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Why Avoid “Communication”?

• Algorithms have two costs: computation and communication

• Communication : moving data between levels of memory hierarchy 
(sequential), between processors (parallel)

• On today’s computers, communication is expensive, computation is cheap, 
in terms of both time and energy!
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Future Exascale Systems

Petascale
Systems (2009)

Predicted Exascale
Systems*

Factor 
Improvement

System Peak 2 ⋅ 1015 flops 1018 flops ~1000

Node Memory 
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect 
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency 1 𝜇s 0.5 𝜇s ~1
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*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 
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• Gaps between communication/computation cost only growing larger in 
future systems

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 

• Avoiding communication will be essential for applications at exascale!



Krylov Subspace Methods
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• In each iteration, 

• Add a dimension to the Krylov subspace 𝒦𝑚

• Orthogonalize (with respect to some ℒ𝑚)

• Examples: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum 
Residual (GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc. 

• Projection process onto the expanding Krylov subspace

𝒦𝑚 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑚−1𝑟0

• General class of iterative solvers: used for linear systems, eigenvalue problems, 
singular value problems, least squares, etc. 

ℒ

𝑟new

𝐴𝛿

𝑟0

0



Krylov Solvers: Limited by Communication
In terms of communication:
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 Sparse Matrix-Vector Multiplication (SpMV)
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• Sequential: read 𝐴/vectors from slow memory
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Krylov Solvers: Limited by Communication
In terms of communication:

Dependencies between communication-bound kernels 
in each iteration limit performance!

SpMV

orthogonalize
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Given: initial approximation 𝑥0 for solving 𝐴𝑥 = 𝑏
Let 𝑝0 = 𝑟0 = 𝑏 − 𝐴𝑥0

for 𝑚 = 0, 1, 2, … , until convergence do

𝛼𝑚 =
𝑟𝑚

𝑇 𝑟𝑚

𝑝𝑚
𝑇 𝐴𝑝𝑚

𝑥𝑚+1 = 𝑥𝑚 + 𝛼𝑚𝑝𝑚

𝑟𝑚+1 = 𝑟𝑚 − 𝛼𝑚𝐴𝑝𝑚

𝛽𝑚+1 =
𝑟𝑚+1

𝑇 𝑟𝑚+1

𝑟𝑚
𝑇 𝑟𝑚

𝑝𝑚+1 = 𝑟𝑚+1 + 𝛽𝑚+1𝑝𝑚

end for

Example: Classical Conjugate Gradient (CG)
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Communication-Avoiding KSMs
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• Idea: Compute blocks of 𝑠 iterations at once 

• Communicate every 𝑠 iterations instead of every iteration

• Reduces communication cost by 𝑶(𝒔)! 

• (latency in parallel, latency and bandwidth in sequential)
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• Communicate every 𝑠 iterations instead of every iteration

• Reduces communication cost by 𝑶(𝒔)! 
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• An idea rediscovered many times…
• First related work: s-dimensional steepest descent - Khabaza

(‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68): 
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, 

e.g., Van Rosendale, 1983;   Chronopoulos and Gear, 1989
• Goals: increasing parallelism, avoiding I/O, increasing 

“convergence rate”

• Resurgence of interest in recent years due to growing problem 
sizes; growing relative cost of communication



Communication-Avoiding KSMs: CA-CG
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• Main idea: Unroll iteration loop by a factor of 𝑠; split iteration loop into an outer 
loop and an inner loop 

• Key observation: starting at some iteration 𝑚,

𝑥𝑚+𝑗 − 𝑥𝑚, 𝑟𝑚+𝑗 , 𝑝𝑚+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑚 + 𝒦𝑠 𝐴, 𝑟𝑚 for    𝑗 ∈ 0, … , 𝑠



Communication-Avoiding KSMs: CA-CG
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Expand solution space 𝒔 dimensions at once
• Compute “basis matrix” 𝑌𝑘 with columns spanning

