{x}'_{k,j} &= \hat{x}'_{k,j-1} + \hat{q}'_{k,j-1} + \xi_{k,j} \\ \hat{r}'_{k,j} &= \hat{r}'_{k,j-1} - \mathcal{B}_k \; \hat{q}'_{k,j-1} + \eta_{k,j} \\ & \text{with} \quad \hat{q}'_{k,j-1} = \text{fl}(\hat{\alpha}_{sk+j-1} \hat{p}'_{k,j-1}) \end{split}$$

$$\hat{x}_{sk+j} = \hat{\mathcal{Y}}_k \hat{x}'_{k,j} + \hat{x}_{sk} + \phi_{sk+j}$$

$$\hat{r}_{sk+j} = \hat{\mathcal{Y}}_k \hat{r}'_{k,j} + \psi_{sk+j}$$

Computing the s-step Krylov subspace basis:

$$A\underline{\hat{\mathcal{Y}}_k} = \hat{\mathcal{Y}}_k \mathcal{B}_k + \Delta \mathcal{Y}_k$$
Error in computing s-step basis

Updating coordinate vectors in the inner loop:

$$\begin{split} \hat{x}'_{k,j} &= \hat{x}'_{k,j-1} + \hat{q}'_{k,j-1} + \xi_{k,j} \\ \hat{r}'_{k,j} &= \hat{r}'_{k,j-1} - \mathcal{B}_k \; \hat{q}'_{k,j-1} + \eta_{k,j} \\ & \text{with} \quad \hat{q}'_{k,j-1} = \text{fl}(\hat{\alpha}_{sk+j-1} \hat{p}'_{k,j-1}) \end{split}$$

$$\hat{x}_{sk+j} = \hat{\mathcal{Y}}_k \hat{x}'_{k,j} + \hat{x}_{sk} + \phi_{sk+j}$$

$$\hat{r}_{sk+j} = \hat{\mathcal{Y}}_k \hat{r}'_{k,j} + \psi_{sk+j}$$

Computing the *s*-step Krylov subspace basis:

Updating coordinate vectors in the inner loop:

$$\begin{split} \hat{x}'_{k,j} &= \hat{x}'_{k,j-1} + \hat{q}'_{k,j-1} + \xi_{k,j} \\ \hat{r}'_{k,j} &= \hat{r}'_{k,j-1} - \mathcal{B}_k \; \hat{q}'_{k,j-1} + \eta_{k,j} \\ \text{with} \quad \hat{q}'_{k,j-1} &= \mathrm{fl}(\hat{\alpha}_{sk+j-1}\hat{p}'_{k,j-1}) \end{split}$$

$$\hat{x}_{sk+j} = \hat{\mathcal{Y}}_k \hat{x}'_{k,j} + \hat{x}_{sk} + \phi_{sk+j}$$

$$\hat{r}_{sk+j} = \hat{\mathcal{Y}}_k \hat{r}'_{k,j} + \psi_{sk+j}$$

Computing the *s*-step Krylov subspace basis:

$$A\underline{\hat{\mathcal{Y}}_k} = \hat{\mathcal{Y}}_k \mathcal{B}_k + \Delta \mathcal{Y}_k$$
Error in computing s-step basis

Updating coordinate vectors in the inner loop:

$$\begin{split} \hat{x}_{k,j}' &= \hat{x}_{k,j-1}' + \hat{q}_{k,j-1}' + \xi_{k,j} \\ \hat{r}_{k,j}' &= \hat{r}_{k,j-1}' - \mathcal{B}_k \; \hat{q}_{k,j-1}' + \eta_{k,j} \\ \text{with} \quad \hat{q}_{k,j-1}' &= \mathrm{fl}(\hat{\alpha}_{sk+j-1}\hat{p}_{k,j-1}') \end{split}$$

$$\hat{x}_{sk+j} = \hat{\mathcal{Y}}_k \hat{x}'_{k,j} + \hat{x}_{sk} + \phi_{sk+j}$$
 Error in basis change

