Communication-Avoiding
Krylov Subspace Methods in
Theory and Practice

Erin Carson, NYU

DMML Workshop
October 23, 2015



Why Avoid “Communication”?

e Algorithms have two costs: computation and communication

 Communication : moving data between levels of memory hierarchy
(sequential), between processors (parallel)

Sequential Parallel

A A-A
1 t ¢
A~ A

* On today’s computers, communication is expensive, computation is cheap,
in terms of both time and energy!




Future Exascale Systems

Petascale Predicted Exascale Factor
Systems (2009) Systems” Improvement
System Peak 2 - 10> flops 108 flops ~1000
Node Memory N
Bandwidth 25 GB/s 0.4-4 TB/s 10-100
Total Node Interconnect
Bandwidth 3.5 GB/s 100-400 GB/s 100
Memory Latency 100 ns 50 ns ~1
Interconnect Latency 1 us 0.5 us ~1

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)




Future Exascale Systems

Petascale Predicted Exascale Factor
Systems (2009) Systems” Improvement
System Peak 2 - 10> flops 108 flops ( ~1000 )
Node Memory N
Bandwidth 25 GB/s 0.4-4 TB/s 10-100
Total Node Interconnect
Bandwidth 3.5 GB/s 100-400 GB/s 100
Memory Latency 100 ns 50 ns ~1

Interconnect Latency 1 us 0.5 us . "1

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

* Gaps between communication/computation cost only growing larger in
future systems



Future Exascale Systems

Petascale Predicted Exascale Factor
Systems (2009) Systems” Improvement
System Peak 2 - 10> flops 108 flops ( ~1000 )
Node Memory N
Bandwidth 25 GB/s 0.4-4 TB/s 10-100
Total Node Interconnect
Bandwidth 3.5 GB/s 100-400 GB/s 100
Memory Latency 100 ns 50 ns ~1

Interconnect Latency 1 us 0.5 us . "1

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

* Gaps between communication/computation cost only growing larger in
future systems

* Avoiding communication will be essential for applications at exascale!



Krylov Subspace Methods

General class of iterative solvers: used for linear systems, eigenvalue problems,
singular value problems, least squares, etc.

Examples: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum
Residual (GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc.

Projection process onto the expanding Krylov subspace

K,,(A,1y) = span{ry, Ary, A1y, ..., A™ 11y}

In each iteration,
* Add a dimension to the Krylov subspace K,

* Orthogonalize (with respect to some L,,)




Krylov Solvers: Limited by Communication

In terms of communication:




Krylov Solvers: Limited by Communication

In terms of communication:

“Add a dimension to KX,,,”

— Sparse Matrix-Vector Multiplication (SpMV) X
* Parallel: comm. vector entries w/ neighbors i
* Sequential: read A/vectors from slow memory




Krylov Solvers: Limited by Communication

In terms of communication:

— Sparse Matrix-Vector Multiplication (SpMV)
* Parallel: comm. vector entries w/ neighbors
* Sequential: read A/vectors from slow memory

“Add a dimension to X,,,”

“Orthogonalize (with respect to some L,,)”
— Inner products
Parallel: global reduction (All-Reduce)
Sequential: multiple reads/writes to slow
memory

T X &




Krylov Solvers: Limited by Communication

In terms of communication:

— Sparse Matrix-Vector Multiplication (SpMV)
* Parallel: comm. vector entries w/ neighbors
* Sequential: read A/vectors from slow memory

“Add a dimension to X,,,”

“Orthogonalize (with respect to some L,,)”
— Inner products
Parallel: global reduction (All-Reduce)
Sequential: multiple reads/writes to slow
memory

T X &

SpMV
]> Dependencies between communication-bound kernels
ze

orthogonali in each iteration limit performance!




Example: Classical Conjugate Gradient (CG)

Given: initial approximation x, for solving Ax = b
Letpy =19 = b — Ax,
form = 0,1, 2, ..., until convergence do

7"1?)11 m

a o

m p?nApm

Xm+1 = Xm T AmPm

"m+1 = "m — amApm
_ 7'17;1+17”m+1

,Bm+1 - ,’,.T'Ir"lrm

Pm+1 = Tm+1 T+ ﬁm+1pm
end for



Example: Classical Conjugate Gradient (CG)

Given: initial approximation x, for solving Ax = b
Letpy =19 = b — Ax,
form = 0,1, 2, ..., until convergence do

T

_ mTm
Ay = = SpMV
PmAPm
Xm+1 = Xm T AymPm
"m+1 = Ym — AAPm

T
,B _ "m+1"m+1
m+1 — T
m'm

Pm+1 = Tm+1 T+ ﬁm+1pm
end for



Example: Classical Conjugate Gradient (CG)

Given: initial approximation x, for solving Ax = b
Letpy =19 = b — Ax,
form = 0,1, 2, ..., until convergence do

SpMV

Xm+1 = Xm T AmPm

"m+1 = Tm — OmAPm Inner products

T
| "Tm+1"m+1
m+1 — T
m'm

Pm+1 = Tm+1 T+ ﬁm+1pm
end for




Communication-Avoiding KSMs

* |dea: Compute blocks of s iterations at once
« Communicate every s iterations instead of every iteration
* Reduces communication cost by O(s)!