𝒦𝑠+1 𝐴, 𝑝𝑚 + 𝒦𝑠 𝐴, 𝑟𝑚

• Requires reading 𝑨/communicating vectors only once
• Using “matrix powers kernel”

Orthogonalize all at once
• Compute/store block of inner products between basis vectors in 

Gram matrix:

𝐺𝑘 = 𝑌𝑘
𝑇𝑌𝑘

• Communication cost of one global reduction

Outer loop 𝒌: Communication step

• Main idea: Unroll iteration loop by a factor of 𝑠; split iteration loop into an outer 
loop and an inner loop 

• Key observation: starting at some iteration 𝑚,

𝑥𝑚+𝑗 − 𝑥𝑚, 𝑟𝑚+𝑗 , 𝑝𝑚+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑚 + 𝒦𝑠 𝐴, 𝑟𝑚 for    𝑗 ∈ 0, … , 𝑠



9

Perform 𝑠 iterations of updates
• Using 𝑌𝑘 and 𝐺𝑘, this requires no communication!
• Represent 𝑛-vectors by their 𝑂 𝑠 coordinates in 𝑌𝑘:

𝑥𝑠𝑘+𝑗 − 𝑥𝑠𝑘 = 𝑌𝑘𝑥𝑗
′ , 𝑟𝑠𝑘+𝑗 = 𝑌𝑘𝑟𝑗

′, 𝑝𝑠𝑘+𝑗 = 𝑌𝑘𝑝𝑗
′

Inner loop:
Computation 

steps, no 
communication!

Communication-Avoiding KSMs: CA-CG
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Given: initial approximation 𝑥0 for solving 𝐴𝑥 = 𝑏
Let 𝑝0 = 𝑟0 = 𝑏 − 𝐴𝑥0

for k = 0, 1, … , until convergence do
Compute 𝑌𝑘 ,      compute 𝐺𝑘 = 𝑌𝑘

𝑇𝑌𝑘

Let 𝑥0
′ = 02𝑠+1, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 0, … , 𝑠 − 1 do

𝛼𝑠𝑘+𝑗 =
𝑟𝑗

′
𝑇

𝐺𝑘𝑟𝑗
′

𝑝𝑗
′

𝑇
𝐺𝑘𝐵𝑘𝑝𝑗

′

𝑥𝑗+1
′ = 𝑥𝑗

′ + 𝛼𝑠𝑘+𝑗𝑝𝑗
′

𝑟𝑗+1
′ = 𝑟𝑗

′ − 𝛼𝑠𝑘+𝑗𝐵𝑘𝑝𝑗
′

𝛽𝑠𝑘+𝑗+1 =
𝑟𝑗+1

′
𝑇

𝐺𝑘𝑟𝑗+1
′

𝑟𝑗
′

𝑇
𝐺𝑘𝑟𝑗

′

𝑝𝑗+1
′ = 𝑟𝑗+1

′ + 𝛽𝑠𝑘+𝑗+1𝑝𝑗
′

end for
Compute 𝑥𝑠𝑘+𝑠 = 𝑌𝑘𝑥𝑠

′ + 𝑥𝑠𝑘 , 𝑟𝑠𝑘+𝑠 = 𝑌𝑘𝑟𝑠
′,  𝑝𝑠𝑘+𝑠 = 𝑌𝑘𝑝𝑠

′

end for
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Example: CA-Conjugate Gradient



via CA Matrix 
Powers Kernel

Global reduction 

to compute 𝐺𝑘
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Example: CA-Conjugate Gradient

Local computations 
within inner loop require 

no communication!
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Complexity Comparison
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Flops Words Moved Messages

SpMV Orth. SpMV Orth. SpMV Orth.