• We can write the gap between the true and updated residuals f in terms of these errors:

$$f_{sk+j} = f_0$$

$$-\sum_{\ell=0}^{k-1} \left[A\phi_{s\ell+s} + \psi_{s\ell+s} + \sum_{i=1}^{s} \left[A\hat{\mathcal{Y}}_{\ell}\xi_{\ell,i} + \hat{\mathcal{Y}}_{\ell}\eta_{\ell,i} - \Delta \mathcal{Y}_{\ell}\hat{q}'_{\ell,i-1} \right] \right]$$

$$-A\phi_{sk+j} - \psi_{sk+j} - \sum_{i=1}^{j} \left[A\hat{\mathcal{Y}}_{k}\xi_{k,i} + \hat{\mathcal{Y}}_{k}\eta_{k,i} - \Delta \mathcal{Y}_{\ell}\hat{q}'_{k,i-1} \right]$$

• We can write the gap between the true and updated residuals f in terms of these errors:

$$f_{sk+j} = f_0$$

$$-\sum_{\ell=0}^{k-1} \left[A\phi_{s\ell+s} + \psi_{s\ell+s} + \sum_{i=1}^{s} \left[A\hat{\mathcal{Y}}_{\ell}\xi_{\ell,i} + \hat{\mathcal{Y}}_{\ell}\eta_{\ell,i} - \Delta \mathcal{Y}_{\ell}\hat{q}'_{\ell,i-1} \right] \right]$$

$$-A\phi_{sk+j} - \psi_{sk+j} - \sum_{i=1}^{j} \left[A\hat{\mathcal{Y}}_{k}\xi_{k,i} + \hat{\mathcal{Y}}_{k}\eta_{k,i} - \Delta \mathcal{Y}_{\ell}\hat{q}'_{k,i-1} \right]$$

• We can write the gap between the true and updated residuals f in terms of these errors:

$$f_{sk+j} = f_0$$

$$-\sum_{\ell=0}^{k-1} \left[A\phi_{s\ell+s} + \psi_{s\ell+s} + \sum_{i=1}^{s} \left[A\hat{\mathcal{Y}}_{\ell} \xi_{\ell,i} + \hat{\mathcal{Y}}_{\ell} \eta_{\ell,i} - \Delta \mathcal{Y}_{\ell} \hat{q}'_{\ell,i-1} \right] \right]$$

$$-A\phi_{sk+j} - \psi_{sk+j} - \sum_{i=1}^{j} \left[A\hat{\mathcal{Y}}_{k} \xi_{k,i} + \hat{\mathcal{Y}}_{k} \eta_{k,i} - \Delta \mathcal{Y}_{\ell} \hat{q}'_{k,i-1} \right]$$

• We can write the gap between the true and updated residuals f in terms of these errors:

$$f_{sk+j} = f_0$$

$$-\sum_{\ell=0}^{k-1} \left[A \phi_{s\ell+s} + \psi_{s\ell+s} + \sum_{i=1}^{s} \left[A \hat{\mathcal{Y}}_{\ell} \xi_{\ell,i} + \hat{\mathcal{Y}}_{\ell} \eta_{\ell,i} - \Delta \mathcal{Y}_{\ell} \hat{q}'_{\ell,i-1} \right] \right]$$

$$-A \phi_{sk+j} - \psi_{sk+j} - \sum_{i=1}^{j} \left[A \hat{\mathcal{Y}}_{k} \xi_{k,i} + \hat{\mathcal{Y}}_{k} \eta_{k,i} - \Delta \mathcal{Y}_{\ell} \hat{q}'_{k,i-1} \right]$$

$$f_i \equiv b - A\hat{x}_i - \hat{r}_i$$

For CG:

$$||f_i|| \le ||f_0|| + \varepsilon \sum_{m=1}^i (1+N)||A|| ||\hat{x}_m|| + ||\hat{r}_m||$$

$$f_i \equiv b - A\hat{x}_i - \hat{r}_i$$

For CG:

$$||f_i|| \le ||f_0|| + \varepsilon \sum_{m=1}^i (1+N)||A|| ||\hat{x}_m|| + ||\hat{r}_m||$$

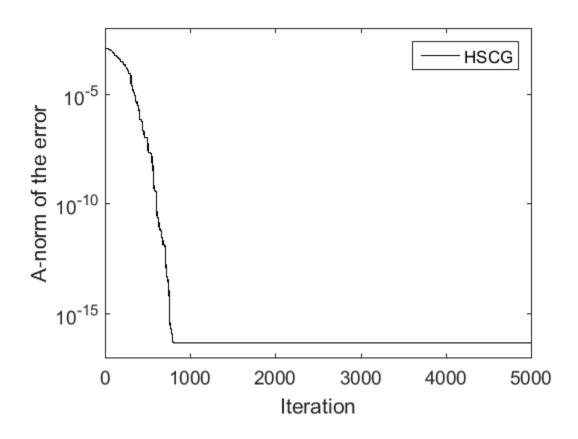
For s-step CG: $i \equiv sk + j$

$$||f_{sk+j}|| \le ||f_0|| + \varepsilon c \overline{\Gamma}_k \sum_{m=1}^{sk+j} (1+N)||A|| ||\hat{x}_m|| + ||\hat{r}_m||$$