 (latency in parallel, latency and bandwidth in sequential)




Communication-Avoiding KSMs

Idea: Compute blocks of s iterations at once

« Communicate every s iterations instead of every iteration
* Reduces communication cost by O(s)!

 (latency in parallel, latency and bandwidth in sequential)

* Anidea rediscovered many times...
* First related work: s-dimensional steepest descent - Khabaza
(‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68):
* Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see,
e.g., Van Rosendale, 1983; Chronopoulos and Gear, 1989
e Goals: increasing parallelism, avoiding I/O, increasing
“convergence rate”



Communication-Avoiding KSMs

Idea: Compute blocks of s iterations at once
« Communicate every s iterations instead of every iteration
* Reduces communication cost by O(s)!
 (latency in parallel, latency and bandwidth in sequential)

* Anidea rediscovered many times...
* First related work: s-dimensional steepest descent - Khabaza
(‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68):
* Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see,
e.g., Van Rosendale, 1983; Chronopoulos and Gear, 1989
e Goals: increasing parallelism, avoiding I/O, increasing
“convergence rate”

* Resurgence of interest in recent years due to growing problem
sizes; growing relative cost of communication



Communication-Avoiding KSMs: CA-CG

* Main idea: Unroll iteration loop by a factor of s; split iteration loop into an outer
loop and an inner loop

* Key observation: starting at some iteration m,

Xm+j — Xm» Tm+j, Pm+j < :Ks+1(A» pm) + :Ks(Arrm) for j € {0» ---:S}




Communication-Avoiding KSMs: CA-CG

* Main idea: Unroll iteration loop by a factor of s; split iteration loop into an outer
loop and an inner loop

* Key observation: starting at some iteration m,
Xm+j = Xm» Tm+j» Pm+j € Kss1(4,0m) + K(A, 1) for j€{O,...,s}

Outer loop k: Communication step

ﬂixpand solution space s dimensions at once \
* Compute “basis matrix” Y;, with columns spanning

‘7(5+1 (A: pm) + *7(5 (A: rm)

* Requires reading A/communicating vectors only once
e Using “matrix powers kernel”

Orthogonalize all at once
* Compute/store block of inner products between basis vectors in
Gram matrix:

Gy =Y Yy
\ * Communication cost of one global reduction /




Communication-Avoiding KSMs: CA-CG

Inner loop: Perform s iterations of updates A
Computation * Using Yy and Gy, this requires no communication!
steps, no * Represent n-vectors by their O(s) coordinates in Y} :

. . i _ / — / — /
communication! Xsk+j — Xsk = YieXj,  Toxaj = Yili,  Dsi+j = YiDj y




Communication-Avoiding KSMs: CA-CG

Inner loop: Perform s iterations of updates A
Computation * Using Yy and Gy, this requires no communication!
steps, no * Represent n-vectors by their O(s) coordinates in Y} :
communication! Xsk+j = Xsk = YiXj,  Tskaj = Yilj,  Dsk+j = YiD; y
Apsk+j
4 n )
\§ J




Communication-Avoiding KSMs: CA-CG

Inner loop: Perform s iterations of updates A
Computation * Using Yy and Gy, this requires no communication!
steps, no * Represent n-vectors by their O(s) coordinates in Y} :
communication! Xsk+j = Xsk = YiXj,  Tskaj = Yilj,  Dsk+j = YiD; y
ADsk+ BiDy,j
4 n ) 4 )
i O(S)
n /1 « — os)d x 1




Communication-Avoiding KSMs: CA-CG

Inner loop: Perform s iterations of updates A
Computation * Using Yy and Gy, this requires no communication!
steps, no * Represent n-vectors by their O(s) coordinates in Y;:
communication! Xsk+j — Xsk = YieXj,  Tsirj = YiTj,  Dsk+j = YiPj y
!/
APsk+j Bypr,j
4 n ) 4 )
== 0(s)
n X % — 0(s) ] x|
\§ J \_ J
T
Tsk+j Vsk+j
4 )
X %
\§ J




Communication-Avoiding KSMs: CA-CG

Inner loop: Perform s iterations of updates A
Computation * Using Yy and Gy, this requires no communication!
steps, no * Represent n-vectors by their O(s) coordinates in Y;:
communication! Xsk+j — Xske = YeXj,  Tsk+j = Ya¥j,  Dsk+j = YiDj y
!/
APste+ j Bk,
4 n ) 4 )
== 0(s)
n X % — 0(s) ] x|
\§ J \_ J
T IT /
Tsk+j Tsk+] Tk,j Gk Tk, j
4 ) 4 )
X
% — = x O x [
\§ J \§ J




Example: CA-Conjugate Gradient

Given: initial approximation x, for solving Ax = b

Letpy =19 = b — Ax,

fork = 0,1, ..., until convergence do
Compute Y, compute G, = YkTYk
Letxg = 0541, To = €542, Po = €
forj=0,..,s—1do

(1)) 6w}
(7}) oxir)
]+1 = X] + ask+]p]

!