Classical 
CG

𝑠𝑛

𝑝

𝑠𝑛

𝑝 𝑠  𝑛 𝑝 𝑠 log2 𝑝 𝑠 𝑠 log2 𝑝

CA-CG
𝑠𝑛

𝑝
𝑠2𝑛

𝑝
𝑠  𝑛 𝑝 𝑠2 log2 𝑝 1 log2 𝑝

Example of parallel (per processor) complexity for 𝑠 iterations of  CG vs. CA-CG 
for a 2D 9-point stencil:

(Assuming each of 𝑝 processors owns 𝑛/𝑝 rows of the matrix and 𝑠 ≤ 𝑛/𝑝)

All values in the table meant in the Big-O sense (i.e., lower order terms 
and constants not included)
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All values in the table meant in the Big-O sense (i.e., lower order terms 
and constants not included)
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• Parameter 𝑠 is limited by machine parameters and matrix 
sparsity structure

• We can auto-tune to find the best 𝑠 based on these properties

• That is, find 𝑠 that gives the fastest speed per iteration

• In practice, we don’t just care about speed per iteration, but 
also the number of iterations

Runtime = (time/iteration) x (# iterations)

• We also need to consider how convergence rate and accuracy 
are affected by choice of 𝑠!

12
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CA-CG Convergence, s = 4

CG true
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CA-CG Convergence, s = 4 CA-CG Convergence, s = 8

0

CA-CG Convergence, s = 16

Slower 
convergence due 

to roundoff

Loss of accuracy 
due to roundoff

At s = 16, monomial 
basis is rank deficient! 
Method breaks down!
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Better basis 
choice allows 

higher s values

CA-CG Convergence, s = 4 CA-CG Convergence, s = 8

CA-CG Convergence, s = 16

But can still see loss of 
accuracy/convergence 

delay

CG true
CG updated
CA-CG (monomial) true
CA-CG (monomial) updated
CA-CG (Newton) true
CA-CG (Newton) updated
CA-CG (Chebyshev) true
CA-CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil), 
𝑛 = 5122, nnz ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1 )



• In classical CG, iterates are updated by 

𝑥𝑚+1 = 𝑥𝑚 + 𝛼𝑚𝑝𝑚 and         𝑟𝑚+1 = 𝑟𝑚 − 𝛼𝑚𝐴𝑝𝑚

• Formulas for 𝑥𝑚+1 and 𝑟𝑚+1 do not depend on each other - rounding errors cause 
the true residual, 𝑏 − 𝐴𝑥𝑚+1, and the updated residual, 𝑟𝑚+1, to deviate
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• Formulas for 𝑥𝑚+1 and 𝑟𝑚+1 do not depend on each other - rounding errors cause 
the true residual, 𝑏 − 𝐴𝑥𝑚+1, and the updated residual, 𝑟𝑚+1, to deviate

• The size of the true residual is bounded by 

𝑏 − 𝐴𝑥𝑚+1 ≤ 𝑟𝑚+1 + 𝑏 − 𝐴𝑥𝑚+1 − 𝑟𝑚+1

• When 𝑟𝑚+1 ≫ 𝑏 − 𝐴𝑥𝑚+1 − 𝑟𝑚+1 , 𝑟𝑚+1 and 𝑏 − 𝐴𝑥𝑚+1 have 
similar magnitude

• When 𝑟𝑚+1 → 0, 𝑏 − 𝐴𝑥𝑚+1 depends on 𝑏 − 𝐴𝑥𝑚+1 − 𝑟𝑚+1

• Many results on attainable accuracy, e.g.: Greenbaum (1989, 1994, 1997), Sleijpen, 
van der Vorst and Fokkema (1994), Sleijpen, van der Vorst and Modersitzki (2001), 
Björck, Elfving and Strakoš (1998) and Gutknecht and Strakoš (2000).

• We have applied a similar analysis to upper bound the maximum attainable 
accuracy in finite precision CA-KSMs

Maximum attainable accuracy of CG
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Residual Replacement Strategy for CG

• van der Vorst and Ye (1999): Improve accuracy by replacing updated residual 

𝒓𝒎+𝟏 by the true residual 𝒃 − 𝑨𝒙𝒎+𝟏 in certain iterations, combined with group 

update.

