
CSP lecture 16/17 winter semester { Problem Set 6

An instance of the CSP(A) with the set of variables V is called 1-minimal if there exists a
system of subsets Px ⊆ A, x ∈ V such that for every constraint R(x1, . . . , xk), the projection of R
onto the j-th coordinate is equal to Pxj

.
Two instances of the CSP are called equivalent if they have the same set of solutions.

Problem 1. Devise a polynomial algorithm that transforms an instance of CSP(A) into an
equivalent 1-minimal instance of CSP(B), where B is pp-de�nable from A.

A semilattice operation on A is a binary operation s : A2 → A such that for all a, b, c ∈ A

s(s(a, b), c) = s(a, s(b, c)), s(a, b) = s(b, a), s(a, a) = a

A totally symmetric operation onA of arity n is an operation t : An → A such that t(a1, . . . , an) =
t(b1, . . . , bn) whenever {a1, . . . , an} = {b1, . . . , bn}, that is, the result of t depends only on the set
of its arguments.

Problem 2. Prove that every clone that contains a semilattice operation also contains, for
each n, a totally symmetric operation of arity n. Observe that the binary minimum and maximum
operations on {0, 1} are semilattice operations.

Problem 3. Prove that CSP(A) is solvable in polynomial time whenever, for each n, A has
a totally symmetric polymorphism of arity n. (Hint: Use Problems 1 and 2, reject if some Px is
empty, otherwise apply a totally symmetric operation of su�ciently large arity to each Px and
show that the resulting elements form a solution.)

An instance of the CSP is called a simple (2, 3)-minimal instance if

• The set of variables is V = {x1, . . . , xm}

• For each 1 ≤ i ≤ m, there is a (single) unary constraint Pi(xi)

• For each pair 1 ≤ i < j ≤ m, there is a (single) binary constraint Pi,j(xi, xj)

• There are no other constraints than those from the previous two items

• For each pair 1 ≤ i < j ≤ m, the projection of Pi,j onto the �rst (second, resp.) coordinate
is equal to Pi (Pj , resp.).

• For each triple 1 ≤ i, j, k ≤ m of distinct integers and each (a, b) ∈ Pi,j , there exists c ∈ Pk

such that (a, c) ∈ Pi,k and (b, c) ∈ Pj,k. Here, for i > j, we de�ne Pi,j = {(a, b) : (b, a) ∈ Pj,i}.

A simple (2, 3)-minimal instance is best visualized as a multipartite graph as follows: Each variable
xi corresponds to one partite set whose vertex set is (a disjoint copy of) Pi. Edges between Pi

and Pj are given by the relation Pi,j . Interpret the last two items using this graph. Also interpret
solutions of the instance.

Problem 4. Devise a polynomial time algorithm to transform an instance of CSP(A), where
all relations in A are at most binary, to an equivalent simple (2, 3)-minimal instance of CSP(B),
where B is pp-de�nable from A.

Adjust the algorithm to the situation when A has a majority polymorphism but the relations
in A can have arbitrary arities.

Problem 5. Prove that CSP(A) is solvable in polynomial time whenever A has a majority
polymorphism. Strategy:



• Deduce from the previous problem that it is enough to show that a simple (2, 3)-minimal
instance of CSP(B) has a solution whenever B has a majority polymorphism m and each Pi

is nonempty.

• Gradually build a solution as follows. Take any a1 ∈ P1, a2 ∈ P2, a3 ∈ P3 such that
(a1, a2) ∈ P1,2, (a1, a3) ∈ P1,3, (a2, a3) ∈ P2,3 (a partial solution on variables x1, x2, x3).

• Take b ∈ P4 such that (a2, b) ∈ P2,4 and (a3, b) ∈ P3,4. Take b′ ∈ P4 such that (a1, b
′) ∈ P1,4

and (a3, b
′) ∈ P3,4. Take b′′ ∈ P4 such that (a1, b

′′) ∈ P1,4 and (a2, b
′′) ∈ P2,4. De�ne

a4 = m(b, b′, b′′) and show that a1, a2, a3, a4 is a partial solution on variables x1, x2, x3, x4.

• Continue similarly.
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