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Abstract. For a digraph H, the Constraint Satisfaction Problem with
template H, or CSP(H), is the problem of deciding whether a given
input digraph G admits a homomorphism to H. The CSP dichotomy
conjecture of Feder and Vardi states that for any digraph H, CSP(H)
is either in P or NP-complete. Barto, Kozik, Maróti and Niven (Proc.
Amer. Math. Soc, 2009) confirmed the conjecture for a class of oriented
trees called special triads. We generalize this result, establishing the
dichotomy for a class of oriented trees which we call special polyads.
We prove that every tractable special polyad has bounded width and
provide the description of special polyads of width 1. We also construct
a tractable special polyad which neither has width 1 nor admits any
near-unaninimity polymorphism.

1. Introduction

Let H be a fixed finite digraph. The Constraint Satisfaction Problem with
template H, or CSP(H) for short, is the following decision problem:

INPUT: A finite digraph G.
QUESTION: Is there a homomorphism from G to H?

In graph theory, CSP(H) is also called H-coloring problem. This class of
problems has recently recieved a lot of attention, mainly because of the work
of Feder and Vardi [7] from 1999. In this article the authors conjectured a
large natural class of NP decision problems avoiding the complexity classes
between P and NP-complete (assuming that P6=NP). Many natural decision
problems, such as k-SAT, graph k-colorability or solving systems of linear
equations over finite fields belong to this class. In the same article they
proved that each such problem can be expressed as CSP(G) for some digraph
G. Therefore their dichotomy conjecture can be formulated as follows:

Conjecture (The Dichotomy Conjecture). For every digraph H, CSP(H)
is either tractable or NP-complete.

For brevity, we sometimes say that a digraph H is tractable if CSP(H) is
tractable and NP-complete if CSP(H) is NP-complete.

The dichotomy was established for a number of special cases, including
oriented paths (which are all tractable) [8], oriented cycles [6], undirected
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graphs [10] and many others. The work of Jeavons, Cohen and Gyssens
[11], refined by Bulatov, Jeavons and Krokhin [4], has shown a strong con-
nection between the constraint satisfaction problem and universal algebra.
This ”algebraic approach” led to a rapid development of the subject and
is essential to our paper. For more information on the algebraic approach
to CSP, see the survey of Krokhin, Bulatov and Jeavons [12]. Using the
algebraic approach (in particular, a result of Maróti and McKenzie [14,
Theorem 1.1]), Barto, Kozik and Niven [3] established the CSP dichotomy
for digraphs without sources or sinks (i.e., digraphs such that each vertex
has an incoming and an outgoing edge).

In the class of all digraphs, oriented trees are in some sense very far
from digraphs without sources or sinks. Except the oriented paths, the
simplest class of oriented trees are the triads (i.e., oriented trees with one
vertex of degree 3 and all other vertices of degree 1 or 2). Though the
dichotomy conjecture for triads remains open, it was confirmed by Barto,
Kozik, Maróti and Niven [2] for the so-called special triads, a certain class
of triads possessing enough structure to provide a structural description of
the tractable and NP-complete cases. Our paper generalizes their result to
the special polyads (which will be defined later). A polyad is an oriented
tree with at most one vertex of degree greater than 2. Special polyads are
a straightforward generalization of special triads.

A digraph G is said to have bounded width if CSP(G) can be solved
in polynomial time by local consistency methods (see [7]). It was proved
earlier that if G has a compatible majority operation [7] or compatible totally
symmetric idempotent operations of all arities [5], then it has bounded width
(and thus CSP(G) is tractable). In [13], Larose and Zádori conjectured
a full characterization of digraphs with bounded width. This conjecture
was confirmed by Barto and Kozik [1]. Our paper relies on their result
that digraphs with compatible weak near-unanimity operations of almost all
arities have bounded width (see Theorem 2.4).

In [2], the authors proved that every special triad is either NP-complete
or it has a compatible majority operation or compatible totally symmetric
idempotent operations of all arities. We concentrated on the special polyads
for several reasons. Though the special polyads do possess the same kind of
structure as the special triads, allowing us to apply some of the techniques
used in [2], it was not obvious whether the results from [2] can be extended
to them.