17



Residual Replacement Strategy for CG

• van der Vorst and Ye (1999): Improve accuracy by replacing updated residual 

𝒓𝒎+𝟏 by the true residual 𝒃 − 𝑨𝒙𝒎+𝟏 in certain iterations, combined with group 

update.

• Choose when to replace 𝑟𝑚+1 with 𝑏 − 𝐴𝑥𝑚+1 to meet two constraints: 

17



Residual Replacement Strategy for CG

• van der Vorst and Ye (1999): Improve accuracy by replacing updated residual 

𝒓𝒎+𝟏 by the true residual 𝒃 − 𝑨𝒙𝒎+𝟏 in certain iterations, combined with group 

update.

• Choose when to replace 𝑟𝑚+1 with 𝑏 − 𝐴𝑥𝑚+1 to meet two constraints: 

1. Replace often enough so that at termination, 𝑏 − 𝐴𝑥𝑚+1 − 𝑟𝑚+1 is 

small relative to 𝜀𝑁 𝐴 𝑥𝑚+1

17



Residual Replacement Strategy for CG

• van der Vorst and Ye (1999): Improve accuracy by replacing updated residual 

𝒓𝒎+𝟏 by the true residual 𝒃 − 𝑨𝒙𝒎+𝟏 in certain iterations, combined with group 

update.

• Choose when to replace 𝑟𝑚+1 with 𝑏 − 𝐴𝑥𝑚+1 to meet two constraints: 

1. Replace often enough so that at termination, 𝑏 − 𝐴𝑥𝑚+1 − 𝑟𝑚+1 is 

small relative to 𝜀𝑁 𝐴 𝑥𝑚+1

2. Don’t replace so often that original convergence mechanism of updated 

residuals is destroyed (avoid large perturbations to finite precision CG 

recurrence)

17



Residual Replacement Strategy for CG

• van der Vorst and Ye (1999): Improve accuracy by replacing updated residual 

𝒓𝒎+𝟏 by the true residual 𝒃 − 𝑨𝒙𝒎+𝟏 in certain iterations, combined with group 

update.

• Choose when to replace 𝑟𝑚+1 with 𝑏 − 𝐴𝑥𝑚+1 to meet two constraints: 

1. Replace often enough so that at termination, 𝑏 − 𝐴𝑥𝑚+1 − 𝑟𝑚+1 is 

small relative to 𝜀𝑁 𝐴 𝑥𝑚+1

2. Don’t replace so often that original convergence mechanism of updated 

residuals is destroyed (avoid large perturbations to finite precision CG 

recurrence)

• We can implement an analogous strategy for CA-CG and CA-BICG based on 
derived bound on deviation of residuals

• Estimating quantities in bound has negligible cost → residual replacement 
strategy does not asymptotically increase communication or computation!
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CA-CG Convergence, s = 4 CA-CG Convergence, s = 8

CA-CG Convergence, s = 16
CG true
CG updated
CA-CG (monomial) true
CA-CG (monomial) updated
CA-CG (Newton) true
CA-CG (Newton) updated
CA-CG (Chebyshev) true
CA-CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil), 
𝑛 = 5122, nnz ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1 )
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CG-RR true
CG-RR updated
CA-CG-RR (monomial) true
CA-CG-RR (monomial) updated
CA-CG-RR (Newton) true
CA-CG-RR (Newton) updated
CA-CG-RR (Chebyshev) true
CA-CG-RR (Chebyshev) updated
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𝑛 = 5122, nnz ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1 )



CA-CG Convergence, s = 4 CA-CG Convergence, s = 8

CA-CG Convergence, s = 16
CG-RR true
CG-RR updated
CA-CG-RR (monomial) true
CA-CG-RR (monomial) updated
CA-CG-RR (Newton) true
CA-CG-RR (Newton) updated
CA-CG-RR (Chebyshev) true
CA-CG-RR (Chebyshev) updated

Maximum 
replacement steps 
(extra reductions) 

for any test: 8
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CA-CG Convergence, s = 4 CA-CG Convergence, s = 8