]+1 =1 - ask+]ka]

Ask+j =

, T
,B R (Tf+1) Gkrj+1
Sk+j+1 (r]{)TGkr]{
PJI'+1 = j’+1 + ,Bsk+j+1P]"
end for
Compute Xgpis = YVieXs + Xk, Tskes = YiTs, Psk+s = YiDs

end for



Example: CA-Conjugate Gradient

Given: initial approximation x, for solving Ax = b . _
Letp, =19 = b — Ax, via CA Matrix

fork=0,1, ..., until CW Powers Kernel
Compute Y, < compute G, = Y, YV

I I __ r
Letxg = Ozs4+1, 7o = €s+2, Po = €1

forj=0,..,s—1do Global reduction
T
() G to compute Gy
ask+] — / nNT ,
(P]) Gkka]

]+1 = X] + ask+]p]
!/
]+1 =1 - ask+]ka]
N
(+1) GiTas
T
!/ !/
(77) G

/ T /
Pj+1 = Tj+1 +:Bsk+j+1pj

,Bsk+j+1 =

end for
— ! — ! _ !
ComPUte Xsk+s — kas + Xskr Tsk+s = YkrSl Psk+s = Ykps
end for



Example: CA-Conjugate Gradient

Given: initial approximation x, for solving Ax = b

via CA Matrix

Letpy =19 = b — Ax,
fork=0,1, ..., until CW Powers Kernel
Compute Y, < compute G, = Y, YV

I I __ r
Letxg = Ozs4+1, 7o = €s+2, Po = €1

forj=0,..,s—1do ; Global reduction
() G to compute Gy
ask+] RN ,
(v}) GiBip]
!/ !/

_ !/
Xjt1 = Xj + Qs 5D
/ R ! i
rly1 =7 — Qs jBrD] — Lo.caul computatlons.
within inner loop require

/ T /
_ (r,-+1) GkTj4q e
Psksjer =7, no communication!
(r,-) G
/ T /
Pj+1 = Tjg1 + Bsk+j+1D;)
end for
ComPUte Xsk+s — ka; + Xsk» Tsk+s = YkrS’l Psk+s — Ykp;

end for



Complexity Comparison

Example of parallel (per processor) complexity for s iterations of CG vs. CA-CG
for a 2D 9-point stencil:

(Assuming each of p processors owns n/p rows of the matrix and s < \/n/p)

Flops Words Moved Messages
SpMV | Orth. SpMV Orth. SpMV | Orth.
Classical Sn Sn
G ? ? s{n/p slog,p N slog, p
sn 2
CA-CG ? :n s{yn/p s?log, p 1 log, p
p

All values in the table meant in the Big-O sense (i.e., lower order terms
and constants not included)



Complexity Comparison

Example of parallel (per processor) complexity for s iterations of CG vs. CA-CG
for a 2D 9-point stencil:

(Assuming each of p processors owns n/p rows of the matrix and s < \/n/p)

Flops Words Moved Messages
SpMV | Orth. SpMV Orth. SpMV | Orth.

Classical Sn Sn
G ? ? s{n/p slog,p l N slog, p

CA-CG - SZ"J 7 2 J 1 |1
: — |[= ] syn s2logy p 0g2 P
2N N

All values in the table meant in the Big-O sense (i.e., lower order terms
and constants not included)




Complexity Comparison

Example of parallel (per processor) complexity for s iterations of CG vs. CA-CG
for a 2D 9-point stencil:

(Assuming each of p processors owns n/p rows of the matrix and s < \/n/p)

Flops Words Moved Messages
SpMV | Orth. SpMV Orth. SpMV | Orth.

Classical sn sn [ \
G ? ? s{n/p slog, p ﬂ SIOQ

sn s’n
CA-CG — — sJn s?log a 1 log d

All values in the table meant in the Big-O sense (i.e., lower order terms
and constants not included)




From Theory to Practice

 Parameter s is limited by machine parameters and matrix
sparsity structure

* We can auto-tune to find the best s based on these properties
* That s, find s that gives the fastest speed per iteration




From Theory to Practice

 Parameter s is limited by machine parameters and matrix
sparsity structure

* We can auto-tune to find the best s based on these properties
* That s, find s that gives the fastest speed per iteration

* In practice, we don’t just care about speed per iteration, but
also the number of iterations

Runtime = (time/iteration) x (# iterations)




From Theory to Practice

 Parameter s is limited by machine parameters and matrix
sparsity structure

We can auto-tune to find the best s based on these properties
* That s, find s that gives the fastest speed per iteration

* In practice, we don’t just care about speed per iteration, but
also the number of iterations

Runtime = (time/iteration) x (# iterations)

We also need to consider how convergence rate and accuracy
are affected by choice of s!



From Theory to Practice

* CA-KSMs are mathematically equivalent to classical KSMs




From Theory to Practice

* CA-KSMs are mathematically equivalent to classical KSMs

* But can behave much differently in finite precision!




From Theory to Practice

* CA-KSMs are mathematically equivalent to classical KSMs

* But can behave much differently in finite precision!

* Roundoff error bounds generally grow with increasing s




From Theory to Practice

* CA-KSMs are mathematically equivalent to classical KSMs

* But can behave much differently in finite precision!