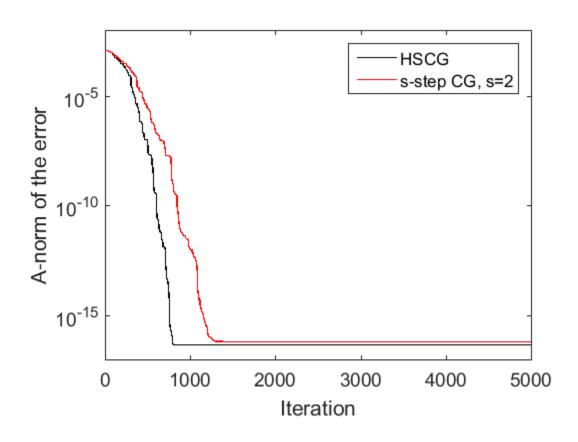
where c is a low-degree polynomial in s, and

$$ar{\Gamma}_k = \max_{\ell \leq k} \; \Gamma_\ell$$
 , where $\Gamma_\ell = \|\widehat{\mathcal{Y}}_\ell^+\| \cdot \||\widehat{\mathcal{Y}}_\ell|\|$

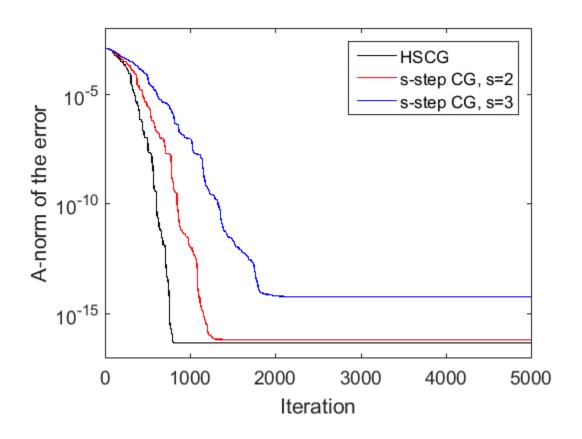
(see C., 2015)



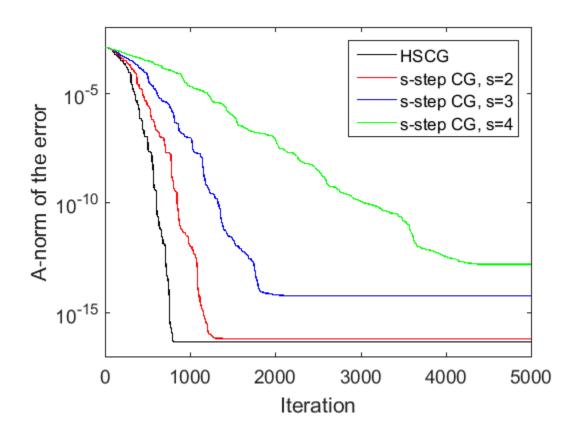
s-step CG with monomial basis ($\mathcal{Y} = [p_i, Ap_i, ..., A^s p_i, r_i, Ar_i, ..., A^{s-1} r_i]$)



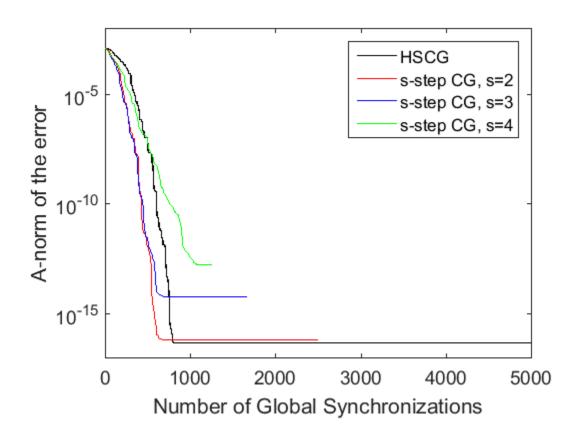
s-step CG with monomial basis ($\mathcal{Y} = [p_i, Ap_i, ..., A^s p_i, r_i, Ar_i, ..., A^{s-1}r_i]$)



s-step CG with monomial basis ($\mathcal{Y} = [p_i, Ap_i, ..., A^sp_i, r_i, Ar_i, ..., A^{s-1}r_i]$)