CA-CG Convergence, s = 16
CG-RR true
CG-RR updated
CA-CG-RR (monomial) true
CA-CG-RR (monomial) updated
CA-CG-RR (Newton) true
CA-CG-RR (Newton) updated
CA-CG-RR (Chebyshev) true
CA-CG-RR (Chebyshev) updated

Residual Replacement 
can improve accuracy 
orders of magnitude 

for negligible cost

Maximum 
replacement steps 
(extra reductions) 

for any test: 8

Model Problem: 2D Poisson (5-pt stencil), 
𝑛 = 5122, nnz ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1 )



Paige’s Results for Classical Lanczos

• Using bounds on local rounding errors in Lanczos, Paige showed that

1. The computed Ritz values always lie between the extreme 
eigenvalues of 𝐴 to within a small multiple of machine 
precision.

2. At least one small interval containing an eigenvalue of 𝐴 is 
found by the 𝑛th iteration.

3. The algorithm behaves numerically like Lanczos with full 
reorthogonalization until a very close eigenvalue 
approximation is found.

4. The loss of orthogonality among basis vectors follows a 
rigorous pattern and implies that some Ritz values have 
converged.
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eigenvalues of 𝐴 to within a small multiple of machine 
precision.

2. At least one small interval containing an eigenvalue of 𝐴 is 
found by the 𝑛th iteration.

3. The algorithm behaves numerically like Lanczos with full 
reorthogonalization until a very close eigenvalue 
approximation is found.

4. The loss of orthogonality among basis vectors follows a 
rigorous pattern and implies that some Ritz values have 
converged.

Do the same statements hold for CA-Lanczos?
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Finite precision Lanczos process: (𝐴 is 𝑛 × 𝑛 with at most 𝑁 nonzeros per row)

𝐴  𝑉𝑚 =  𝑉𝑚
 𝑇𝑚 +  𝛽𝑚+1  𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿  𝑉𝑚

 𝑉𝑚 =  𝑣1, … ,  𝑣𝑚 ,       𝛿  𝑉𝑚 = 𝛿  𝑣1, … , 𝛿  𝑣𝑚 ,          𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱  𝛽𝑚

 𝛽𝑚  𝛼𝑚

Paige’s Lanczos Convergence Analysis
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error result of Paige (1976): 

for 𝑖 ∈ {1, … , 𝑚},
𝛿  𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇  𝑣𝑖+1 − 1 ≤  𝜀0 2

 𝛽𝑖+1
2 +  𝛼𝑖

2 +  𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2
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where 𝜎 ≡ 𝐴 2,    𝜃𝜎 ≡ 𝐴 2, 𝜀0 ≡ 2𝜀 𝑛 + 4 , and 𝜀1 ≡ 2𝜀 𝑁𝜃 + 7
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Paige’s Lanczos Convergence Analysis

Classic Lanczos rounding 
error result of Paige (1976): 

 These results form the basis for Paige’s influential results in (Paige, 1980). 

𝜀0 = 𝑂 𝜀𝑛 𝜀1 = 𝑂 𝜀𝑁𝜃

for 𝑖 ∈ {1, … , 𝑚},
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 𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 ≤ 2𝜀0𝜎
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• Roundoff errors in CA variant follow same pattern as classical variant, but 
amplified by factor of Γ or Γ2

• Theoretically confirms empirical observations on importance of basis 
conditioning (dating back to late ‘80s)

• A loose bound for the amplification term:

Γ ≤ max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2 ≤ 2𝑠+1 ∙ max
ℓ≤𝑘

𝜅 𝒴ℓ

• What we really need: 𝒴 |𝑦′| 2 ≤ Γ 𝒴𝑦′ 2 to hold for the computed basis 𝒴
and coordinate vector 𝑦′ in every bound.