* Roundoff error bounds generally grow with increasing s

 Two effects of roundoff error:




From Theory to Practice

* CA-KSMs are mathematically equivalent to classical KSMs

* But can behave much differently in finite precision!
* Roundoff error bounds generally grow with increasing s

 Two effects of roundoff error:

1. Decrease in accuracy — Tradeoff: increasing blocking factor
S past a certain point: true residual b — Ax stagnates




From Theory to Practice

* CA-KSMs are mathematically equivalent to classical KSMs

* But can behave much differently in finite precision!
* Roundoff error bounds generally grow with increasing s

 Two effects of roundoff error:

1. Decrease in accuracy — Tradeoff: increasing blocking factor
S past a certain point: true residual b — Ax stagnates

2. Delay of convergence — Tradeoff: increasing blocking factor
s past a certain point: no speedup expected




From Theory to Practice

* CA-KSMs are mathematically equivalent to classical KSMs

* But can behave much differently in finite precision!
* Roundoff error bounds generally grow with increasing s

 Two effects of roundoff error:

1. Decrease in accuracy — Tradeoff: increasing blocking factor
S past a certain point: true residual b — Ax stagnates

2. Delay of convergence — Tradeoff: increasing blocking factor
s past a certain point: no speedup expected

Runtime = (time/iteration) x (# iterations)



From Theory to Practice

* CA-KSMs are mathematically equivalent to classical KSMs

* But can behave much differently in finite precision!
* Roundoff error bounds generally grow with increasing s

 Two effects of roundoff error:

1. Decrease in accuracy — Tradeoff: increasing blocking factor
S past a certain point: true residual b — Ax stagnates

2. Delay of convergence — Tradeoff: increasing blocking factor
s past a certain point: no speedup expected

Runtime = (time/iteration) x (# iterations)



Residual 2-norm

CA-CG Convergence,s=4

10

10

10—10 |

m'ﬁ_‘iﬂ"} ------------------------- |

0 500 1000 1500 2000 2500 3000
lteration

— CG true

- - - CG updated

—— CA-CG (monomial) true

- == CA-CG (monomial) updated

Model Problem: 2D Poisson (5-pt stencil),
n = 5122 nnz= 10°% k(4) =~ 10*
b = A(1y/n - ones(n, 1))



Residual 2-norm

CA-CG Convergence,s=4

- - = CG updated
—— CA-CG (monomial) true
- — - CA-CG (monomial) updated

10°
107
10—10_
'-.l\Ai
15 -,

10 N e
0 500 1000 1500 2000 2500 3000
lteration

— CG true

Model Problem: 2D Poisson (5-pt stencil),

n = 5122 nnz= 10°% k(4) =~ 10*

b = A(1y/n - ones(n, 1))

Residual 2-norm

10

107

10

10

CA-CG Convergence, s =8

-10

0 200

1500 2000 2500

lteration

1000

3000



Residual 2-norm

CA-CG Convergence,s=4

10"
Slower
107 ¢ convergence due
to roundoff
10—10_
| %
-15 L,
LS N Y y

0 500 1000 1500 2000 2500 3000
lteration

— CG true

- - - CG updated

—— CA-CG (monomial) true

- == CA-CG (monomial) updated

Model Problem: 2D Poisson (5-pt stencil),
n = 5122 nnz= 10°% k(4) =~ 10*
b = A(1y/n - ones(n, 1))

Residual 2fnorm

10

107"

10

10

CA-CG Convergence, s =8

-10

Loss of accuracy
due to roundoff

0 200 1000 1500 2000 2500 3000

lteration



CA-CG Convergence,s=4

10’
e Slower
g 10" ¢ convergence due
= to roundoff
0
oo 0
@ 10t
i
cC llll\ A?II
100 N ;
0 500 1000 1500 2000 2500 3000
lteration
— CG true

- - = CG updated
—— CA-CG (monomial) true
- — - CA-CG (monomial) updated

Model Problem: 2D Poisson (5-pt stencil),
n = 5122 nnz= 10°% k(4) =~ 10*
b = A(1y/n - ones(n, 1))

Residual 2fnorm

Residual 2-norm

10

100

10

10

—
I::II

—k
I::ll

10~

CA-CG Convergence, s =8

-10

-15

Loss of accuracy
due to roundoff

0 200 1000 1500 2000 2500 3000

lteration
CA-CG Convergence, s = 16

R e ]

500 1000 1500 2000 2500 3000
lteration



Residual 2-norm

CA-CG Convergence,s=4

10"
Slower
107 | convergence due
to roundoff
10—10_
| %
-15 L,
LS N Y X
0 500 1000 1500 2000 2500 3000
lteration
— CG true

- - = CG updated
—— CA-CG (monomial) true
- — - CA-CG (monomial) updated

Model Problem: 2D Poisson (5-pt stencil),
n = 5122 nnz= 10°% k(4) =~ 10*
b = A(1y/n - ones(n, 1))

Residual 2fnorm

Residual 2-norm

10

107"

100

10

CA-CG Convergence, s =8

10

Loss of accuracy
due to roundoff

—
=
¢ n

—k
I::ll

10~

"y
[=)
T

0 200 1000 1500 2000 2500 3000

lteration
CA-CG Convergence, s = 16

At s =16, monomial
basis is rank deficient!
Method breaks down!