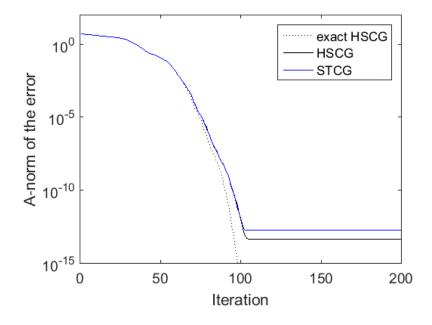
Can also use other, more well-conditioned bases to improve convergence rate and accuracy (see, e.g. Philippe and Reichel, 2012).



• Even assuming perfect parallel scalability with s (which is usually not the case due to extra SpMVs and inner products), already at s=4 we are worse than HSCG in terms of number of synchronizations!

```
A: nos4 from UFSMC,
b: equal components in the eigenbasis
of A and ||b|| = 1
N = 100, \kappa(A) \approx 2e3
```

A: nos4 from UFSMC, b: equal components in the eigenbasis of A and ||b|| = 1 $N = 100, \kappa(A) \approx 2e3$

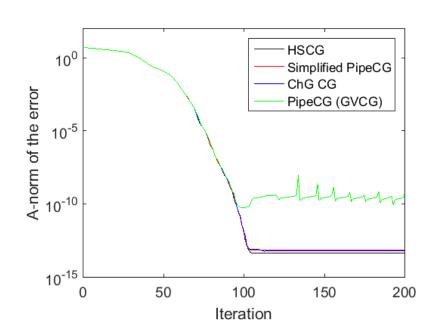


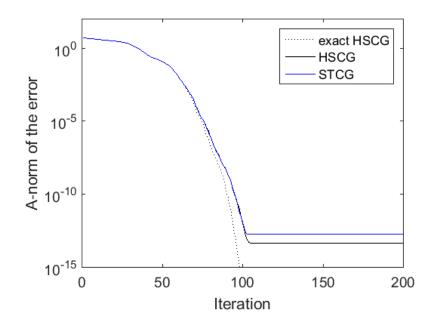
A: nos4 from UFSMC,

b: equal components in the eigenbasis

of A and ||b|| = 1

 $N = 100, \kappa(A) \approx 2e3$



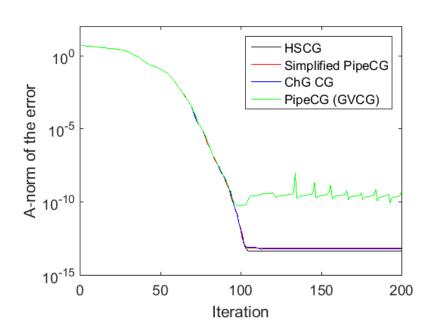


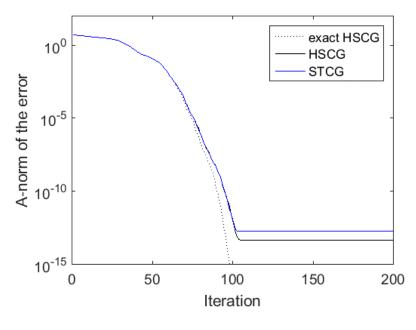
A: nos4 from UFSMC,

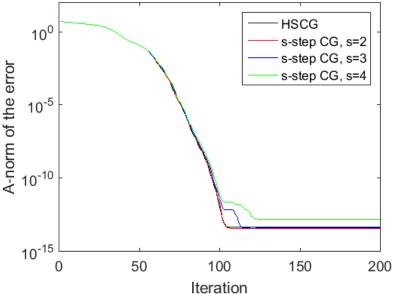
b: equal components in the eigenbasis

of A and ||b|| = 1

 $N = 100, \kappa(A) \approx 2e3$

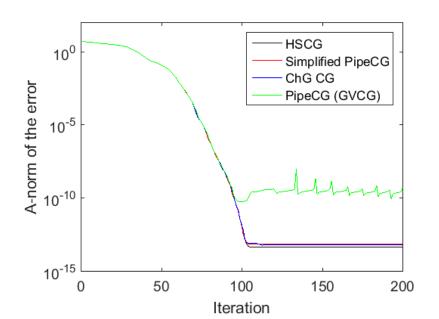


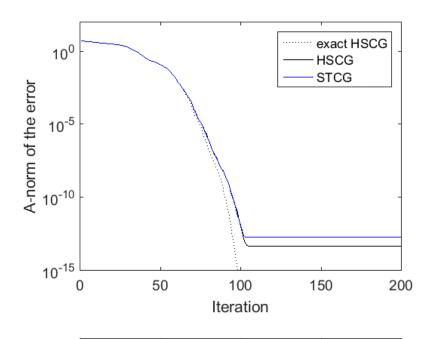


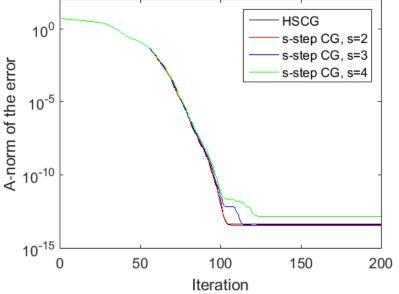


A: nos4 from UFSMC, b: equal components in the eigenbasis of A and ||b|| = 1 $N = 100, \kappa(A) \approx 2e3$

If application only requires $\|x-x_i\|_A \leq 10^{-10},$ any of these methods will work!





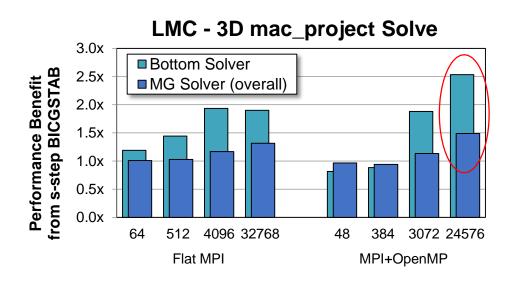


Speedups for real applications

s-step BICGSTAB bottom-solver implemented in BoxLib (AMR framework from LBL)

Low Mach Number Combustion Code (LMC): gas-phase combustion simulation

- Compared GMG with BICGSTAB vs. GMG with s-step BICGSTAB (s=4) on a Cray XE6 for two different applications
- Up to 2.5x speedup in bottom solve; up to 1.5x in overall MG solve



(see Williams et al., IPDPS 2014)

- Think of the bigger picture
 - Much focus on modifying methods to speed up iterations
 - But the speed of an iteration only part of the runtime:

```
runtime = (time/iteration) x (#iterations)
```

- Think of the bigger picture