We were also interested in the following question: Will every tractable spe-
cial polyad be tractable for a “simple” reason, by which we mean satisfying
some strong conditions ensuring tractability (e.g., possessing a compatible
majority operation, near-unanimity operation or totally symmetric idem-
potent operations of all arities)? We were not able to find such a strong
condition for every tractable special polyad, therefore we need the result
from [1] in its full strength. Using our techniques we constructed a special
polyad which admits neither totally symmetric idempotent operations of all
arities nor any near-unanimity operation, but still is tractable (see Section
5). Moreover, we wanted to determine whether there exist tractable special
polyads without bounded width. The answer to this question is negative.
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We believe that the techniques developed in this article can be applied to
a far broader class of oriented trees.

2. Preliminaries

2.1. Digraphs. A digraph G = (G,E) is a set of vertices G together with a

binary relation E ⊆ G2, the edge relation. For 〈a, b〉 ∈ E we write a G−→ b or
simply a → b when there is no danger of confusion. The degree of a vertex
is the number deg(v) = |{〈a, b〉 ∈ E : a = v or b = v}|.

A digraph G′ is a subgraph of G (we write G′ ⊆ G), if G′ ⊆ G and E′ ⊆ E.

If E′ = E ∩G′2, then G′ is an induced subgraph of G (or a subgraph induced
by G′), denoted by G[G′].

Let G and H be digraphs. A mapping f : G → H is a homomorphism
from G to H, if it preserves the edges, i.e., for all a, b ∈ G such that a G−→ b we
have f(a) H−→ f(b). We say that G is homomorphic to H and write G → H,
if there exists a homomorphism from G to H. A digraph G is a core, if every
homomorphism G → G is bijective.

For each digraph H there exists a unique (up to isomorphism) core digraph
H′ such that H ↔ H′, it is called the core of H and denoted core(H). For
any digraph G, G → H if and only if G → H′.

Let G1, . . . ,Gn be digraphs. The product of G1, . . . ,Gn is the digraph∏n
i=1 Gi = (G1 × · · · × Gn, E) where 〈ā, b̄〉 ∈ E iff 〈ai, bi〉 ∈ Ei for each

i = 1, . . . , n. The product of n copies of G is called the n-th power of G and
denoted Gn.

An oriented path of length n is a digraph P = (P,E) with pairwise distinct
vertices P = {v0, v1, . . . , vn} and edges E = {e0, e1, . . . , en−1} such that
ei ∈ {〈vi, vi+1〉, 〈vi+1, vi〉} for each i. The vertex v0 is called the initial
vertex, denoted by init(P), and vn is called the terminal vertex, denoted by
term(P).

Let G = (G,E) be a digraph and a, b ∈ G. We say that a is connected to b
in G via a path P if P ⊆ G, a = init(P) and b = term(P). By the distance of
two connected vertices a, b (denoted distG(a, b)) we mean the minimal length
of an oriented path connecting a to b. The relation of connectedness is an
equivalence relation on G. Its classes are called components of connectivity.
G is connected if each two vertices a, b ∈ G are connected.

2.2. Oriented trees. A digraph T = (T,E) is called an oriented tree if
for each a, b ∈ T there exists precisely one path connecting a to b. (Al-
ternatively, an oriented tree is a digraph which can be obtained from an
undirected tree, i.e., connected undirected graph without cycles, by orient-
ing its edges.) There exists a unique mapping lvl : T → N ∪ {0} satisfying
the following conditions:

(i) If a→ b, then lvl(b) = lvl(a) + 1.
(ii) There exists a vertex a ∈ T with lvl(a) = 0.

For a ∈ T , lvl(a) is called the level of a. The height of T, denoted by hgt(T),
is the highest level of a vertex in T. For any i ≥ 0 we define the set

LevelT(i) = {a ∈ T : lvl(a) = i}

(dropping the index when T is known from the context).
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An oriented path P is minimal if lvl(init(P)) = 0, lvl(term(P)) = hgt(P)
and 0 < lvl(v) < hgt(P) for all v ∈ P \ {init(P), term(P)}. Below is an
example of a minimal path.
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Figure 1. A minimal path of height 4.

Let P1, . . . ,Pn be minimal paths of the same height l. It is known that
there exists a minimal path Q of height l homomorphic to all the paths
P1, . . . ,Pn (see for example [9]).

2.3. The Constraint Satisfaction Problem. Let H be a digraph. The
Constraint Satisfaction Problem with template H (or CSP(H) for short, also
known as the H-coloring roblem) is the following decision problem:

INPUT: A digraph G.
QUESTION: Is there a homomorphism from G to H?