\

R e ]

0 500 1000 1500 2000 2500 3000
lteration



Residual 2-norm

CA-CG Convergence,s=4

10"

10°

10—10_

) [Ava

070 R :
0 500 1000 1500 2000 2500 3000

lteration
— CG true

- - - CG updated

—— CA-CG (monomial) true

- == CA-CG (monomial) updated
—— CA-CG (Newton) true

— — = CA-CG (Newton) updated
— CA-CG (Chebyshev) true

— == CA-CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil),
n = 5122 nnz= 10°% k(4) =~ 10*
b = A(1y/n - ones(n, 1))

Residual 2-norm

Residual 2-norm

CA-CG Convergence, s =8

10

10

10

10

10

—
)
th

—
l:II

10

—
)
T

N \ H_\l‘ ____________________________ -

0 200 1000 1500 2000 2500 3000

lteration
CA-CG Convergence, s = 16

0 500 1000 1500 2000 2500 3000
lteration



Residual 2-norm

CA-CG Convergence,s=4

3000

10"

10°

10—10_
) [Ava

070 R :
0 500 1000 1500 2000 2500

lteration
— CG true
- - - CG updated

CA-CG (monomial) true
CA-CG (monomial) updated
CA-CG (Newton) true

CA-CG (Newton) updated
CA-CG (Chebyshev) true
CA-CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil),

n = 5122 nnz= 10°% k(4) =~ 10*

b = A(1y/n - ones(n, 1))

Residual 2-norm

Residual 2-norm

CA-CG Convergence, s =8

0 a
10 Better basis
choice allows
10° higher s values
1[]—1[!_
-H\\I\
y B
15 ™
0% e A
0 500 1000 1500 2000 2500 3000
lteration
CA-CG Convergence, s = 16
10°
10°
1E|—1EI_
. Y
10 \ o
0 500 1000 1500 2000 2500

lteration

3000



Residual 2-norm

CA-CG Convergence,s=4

10"

107

10—10_
) [Ava

070 R -
0 500 1000 1500 2000 2500 3000

lteration
— CG true
- - - CG updated

CA-CG (monomial) true
CA-CG (monomial) updated
CA-CG (Newton) true

CA-CG (Newton) updated
CA-CG (Chebyshev) true
CA-CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil),

n = 5122 nnz= 10°% k(4) =~ 10*

b = A(1y/n - ones(n, 1))

Residual 2-norm

Residual 2-norm

CA-CG Convergence, s =8

I:I .
10 Better basis
choice allows
10" higher s values
10—10 |
-H\\‘I\
y B
15 ™

0% e A

0 500 1000 1500 2000 2500 3000

lteration
CA-CG Convergence, s = 16
10"
But can still see loss of
10" accuracy/convergence
delay

107"}

. Y
10 \ o

0 500 1000 1500 2000 2500 3000

lteration



Maximum attainable accuracy of CG

* In classical CG, iterates are updated by

Xm+1 = Xm + AmPm and Tm+1 = Tm — Am AP

* Formulas for x,,,,1 and 73,41 do not depend on each other - rounding errors cause
the true residual, b — Ax,,,,1, and the updated residual, 7,1, to deviate




Maximum attainable accuracy of CG

* In classical CG, iterates are updated by

Xm+1 = Xm T AmPm and "m+1 = Tm — AmAPm

* Formulas for x,,,,1 and 73,41 do not depend on each other - rounding errors cause
the true residual, b — Ax,,,,1, and the updated residual, 7,1, to deviate

* The size of the true residual is bounded by

|b — Axpiqll < sl + 1D — Axp1 — gl

* When [|[7y11l > |b — Axips1 — Tgall, 1Tl @nd [[b — Axp 44 || have
similar magnitude

* When [[r41]l 2 0, [[b — Axp 41|l depends on [[b — Axpy1 — il




Maximum attainable accuracy of CG

* In classical CG, iterates are updated by

Xm+1 = Xm + AmPm and m+1 = Tm — amApm

* Formulas for x,,,,1 and 73,41 do not depend on each other - rounding errors cause
the true residual, b — Ax,,,,1, and the updated residual, 7,1, to deviate

* The size of the true residual is bounded by

|b — Axpiqll < sl + 1D — Axp1 — gl

* When [|[7y11l > |b — Axips1 — Tgall, 1Tl @nd [[b — Axp 44 || have
similar magnitude

* When [[r41]l 2 0, [[b — Axp 41|l depends on [[b — Axpy1 — il

* Many results on attainable accuracy, e.g.: Greenbaum (1989, 1994, 1997), Sleijpen,
van der Vorst and Fokkema (1994), Sleijpen, van der Vorst and Modersitzki (2001),
Bjorck, Elfving and Strakos (1998) and Gutknecht and Strakos (2000).

* We have applied a similar analysis to upper bound the maximum attainable
accuracy in finite precision CA-KSMs



Residual Replacement Strategy for CG

* van der Vorst and Ye (1999): Improve accuracy by replacing updated residual

T'm+1 by the true residual b — Ax,,, .1 in certain iterations, combined with group

update.




Residual Replacement Strategy for CG

* van der Vorst and Ye (1999): Improve accuracy by replacing updated residual

T'm+1 by the true residual b — Ax,,, .1 in certain iterations, combined with group

update.

* Choose when to replace 7,,,1 with b — Ax,,, .1 to meet two constraints:




Residual Replacement Strategy for CG

* van der Vorst and Ye (1999): Improve accuracy by replacing updated residual

T'm+1 by the true residual b — Ax,,, .1 in certain iterations, combined with group

update.