 - Much focus on modifying methods to speed up iterations
 - But the speed of an iteration only part of the runtime:
 runtime = (time/iteration) x (#iterations)
 - And a solver that can't solve to required accuracy is useless!

- Think of the bigger picture
 - Much focus on modifying methods to speed up iterations
 - But the speed of an iteration only part of the runtime:
 runtime = (time/iteration) x (#iterations)
 - And a solver that can't solve to required accuracy is useless!
 - Solver runtime is only part of a larger scientific code

- Think of the bigger picture
 - Much focus on modifying methods to speed up iterations
 - But the speed of an iteration only part of the runtime:
 runtime = (time/iteration) x (#iterations)
 - And a solver that can't solve to required accuracy is useless!
 - Solver runtime is only part of a larger scientific code
- Design and implementation of iterative solvers requires a holistic approach
 - Selecting the right method, parameters, stopping criteria
 - Selecting the right preconditioner (closely linked with the discretization! see Málek and Strakoš, 2015)

- Think of the bigger picture
 - Much focus on modifying methods to speed up iterations
 - But the speed of an iteration only part of the runtime:
 runtime = (time/iteration) x (#iterations)
 - And a solver that can't solve to required accuracy is useless!
 - Solver runtime is only part of a larger scientific code
- Design and implementation of iterative solvers requires a holistic approach
 - Selecting the right method, parameters, stopping criteria
 - Selecting the right preconditioner (closely linked with the discretization! see Málek and Strakoš, 2015)
- Key challenge: identify problems (or classes of problems) for which synchronization-reducing Krylov subspace methods can reduce runtime while meeting application-specific accuracy constraints
- ⇒ Requires understanding the effects of finite precision computations on convergence rate and accuracy

Thank You!

erinc@cims.nyu.edu math.nyu.edu/~erinc