The CSP dichotomy conjecture of Feder and Vardi from [7] can be stated
as follows:

Conjecture (The Dichotomy Conjecture). For every digraph H, CSP(H)
is either tractable or NP-complete.

A digraph H is said to have bounded width, if CSP(H) can be solved in
polynomial time by local consistency methods (see [7]), and width 1, if it
can be solved by (1, k)-consistency algorithm for some fixed k (see [5]).

It is easily seen that CSP(H) = CSP(core(H)). Thus we can restrict
ourselves to digraphs which are cores.

2.4. CSP and compatible operations. In this subsection we introduce
certain special types of operations and their connection to the complexity
of CSP(H). First, we will define the notion of compatible operation, a
generalization of endomorphism. Recall that by an r-ary operation on a set
A we mean a mapping Ar → A. Note that the r-ary operations compatible
with H are precisely the homomorphisms from Hr to H.

Definition 2.1. Let H = (H,E) be a digraph and let f be an r-ary op-
eration on H. We say that f is compatible with H (or is a polymorphism

of H), if it satisfies the following condition: if ai, bi ∈ H and ai
H−→ bi for

i = 1, . . . , r, then f(a1, . . . , ar)
H−→ f(b1, . . . , br).

The compatible operations play a key role in the algebraic approach to
CSP (see [12] for more details). In the rest of this subsection we introduce
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three theorems connecting the computational complexity of CSP(H) with
existence of certain ”nice” compatible operations. We will later use these
algebraic tools to prove tractability or NP-completeness of CSP for special
polyads, which we will introduce in the next section.

Definition 2.2. An r-ary operation f on a set A is idempotent, if it satisfies
f(a, a, . . . , a) = a for all a ∈ A.

(i) Let r ≥ 2. An r-ary operation ω on A is called a weak near-
unanimity operation (or a weak-NU ), if it is idempotent and satis-
fies

ω(a, . . . , a, b) = ω(a, . . . , a, b, a) = · · · = ω(b, a, . . . , a)

for all a, b ∈ A. We define the binary operation ◦ω by setting

a ◦ω b = ω(a, . . . , a, b).

(ii) A weak-NU ν of arity ≥ 3 is called a near-unanimity operation
(NU ), if a ◦ν b = a for all a, b ∈ A. A ternary NU is called a
majority operation.

(iii) An r-ary operation τ is totally symmetric idempotent (TSI ), if it is
idempotent and satisfies

τ(a1, a2, . . . , ar) = τ(a′1, a
′
2, . . . , a

′
r)

whenever {a1, a2, . . . , ar} = {a′1, a
′
2, . . . , a

′
r}. (Note that a totally

symmetric idempotent operation is a weak-NU.)

Remark. It can be easily seen that an operation obtained by composing
operations compatible with H is also compatible with H. In particular, if ω
is a weak-NU operation compatible with H, then ◦ω is also compatible with
H, as we can obtain it by composing ω with the projection operations (i.e.,
the operations pi

r(x1, . . . , xr) = xi, which are indeed compatible with H).

Our tool to prove NP-completeness is the following theorem, a combina-
tion of a result of Bulatov, Jeavons and Krokhin from [4] and a result of
Maróti and McKenzie [14].

Theorem 2.3. Let H be a digraph. If core(H) admits no compatible weak-
NU operation, then CSP(H) is NP-complete.

The algebraic dichotomy conjecture states that the converse is also true.
It can be formulated as follows:

Conjecture (The Algebraic Dichotomy Conjecture). Let H be a core di-
graph. If H admits a compatible weak-NU operation, then CSP(H) is tractable,
otherwise it is NP-complete.

The algebraic dichotomy conjecture is a strengthening of the conjecture
of Feder and Vardi. In Theorem 3.2 we prove that this conjecture holds for
special polyads. To prove tractability, we apply the following theorem by
Barto and Kozik [1]:

Theorem 2.4. Let H be a core digraph. The following conditions are equiv-
alent:

(i) H has bounded width.
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(ii) H admits compatible weak-NU operations of almost all arities (i.e.,
there exists r0 such that for all r ≥ r0 H admits a compatible r-ary
weak-NU).

The following characterization of digraphs of width 1 is due to Dalmau
and Pearson [5]:

Theorem 2.5. Let H be a core digraph. The following conditions are equiv-
alent:

(i) H has width 1.
(ii) H admits compatible totally symmetric idempotent operations of all

arities.