* Choose when to replace 7,,,1 with b — Ax,,, .1 to meet two constraints:

1. Replace often enough so that at termination, ||b — Ax,;,41 — a1l is

small relative to eN||A||l| 2,41l




Residual Replacement Strategy for CG

* van der Vorst and Ye (1999): Improve accuracy by replacing updated residual
T'm+1 by the true residual b — Ax,,, .1 in certain iterations, combined with group

update.

* Choose when to replace 7,,,1 with b — Ax,,, .1 to meet two constraints:

1. Replace often enough so that at termination, ||b — Ax,;,41 — a1l is

small relative to eN||A||l| 2,41l

2. Don’t replace so often that original convergence mechanism of updated

residuals is destroyed (avoid large perturbations to finite precision CG

recurrence)




Residual Replacement Strategy for CG

* van der Vorst and Ye (1999): Improve accuracy by replacing updated residual
T'm+1 by the true residual b — Ax,,, .1 in certain iterations, combined with group

update.

* Choose when to replace 7,,,1 with b — Ax,,, .1 to meet two constraints:

1. Replace often enough so that at termination, ||b — Ax,;,41 — a1l is

small relative to eN||A||l| 2,41l

2. Don’t replace so often that original convergence mechanism of updated
residuals is destroyed (avoid large perturbations to finite precision CG

recurrence)

 We can implement an analogous strategy for CA-CG and CA-BICG based on
derived bound on deviation of residuals

e Estimating quantities in bound has negligible cost - residual replacement
strategy does not asymptotically increase communication or computation!



Residual 2-norm

CA-CG Convergence,s=4

10"

10°

10—10_

) [Ava

070 R :
0 500 1000 1500 2000 2500 3000

lteration
— CG true

- - - CG updated

—— CA-CG (monomial) true

- == CA-CG (monomial) updated
—— CA-CG (Newton) true

- — = CA-CG (Newton) updated
— CA-CG (Chebyshev) true

— == CA-CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil),
n = 5122 nnz= 10°% k(4) =~ 10*
b = A(1y/n - ones(n, 1))

Residual 2-norm

Residual 2-norm

10

10

10

10

CA-CG Convergence, s =8

10

—
)
th

—
l:II

10

—
)
T

N \ H_\l‘ ____________________________ -

0 200 1000 1500 2000 2500 3000

lteration
CA-CG Convergence, s = 16

0 500 1000 1500 2000 2500 3000
lteration



Residual 2-norm

CA-CG Convergence,s=4

0 500 1000 1500 2000 2500 3000
lteration

— CG-RR true

- — - CG-RR updated

—— CA-CG-RR (monomial) true

- = = CA-CG-RR (monomial) updated
—— CA-CG-RR (Newton) true

— — = CA-CG-RR (Newton) updated
— CA-CG-RR (Chebyshev) true

— == CA-CG-RR (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil),
n = 5122 nnz= 10°% k(4) =~ 10*
b = A(1y/n - ones(n, 1))

Residual 2-norm

Residual 2-norm

CA-CG Convergence, s =8

—
i
—_
[ )
T

10

0 500 1000 1500 2000 2500 3000
lteration

CA-CG Convergence, s = 16

0 500 1000 1500 2000 2500 3000
lteration



Residual 2-norm

CA-CG Convergence,s=4

0 500 1000 1500 2000 2500 3000
lteration

— CG-RR true

- — - CG-RR updated

—— CA-CG-RR (monomial) true

- = = CA-CG-RR (monomial) updated
—— CA-CG-RR (Newton) true

— — = CA-CG-RR (Newton) updated
— CA-CG-RR (Chebyshev) true

— == CA-CG-RR (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil),
n = 5122 nnz= 10°% k(4) =~ 10*
b = A(1y/n - ones(n, 1))

Residual 2-norm

Residual 2-norm

CA-CG Convergence, s =8

10° | Maximum
replacement steps
(extra reductions)
107
for any test: 8
1[]—1!] |
1[]—15 --------------------------------------------------------

0 500 1000 1500 2000 2500 3000
lteration

CA-CG Convergence, s = 16

0 500 1000 1500 2000 2500 3000
lteration



Residual 2-norm

CA-CG Convergence,s=4

0 500 1000 1500 2000 2500 3000
lteration

— CG-RR true

- — - CG-RR updated

—— CA-CG-RR (monomial) true

- = = CA-CG-RR (monomial) updated
—— CA-CG-RR (Newton) true

— — = CA-CG-RR (Newton) updated
— CA-CG-RR (Chebyshev) true

— == CA-CG-RR (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil),
n = 5122 nnz= 10°% k(4) =~ 10*
b = A(1y/n - ones(n, 1))

CA-CG Convergence, s =8

10

10"

10

Residual 2-norm

10

-10

Maximum
replacement steps
(extra reductions)
for any test: 8

—_—
=
¢ ;]

—
l:II

Residual 2-norm

10

—
)
T

0 200 1000 1500 2000 2500

lteration
CA-CG Convergence, s = 16

3000

Residual Replacement
can improve accuracy
orders of magnitude
for negligible cost

0 500 1000 1500 2000 2500
lteration

3000



Paige’s Results for Classical Lanczos

* Using bounds on local rounding errors in Lanczos, Paige showed that

1. The computed Ritz values always lie between the extreme
eigenvalues of A to within a small multiple of machine
precision.

2. At least one small interval containing an eigenvalue of A is
found by the nth iteration.

3. The algorithm behaves numerically like Lanczos with full
reorthogonalization until a very close eigenvalue
approximation is found.