• Tighter bound on 𝚪 possible; requires some light bookkeeping 

• Example: for bounds on  𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 and  𝑣𝑖+1

𝑇  𝑣𝑖+1 − 1 , we can use the 
definition

Γ𝑘,𝑗 ≡ max
𝑥∈{  𝑤𝑘,𝑗

′ , 𝑢𝑘,𝑗
′ ,  𝑣𝑘,𝑗

′ ,  𝑣𝑘,𝑗−1
′ }

 𝒴𝑘 𝑥
2

 𝒴𝑘𝑥
2

The Amplification Term Γ

22



Results for CA-Lanczos
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• Back to our question: Do Paige’s results, e.g.,
loss of orthogonality  eigenvalue convergence

hold for CA-Lanczos?
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• Only if:

• 𝜀0 ≡ 2𝜀 𝑛+11𝑠+15 Γ2 ≤
1
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• i.e.,    Γ ≤ 24𝜖 𝑛 + 11𝑠 + 15
−  1 2

= 𝑂 𝑛𝜖 −1/2

• Otherwise, e.g., can lose orthogonality due to computation with 
(numerically) rank-deficient basis
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• The answer is YES!

Results for CA-Lanczos
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…but

• Back to our question: Do Paige’s results, e.g.,
loss of orthogonality  eigenvalue convergence

hold for CA-Lanczos?

• Take-away: we can use this bound on Γ to design a better algorithm!
• Mixed precision, selective reorthogonalization, dynamic basis size, etc. 



Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed 
Lanczos recurrence for 𝐴 are equal to those generated by exact 
Lanczos applied to a matrices whose eigenvalues lie within intervals 
about the eigenvalues of 𝐴. 
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𝑂(𝜖𝑛3 𝐴 )

𝑂(𝜖𝑛3 𝐴 𝚪𝟐)

Classical Lanczos

CA-Lanczos

Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed 
Lanczos recurrence for 𝐴 are equal to those generated by exact 
Lanczos applied to a matrices whose eigenvalues lie within intervals 
about the eigenvalues of 𝐴. 

Ongoing work…
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• Timing for coarse grid solves in geometric multigrid method

• 3D Helmholtz equation with 𝑛 = 1.6 ⋅ 106

• 24K cores on NERSC’s Hopper (Cray XE6)

BICGSTAB 
Krylov Solver

CA-BICGSTAB 
Krylov Solver

𝑠 = 4

Problem specifics:
𝐿𝑢 = (𝑎𝛼 − 𝑏𝛻 ⋅ 𝛽𝛻)𝑢 = 𝑓
𝛼 = 𝛽 = 1.0, 𝑎 = 𝑏 = 0.9
• Periodic boundary conds.
• RHS: 3D triangle wave 

w/period spanning entire 
domain
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4.2x speedup in Krylov solve!
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Krylov Solver
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Krylov Solver

𝑠 = 4

Problem specifics:
𝐿𝑢 = (𝑎𝛼 − 𝑏𝛻 ⋅ 𝛽𝛻)𝑢 = 𝑓
𝛼 = 𝛽 = 1.0, 𝑎 = 𝑏 = 0.9
• Periodic boundary conds.
• RHS: 3D triangle wave 

w/period spanning entire 
domain

• Timing for coarse grid solves in geometric multigrid method

• 3D Helmholtz equation with 𝑛 = 1.6 ⋅ 106

• 24K cores on NERSC’s Hopper (Cray XE6)



Future Directions
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• New Algorithms/Applications
• Application of communication-avoiding ideas and solvers to new 

computational science domains

• Design of new high-performance preconditioners

• Improving Usability
• Automating parameter selection via “numerical auto-tuning” 

• Integration into high-performance libraries

• Finite-Precision Analysis
• Bounds on stability and convergence for other Krylov methods 

(particularly in the nonsymmetric case)

• Extension of “Backwards-like” error analyses 

Broad research agenda: Design methods for large-scale problems that 
optimize performance subject to application-specific numerical constraints



Thank you!

Happy Birthday, Jim!

contact: erinc@cims.nyu.edu
http://www.cims.nyu.edu/~erinc/