3. Special polyads

3.1. The definition. In this subsection we define the special polyads, a
certain class of oriented trees generalizing the special triads treated in [2].
An oriented tree is called a polyad if at most one of its vertices has degree
greater than 2.

Definition 3.1. (i) By a half-branch we mean a minimal path, the
root of the half-branch P is its initial vertex.

(ii) Let P and P′ be two disjoint minimal paths of the same height.
The branch 〈P,P′〉 is the oriented tree obtained by identifying the
terminal vertices of P and P′ into a single vertex. The root of the
branch 〈P,P′〉 is the initial vertex of P.

(iii) Let n, k be nonnegative integers, n + k > 0 and let 〈Pi,P
′
i〉 (1 ≤

i ≤ n) and Pn+i (1 ≤ i ≤ k) be n branches and k half-branches
of the same height (pairwise disjoint). The special polyad given by
〈P1,P

′
1〉, . . . ,Pn+k is the oriented tree T obtained by identifying the

roots of 〈P1,P
′
1〉, . . . ,Pn+k into a single vertex, the root.

In the following, we will denote the root of T by 0, the initial vertex of
P′

i by i and the top-level vertex of 〈Pi,P
′
i〉 or Pi by î (see the figure below,

arrows indicate ”direction” of paths). Let us also define

BaseT = LevelT(0) = {0, 1, . . . , n},

TopT = LevelT(hgt(T)) = {1̂, . . . , n̂+ k}

HalfT = {n̂+ 1, . . . , n̂+ k}

and

PathsT = {P1,P2, . . . ,Pn+k,P
′
1,P

′
2, . . . ,P

′
n}

(we will usually drop the index T).
In our terminology, a special triad from [2] is a special polyad with 3

branches and no half-branches.

3.2. The main result. The following theorem is the main result of our
paper.

Theorem 3.2. For every special polyad T, CSP(T) is either NP-complete
or tractable. More specifically,
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Figure 2. A special polyad.

(i) core(T) has bounded width, if and only if core(T) admits a compat-
ible weak near-unanimity operation, otherwise T is NP-complete.

(ii) T has width 1, if and only if T admits a compatible binary weak-NU
(i.e., a binary idempotent commutative operation).

Corollary 3.3. The CSP dichotomy conjecture holds for special polyads.

We will prove Theorem 3.2 in the next section.

4. Proof of Theorem 3.2

For a positive integer n, let [n] = {1, . . . , n}.

4.1. Preliminary results. First, we will reduce the problem to core special
polyads. In the next two easy lemmata we prove that the core of a special
polyad is still a special polyad and inherits its ”nice” polymorphisms.

Lemma 4.1. Let T be a special polyad with n branches and k half-branches.
Then core(T) is a special polyad with n′ branches and k′ half-branches where
0 < n′ + k′ ≤ n+ k.

Proof. It is easily seen that a homomorphism from a minimal path of height
l to an oriented tree of height l maps the initial vertex to a vertex of level 0
and the terminal vertex to a vertex of level l. The rest follows directly from
this fact. �

Lemma 4.2. Let H be a digraph. If H has a compatible r-ary weak-NU ω,
then there exists an r-ary weak-NU ω′ compatible with core(H) such that if
ω is a NU, then ω′ is also a NU and if ω is TSI, then ω′ is also TSI.

Proof. Let f : H → core(H) and g : core(H) → H be homomorphisms. Then
the homomorphism f ◦ g : core(H) → core(H) is bijective and since core(H)
is finite, there exists k > 0 such that (f ◦ g)k = idcore(H). For x̄ ∈ core(H)r

we define ω′(x̄) = (f ◦ (g ◦ f)k−1)(ω(g(x1), . . . , g(xr))). The rest is easy. �

In the rest of this subsection we show that if an oriented tree T has a
compatible partial weak-NU or NU defined for the tuples of vertices of the
same level, it can be easily extended to a full weak-NU or NU. Similar fact
is true for having partial TSI operations of all arities.