4. The loss of orthogonality among basis vectors follows a
rigorous pattern and implies that some Ritz values have
converged.



Paige’s Results for Classical Lanczos

* Using bounds on local rounding errors in Lanczos, Paige showed that

1. The computed Ritz values always lie between the extreme
eigenvalues of A to within a small multiple of machine
precision.

2. At least one small interval containing an eigenvalue of A is
found by the nth iteration.

3. The algorithm behaves numerically like Lanczos with full
reorthogonalization until a very close eigenvalue
approximation is found.

4. The loss of orthogonality among basis vectors follows a
rigorous pattern and implies that some Ritz values have
converged.

Do the same statements hold for CA-Lanczos?



Paige’s Lanczos Convergence Analysis

Finite precision Lanczos process: (A4 is n X n with at most N nonzeros per row)
AV = Vi Ty + ,Bm+1ﬁm+1er7;l + 6V
&

V=104, O], 6V, =[60q, ..., 60,,], r |

B

ﬁm &m




Paige’s Lanczos Convergence Analysis

Finite precision Lanczos process: (A4 is n X n with at most N nonzeros per row)

AVm = Vme + Bm+1ﬁm+1er7;l + 5Vm

@ f
Up = [D1, 0, O], OV = [69y, .., 8Dp],  Tu=|P2 = p
Bm é:’m
. . fori € {1, ...,m},
Classic Lanczos rounding { J .
error result of Paige (1976): 16%ill < &x0
' Biv1|0] Dir1 | < 2€00
|ﬁiT+1ﬁi+1 — 1| <¢g/2
Blia + @7 + B7 — lADII3] < 4i(3gq + £1)0?

where o = ||All,, 00 = |[|Alll,, &0 = 2e(n + 4), and &; = 2e(N6 + 7)



Paige’s Lanczos Convergence Analysis

Finite precision Lanczos process: (A4 is n X n with at most N nonzeros per row)

AVm = Vme + Bm+1ﬁm+1er7;l + 5Vm

@ f
Up = [D1, 0, O], OV = [69y, .., 8Dp],  Tu=|P2 = p
Bm é:’m
. . fori € {1, ...,m},
Classic Lanczos rounding { J .
error result of Paige (1976): 16%ill < &x0
' Biv1|0] Dir1 | < 2€00
|ﬁiT+1ﬁi+1 — 1| <¢g/2
Blia + @7 + B7 — lADII3] < 4i(3gq + £1)0?

where o = ||All,, 00 = |[|Alll,, &0 = 2e(n + 4), and &; = 2e(N6 + 7)
) )

gy = 0(en) g, =0(eN0O)



Paige’s Lanczos Convergence Analysis

Finite precision Lanczos process: (A4 is n X n with at most N nonzeros per row)

AVm = Vme + ,8m+1ﬁm+1er7;l + 5Vm

@& P,
Up = [D1, 0, O], OV = [69y, .., 8Dp],  Tu=|P2 = p
Bm é:’m
: : e {1, ...
Classic Lanczos rounding for i €41, ..., m}, .
. 160l < &10
error result of Paige (1976): 5 | aTn
Bisa|0] Dis1 | < 2600
|ﬁiT+1ﬁi+1 — 1| <¢g/2
Blia + @7 + B7 — lADII3] < 4i(3gq + £1)0?

where o = ||All,, 00 = |[|Alll,, &0 = 2e(n + 4), and &; = 2e(N6 + 7)
) )

gy = 0(en) g, =0(eN0O)

— These results form the basis for Paige’s influential results in (Paige, 1980).



CA-Lanczos Convergence Analysis

fori € {1, ..., m=sk+j},
For CA-Lanczos, 167, < €10

we have: Bis1|0] Dis1 | < 2600
/\T N\
|vi+1vi+1 —1 | < &/2
|Bf1 +af + BE — 1AD1I3] < 4i(Be, + £1)0?

g = 2e(n+11s+15) I'? = 0(enl?),
g1 = 2e((N+2s+5)0 + (4s+9)T + 105+16)T = 0(eNOI),

where o = [|All, 80 = [[|Alllz, o = max]|Belllz, and

< . - < (2s+1)- Yy).
I' < IES WY Ml - Yl < (25+1) T?SakXK( ?)



CA-Lanczos Convergence Analysis

fori € {1, ..., m=sk+j},
For CA-Lanczos, 167, < €10

we have: Bis1|0] Dis1 | < 2600
/\T N\
|vi+1vi+1 —1 | < &/2
|Bf1 +af + BE — 1AD1I3] < 4i(Be, + £1)0?

g0 = 2e(n+11s+15) I'? = 0(enl'?), <— (vs. O(en) for Lanczos)

g1 = 2e((N+2s+5)0 + (4s+9)T + 10s+16)T = 0(eN@r),<— (vs. 0(eN6) for Lanczos)
where ¢ = ||A||,, 60 = |||Alll,, 10 = I?<akX”|B£|”2; and

< . - < (2s+1)- Yy).
I' < IES WY Ml - Yl < (25+1) T?SakXK( ?)



The Amplification Term I

* Roundoff errors in CA variant follow same pattern as classical variant, but
amplified by factor of " or ['?

