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Hardware Support for Multiprecision Computation
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• Half precision (FP16) defined as storage format in 2008 IEEE standard

• ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit

• AMD Radeon Instinct MI25 GPU, 2017: 

• single: 12.3 TFLOPS, half: 24.6 TFLOPS

• NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic

• NVIDIA Tesla V100, 2017: tensor cores for half precision; 

4x4 matrix multiply in one clock cycle

• double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)

• Google's Tensor processing unit (TPU): quantizes 32-bit FP computations 
into 8-bit integer arithmetic

• Aurora Exascale supercomputer: (2021) Expected extensive support for 
reduced-precision arithmetic (32/16/8-bit)

Use of low precision in machine learning has driven emergence of low-
precision capabilities in hardware:



Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff
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Iterative refinement: well-established method for improving an 
approximate solution to 𝐴𝑥 = 𝑏
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"Traditional"

(in precision 𝑢)

(in precision 𝑢2)

(in precision 𝑢)

(in precision 𝑢)

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

(high-precision 
residual computation)

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff
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Iterative refinement: well-established method for improving an 
approximate solution to 𝐴𝑥 = 𝑏

"Fixed-Precision"

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff
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Iterative refinement: well-established method for improving an 
approximate solution to 𝐴𝑥 = 𝑏

"Low-precision factorization"

(in precision 𝑢1/2)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff



Can we combine the performance benefits of low-precision factorization IR with 
the accuracy of traditional IR?

Iterative Refinement in 3 Precisions

Existing analyses only support at most two precisions
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⇒ 3-precision iterative refinement



Can we combine the performance benefits of low-precision factorization IR with 
the accuracy of traditional IR?

• New analysis generalizes existing types of IR:

Iterative Refinement in 3 Precisions

Traditional 𝑢𝑓 = 𝑢, 𝑢𝑟 = 𝑢2

Fixed precision 𝑢𝑓 = 𝑢 = 𝑢𝑟

Lower precision factorization 𝑢𝑓
2 = 𝑢 = 𝑢𝑟

[C. and Higham, SIAM 
SISC 40(2), 2018]
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⇒ 3-precision iterative refinement

(and improves upon existing analyses in some cases)
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SISC 40(2), 2018]

𝑢𝑓 = factorization precision, 𝑢 = working precision,   𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟

Existing analyses only support at most two precisions

3

⇒ 3-precision iterative refinement

(and improves upon existing analyses in some cases)

• Enables new types of IR: (half, single, double), (half, single, quad), 
(half, double, quad), etc. 



Key Analysis Innovations I

Typical bounds used in analysis: 𝐴(𝑥 −  𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 −  𝑥𝑖 ∞

Obtain tighter upper bounds:
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𝜇𝑖 ≪ 1
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Obtain tighter upper bounds:

Define 𝜇𝑖:   𝐴(𝑥 −  𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 −  𝑥𝑖 ∞

For a stable refinement scheme, in early stages we expect

𝑟𝑖
𝐴  𝑥𝑖

≈ 𝑢 ≪
𝑥 −  𝑥𝑖

𝑥

But close to convergence, 
𝑟𝑖 ≈ 𝐴 𝑥 −  𝑥𝑖
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Key Analysis Innovations I
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(𝐴 = 𝑈Σ𝑉𝑇)𝑥 −  𝑥𝑖 = 𝑉Σ−1𝑈𝑇𝑟𝑖 =  

𝑗=1

𝑛
𝑢𝑗

𝑇𝑟𝑖 𝑣𝑗

𝜎𝑗

𝑟𝑖 2 = 𝜇𝑖
(2)

𝐴 2 𝑥 −  𝑥𝑖 2
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𝑛
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𝑥 −  𝑥𝑖 2
2 ≥  

𝑗=𝑛+1−𝑘

𝑛
𝑢𝑗

𝑇𝑟𝑖
2
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2 ≥

1

𝜎𝑛+1−𝑘
2  

𝑗=𝑛+1−𝑘

𝑛

𝑢𝑗
𝑇𝑟𝑖

2
=

𝑃𝑘𝑟𝑖 2
2

𝜎𝑛+1−𝑘
2

where 𝑃𝑘 = 𝑈𝑘𝑈𝑘
𝑇 , 𝑈𝑘 = [𝑢𝑛+1−𝑘 , … , 𝑢𝑛]

𝑟𝑖 2 = 𝜇𝑖
(2)

𝐴 2 𝑥 −  𝑥𝑖 2
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≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2  𝑟𝑖 ∞)

1.     𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1  𝐿  𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇

 𝐿  𝑈
∞

𝐴 ∞

Assume computed solution  𝑑𝑖 to 𝐴𝑑𝑖 =  𝑟𝑖 satisfies:
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Allow for general solver:

→ normwise relative forward error is bounded 
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most 
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→ componentwise relative backward error is 
bounded by a multiple of 𝑢𝑠
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Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

𝜅∞ 𝐴 = 𝐴−1
∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

7



Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if 

𝜙𝑖 ≡ 2𝒖𝒔 min cond 𝐴 , 𝜅∞ 𝐴 𝜇𝑖 + 𝒖𝒔 𝐸𝑖 ∞

is sufficiently less than 1, then the forward error is reduced on the 𝑖th
iteration by a factor ≈ 𝜙𝑖 until an iterate  𝑥𝑖 is produced for which

𝑥 −  𝑥𝑖 ∞

𝑥 ∞
≲ 4𝑁𝒖𝒓 cond 𝐴, 𝑥 + 𝒖,

where 𝑁 is the maximum number of nonzeros per row in 𝐴. 

