Homework 4

Deadline 21 Dec 2017, 10:40

- **4.1.** (10 points) Let $\mathbf{A} = (\{0,1\};\cdot)$ where $x \cdot y = 0$ for all $x, y \in \{0,1\}$. Let $\mathcal{V} = HSP(\mathbf{A})$. Determine a (small) equational basis of V (i.e., identities that axiomatize \mathcal{V}). Describe the free algebras in \mathcal{V} over finite set of generators.
- **4.2.** (10 points) Let \mathcal{V} be the variety (over the signature consisting of a single binary symbol \cdot) defined by the identities

$$x \cdot x \approx x$$
, $(x \cdot y) \cdot z \approx (z \cdot y) \cdot x$.

(a) Show that every member of \mathcal{V} satisfies the following identites.

$$(x \cdot y) \cdot (z \cdot w) \approx (x \cdot z) \cdot (y \cdot w)$$

$$x \cdot (y \cdot z) \approx (x \cdot y) \cdot (x \cdot z)$$

$$(y \cdot z) \cdot x \approx (y \cdot x) \cdot (z \cdot x)$$

$$y \cdot (x \cdot y) \approx (y \cdot x) \cdot y$$

$$(y \cdot x) \cdot x \approx x \cdot y$$

- (b) Let W be the subvariety of V defined by the additional identity $y \cdot (x \cdot y) \approx x$. Determine $\mathbf{F}_{W}(\{x,y\})$ (e.g., write out the Cayley table).
 - **4.3.** (10 points) Let **A** be the following semigroup

$$\begin{array}{c|ccccc} \cdot & 0 & 1 & 2 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 2 & 0 & 1 & 2 \\ \end{array}$$

Prove that $HSP(\mathbf{A})$ is the variety of commutative semigroups satisfying $x^2 \approx x^3$.