Problem Set 1

Problem 1.

(a) Find all operations on a given set \(A \) which are polymorphisms of every relational structure with universe \(A \).

(b) Assume that binary operations \(\circ, \star \) are polymorphisms of a relational structure \(A = (A; \ldots) \). Let \(f \) be a ternary operation on \(A \) defined by \(f(x, y, z) = (x \circ (y \star z)) \star x \). Is it always the case that \(f \) is a polymorphism of \(A \)? Can you generalize this?

(c) Find all relations on a fixed set \(A \) which are compatible with all operations on the set \(A \).

Problem 2. Find all polymorphisms of the following relational structures:

(a) \(\{\{0,1\};\{0\},\{1\},R_1\} \), where \(R_1 = \{0,1\}^3 \setminus \{(0,0,0),(1,1,1)\} \)

(b) \(\{\{0,1,2\};\{0\},\{1\},R_2\} \), where \(R_2 = \{0,1,2\}^2 \setminus \{(0,0),(1,1),(2,2)\} \) (the inequality relation)

(c) \(\{\{0,1,2\};R_2\} \) (the same \(R_2 \) as above)

Problem 3. Let us call the polymorphisms from Problem 1, item (a) trivial.

Consider the relational structure:

(a) \(A = (\{0,1\};\{0\},\{1\},S) \), where \(S = \{0,1\}^3 \setminus \{(1,1,0)\} \)

(b) \(A = (\{0,1\};\{0\},\{1\},R_1,R_2,\ldots,R_n) \), where \(R_1,\ldots,R_n \) is a list of all binary relations on \(\{0,1\} \) (what is the value of \(n \), by the way?)

(c) \(A = (\{0,1\};\{0\},\{1\},R) \), where \(R = \{(0,0,1),(0,1,0),(0,1,0),(1,1,1)\} \).

Does \(A \) admit any nontrivial polymorphism?

Is the answer different when we remove the unary relations \(\{0\},\{1\} \) from \(A \)?

Problem 4. Describe all relations compatible with the operation \(f(x, y, z) = x + y + z \), where + is the addition modulo 2 on the set \(\{0,1\} \).

Problem 5. Let us say that an operation \(f \) on the set \(\{0,1\} \) is a min operation, if \(f \) can be written in the form \(f(x_1, \ldots, x_n) = \min\{x_{i_1}, x_{i_2}, \ldots, x_{i_m}\} \) for some natural number \(m \) and some \(1 \leq i_1 < i_2 < \cdots < i_m \leq n \).

Moreover, let us say that \(f \) is a max-min operation, if \(f(x_1, \ldots, x_n) = \max\{g_1(x_1, \ldots, x_n), g_2(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n)\} \), where \(g_1, \ldots, g_k \) are min operations.

(a) Show that the set of all min-max-max-min-max-min-max operations (defined in the obvious way) coincide with the set of all max-min operations.

(b) Find a relational structure \(A = (\{0,1\},\ldots) \) such that polymorphisms of \(A \) are precisely the max-min operations.

Problem 6. Let us call the polymorphisms from Problem 1, item (a) trivial (as in Problem 3).

Find the smallest digraph \(A \) such that \(A \) has only trivial polymorphisms. Where “smallest” is

(a) with respect to the number of vertices,

(b) with respect to the number of edges.

Problem 7. Find an infinite sequence \(A_1, A_2, \ldots \) of relational structures with universe \(\{0,1\} \) such that, for all \(i > j \), every polymorphism of \(A_i \) is a polymorphism of \(A_j \), and there exists a polymorphism of \(A_j \) which is not a polymorphism of \(A_i \).