Theorem [C. and Higham, SISC 40(2), 2018]

𝜅∞ 𝐴 = 𝐴−1
∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞
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Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

Analogous traditional bounds: 𝜙𝑖 ≡ 3𝑛𝒖𝒇𝜅∞ 𝐴

𝜅∞ 𝐴 = 𝐴−1
∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

7

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if 

𝜙𝑖 ≡ 2𝒖𝒔 min cond 𝐴 , 𝜅∞ 𝐴 𝜇𝑖 + 𝒖𝒔 𝐸𝑖 ∞

is sufficiently less than 1, then the forward error is reduced on the 𝑖th
iteration by a factor ≈ 𝜙𝑖 until an iterate  𝑥𝑖 is produced for which

𝑥 −  𝑥𝑖 ∞

𝑥 ∞
≲ 4𝑁𝒖𝒓 cond 𝐴, 𝑥 + 𝒖,

where 𝑁 is the maximum number of nonzeros per row in 𝐴. 

Theorem [C. and Higham, SISC 40(2), 2018]



Normwise Backward Error for IR3

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if 

𝜙𝑖 ≡ 𝑐1𝜅∞ 𝐴 + 𝑐2 𝒖𝒔

is sufficiently less than 1, then the residual is reduced on the 𝑖th iteration 
by a factor ≈ 𝜙𝑖 until an iterate  𝑥𝑖 is produced for which

𝑏 − 𝐴 𝑥𝑖 ∞ ≲ 𝑁𝒖 𝑏 ∞ + 𝐴 ∞  𝑥𝑖 ∞ ,

where 𝑁 is the maximum number of nonzeros per row in 𝐴. 

Theorem [C. and Higham, SISC 40(2), 2018]
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IR3: Summary

9

Standard (LU-based) IR in three precisions (𝑢𝑠 = 𝑢𝑓)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16
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Standard (LU-based) IR in three precisions (𝑢𝑠 = 𝑢𝑓)
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H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

LP fact. 

LP fact. 

LP fact. 
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LP fact. 

LP fact. 

LP fact. 
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IR3: Summary

Standard (LU-based) IR in three precisions (𝑢𝑠 = 𝑢𝑓)
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S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

Trad.

Fixed

LP fact. 

LP fact. 

LP fact. 
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IR3: Summary

Standard (LU-based) IR in three precisions (𝑢𝑠 = 𝑢𝑓)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

Backward error
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H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

New

New

New

Trad.

Fixed

LP fact. 

LP fact. 

LP fact. 
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IR3: Summary

⇒ Benefit of IR3 vs. "LP fact.": no cond(𝐴, 𝑥) term in forward error

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

9

Standard (LU-based) IR in three precisions (𝑢𝑠 = 𝑢𝑓)

New

New

New

Trad.

Fixed

LP fact. 

LP fact. 

LP fact. 



Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

IR3: Summary

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

9

Standard (LU-based) IR in three precisions (𝑢𝑠 = 𝑢𝑓)

⇒ Benefit of IR3 vs. traditional IR: As long as 𝜅∞ 𝐴 ≤ 104, can use lower 
precision factorization w/no loss of accuracy! 

New

New

New

Trad.

Fixed

LP fact. 

LP fact. 

LP fact. 



Standard (LU-based) IR with    𝑢𝑓: single,  𝑢: double,   𝑢𝑟: double

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9
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Standard (LU-based) IR with    𝑢𝑓: single,  𝑢: double,   𝑢𝑟: quad

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9

10

100



Standard (LU-based) IR with    𝑢𝑓: single,  𝑢: double,   𝑢𝑟: quad

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9

10

100



Standard (LU-based) IR with    𝑢𝑓: double,  𝑢: double,   𝑢𝑟: quad

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9

10

100



GMRES-Based Iterative Refinement

• Observation [Rump, 1990]: if  𝐿 and  𝑈 are computed LU factors of 𝐴 in 

precision 𝑢𝑓, then 

𝜅∞
 𝑈−1  𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝑢𝑓,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.

11
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−1.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to  𝑈−1  𝐿−1𝐴𝑑𝑖 =  𝑈−1  𝐿−1𝑟𝑖

 𝐴  𝑟𝑖
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GMRES-IR with    𝑢𝑓: single,  𝑢: double,   𝑢𝑟: quad

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9, 𝜅∞
 𝐴 ≈ 2e4
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GMRES-IR: Summary

Benefits of GMRES-IR:

13

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16
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⇒With GMRES-IR, lower precision factorization will work for higher 𝜅∞(𝐴)
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Benefits of GMRES-IR:

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8
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⇒With GMRES-IR, lower precision factorization will work for higher 𝜅∞(𝐴)
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−1



GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒ If 𝜅∞ 𝐴 ≤ 1012, can use lower precision factorization w/no loss of accuracy! 
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GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

Performance results? Stay tuned for the next talk by Azzam Haidar; 
3-precision approach on NVIDIA V100 

Try IR3! MATLAB codes available at: https://github.com/eccarson/ir3
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Comments and Caveats

• Convergence tolerance 𝜏 for GMRES?

• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps
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Comments and Caveats

• Convergence tolerance 𝜏 for GMRES?

• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it 
can be a poor preconditioner

• e.g., if  𝐴 still has cluster of eigenvalues near origin, GMRES can stagnate 
until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling, using additional 
preconditioner

• Depending on conditioning of A, applying  𝐴 to a vector must be done accurately 
(precision 𝑢2) in each GMRES iteration 

• Why GMRES? 

• Theoretical purposes: existing analysis and proof of backward stability [Paige, 
Rozložník, Strakoš, 2006]

• In practice, use any solver you want! 
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erinc@cims.nyu.edu

math.nyu.edu/~erinc

Thank You!