* Theoretically confirms empirical observations on importance of basis
conditioning (dating back to late ‘80s)

* Aloose bound for the amplification term:

[' < max 1YZ 112 - NYelllz < (2s+1) - max r(Yp)

« What we really need: |||Y]||Y'|ll, < Tl|Yy'|l, to hold for the computed basis Y
and coordinate vector y' in every bound.

* Tighter bound on I" possible; requires some light bookkeeping

, we can use the

» Example: for bounds on ;1|97 9;11 | and |97, 0;41 — 1
definition 1[Gl
UYr|lxl
ej =, max -

XE{Wy ol j Uk, jp Uk, j-1} ”ykx ” 2



Results for CA-Lanczos

e Back to our question: Do Paige’s results, e.g.,
loss of orthogonality — eigenvalue convergence
hold for CA-Lanczos?




Results for CA-Lanczos

e Back to our question: Do Paige’s results, e.g.,
loss of orthogonality — eigenvalue convergence
hold for CA-Lanczos?

e The answer is YES! ...but




Results for CA-Lanczos

e Back to our question: Do Paige’s results, e.g.,
loss of orthogonality — eigenvalue convergence
hold for CA-Lanczos?

e The answer is YES! ...but
* Only if:
+ & = 2e(n+11s+15) % < =

-1/2

» e, I'<(24e(n+11s+15)) = 0(ne)~Y?

e Otherwise, e.g., can lose orthogonality due to computation with
(numerically) rank-deficient basis



Results for CA-Lanczos

e Back to our question: Do Paige’s results, e.g.,
loss of orthogonality — eigenvalue convergence
hold for CA-Lanczos?

e The answer is YES! ...but
* Only if:
+ & = 2e(n+11s+15) % < =

-1/2

» e, I'<(24e(n+11s+15)) = 0(ne)~Y?

e Otherwise, e.g., can lose orthogonality due to computation with
(numerically) rank-deficient basis

* Take-away: we can use this bound on I" to design a better algorithm!
* Mixed precision, selective reorthogonalization, dynamic basis size, etc.



Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed
Lanczos recurrence for A are equal to those generated by exact
Lanczos applied to a matrices whose eigenvalues lie within intervals
about the eigenvalues of A.




Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed
Lanczos recurrence for A are equal to those generated by exact
Lanczos applied to a matrices whose eigenvalues lie within intervals
about the eigenvalues of A.




Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed
Lanczos recurrence for A are equal to those generated by exact
Lanczos applied to a matrices whose eigenvalues lie within intervals
about the eigenvalues of A.

Classical Lanczos
0 (en3||All)
- —~ ™~
A
° |




Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed
Lanczos recurrence for A are equal to those generated by exact
Lanczos applied to a matrices whose eigenvalues lie within intervals
about the eigenvalues of A.

Classical Lanczos
0 (en3||All)
- —~ ™~
| | Lo |
I I I

'

0(en3||A|IT?)
CA-Lanczos



Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed
Lanczos recurrence for A are equal to those generated by exact
Lanczos applied to a matrices whose eigenvalues lie within intervals
about the eigenvalues of A.

Classical Lanczos
0 (en3||All)
- —~ ™~
| | Lo |
I I I

'

0(en3||A|IT?)
CA-Lanczos

Ongoing work...



* Timing for coarse grid solves in geometric multigrid method
3D Helmholtz equation withn = 1.6 - 10°
e 24K cores on NERSC’s Hopper (Cray XE6)

Problem specifics:

1.500 Lu = (aa — bV - pViu = f
m MPI (collectives) a=f=10,a=b=09
1.250 - B MPI (P2P) * Periodic boundary conds.
@ BLAS3 * RHS: 3D triangle wave
E 1.000 - w/period spanning entire
5 WBLAST domain
2 0.750 - M applyOp
";' O residual
€ 0.500 -
=
0.250 -
0.000 - .
BICGSTAB CA-BICGSTAB
Krylov Solver Krylov Solver
s=4



* Timing for coarse grid solves in geometric multigrid method
3D Helmholtz equation withn = 1.6 - 10°
e 24K cores on NERSC’s Hopper (Cray XE6)

Problem specifics:

1.500 Lu= (aa —bV-pV)u=f
m MPI (collectives) a==10,a=b=09
1.250 - B MPI (P2P) * Periodic boundary conds.

* RHS: 3D triangle wave

E BLAS3 : : :
1.000 - w/period spanning entire

mBLASL domain

W applyOp

O residual

Time (seconds)
=
]
LR
-
|

0.250 -
0.000 -
BICGSTAB CA-BICGSTAB
Krylov Solver Krylov Solver
s=4

4.2x speedup in Krylov solve!



Future Directions

Broad research agenda: Design methods for large-scale problems that
optimize performance subject to application-specific numerical constraints

* New Algorithms/Applications
* Application of communication-avoiding ideas and solvers to new

computational science domains
* Design of new high-performance preconditioners

* Finite-Precision Analysis
* Bounds on stability and convergence for other Krylov methods
(particularly in the nonsymmetric case)

* Extension of “Backwards-like” error analyses

* Improving Usability
* Automating parameter selection via “numerical auto-tuning”

* Integration into high-performance libraries



Thank you!
Happy Birthday, Jim!

contact: erinc@cims.nyu.edu
http://www.cims.nyu.edu/~erinc/