Let A be any set and K ⊆ Ar. By a partial r-ary operation on a set
A with domain K we mean a mapping f : K → A. We define partial
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weak-NU, partial NU and partial TSI in an obvious fashion, restricting the
conditions required in Definition 2.2 to tuples from the domain. The notion
of compatibility generalizes to partial operations similarly:

Definition 4.3. Let H = (H,E) be a digraph and let f be a partial r-ary
operation on H with domain K. We say that f is compatible with H, if it
satisfies the following condition: if ā, b̄ ∈ K and ai

H−→ bi for i = 1, . . . , r,
then f(ā) H−→ f(b̄).

Lemma 4.4. Let T be an oriented tree.

(i) Each partial weak-NU compatible with T with domain
⋃hgt T

k=0 Level(k)r

(i.e., tuples of vertices of the same level) can be extended to a weak-
NU ω′ ⊇ ω compatible with T in such a way that if ω is a partial
NU, then ω′ is a NU.

(ii) Each partial TSI τr compatible with T with domain
⋃hgt T

k=0 Level(k)r

can be extended to a TSI operation τ ′r ⊇ τr compatible with T.

Proof. To prove (i), we define ω′ as follows (let ā ∈ T r):

(1) If all the vertices ai have the same level, then we put ω′(ā) = ω(ā).
(2) If there exists i ∈ [r] such that lvl(aj) = k for all j 6= i and lvl(ai) 6=

k, then
(2a) if r = 2, we define ω′(a1, a2) = a1 if lvl(a1) < lvl(a2) and

ω′(a1, a2) = a2 else,
(2b) if r ≥ 3, we define ω′(ā) = a2 if i = 1 and ω′(ā) = a1 else.

(3) In all other cases we put ω′(ā) = a1.

First, we will prove that ω′ is a weak-NU. Let a, b ∈ T be arbitrary. We
want to prove that ω′(a, . . . , a, b) = ω′(a, . . . , a, b, a) = · · · = ω′(b, a, . . . , a).
Clearly, for all of these tuples the same case of the definition applies. In
case (1) the equalities hold because ω is a weak-NU, while in case (2) the
result is independent on the coordinate at which the ’b’ occurs. Moreover,
a ◦ω′ b = a in case (2b); and so ω′ is a NU whenever ω is a partial NU.

To prove compatibility, choose ā, b̄ ∈ T r such that ai → bi for each i.
The same case of the definition applies for both ω′(ā) and ω′(b̄). From the
compatibility of ω′ (case (1)) and the fact that ai → bi (cases (2) and (3))
it follows that ω′(ā) → ω′(b̄) and (i) is proved.

In order to prove (ii), for ā ∈ T r let ai1 , . . . , aik (i1 < · · · < ik) be the
vertices of minimal level among {a1, . . . , ar}. We define

τ ′r(ā) = τr(ai1 , . . . , aik , aik , . . . , aik︸ ︷︷ ︸
(r−k)-times

).

It is easy to check that τ ′r is TSI. The compatibility of τ ′r follows immedi-
ately from the compatibility of τr. �

4.2. Reduction to A(T). Let T be a special polyad. In this subection we
translate the question if T has a compatible r-ary weak-NU, NU or TSI
operations of all arities into a question whether there exists a weak-NU, NU
or TSI operations of all arities compatible with a certain family A(T) of
digraphs on the set Base∪Top. This translation significantly simplifies the
proof of Theorem 3.2 and also allows us to construct special polyads with
some desired properties such as the one in Section 5.
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Definition 4.5.

(i) Let I ⊆ Paths be nonempty. We define
⊗

S∈I S to be the com-
ponent of connectivity of the digraph

∏
S∈I S containing the tuple

〈init(S) : S ∈ I〉. (Note that
⊗

is, up to isomorphism, associative
and commutative.)

(ii) Let us denote by R the mapping from the set P(Paths) (the power
set of Paths) to itself defined by

R(I) = {P ∈ Paths :
⊗

S∈I

S → P}

for I 6= ∅; we put R(∅) = ∅.

We will need the following easy lemma.

Lemma 4.6. Let I = {S1, . . . ,Sr} ⊆ Paths be nonempty. Then the tuple
of terminal vertices 〈term(S1), . . . , term(Sr)〉 belongs to

⊗r
i=1 Si and any

homomorphism ψ :
⊗r

i=1 Si → T maps the tuple 〈init(S1), . . . , init(Sr)〉 to
a vertex of level 0 and 〈term(S1), . . . , term(Sr)〉 to a vertex of level hgt(T);
the image of

⊗r
i=1 Si under ψ is a minimal path from Paths.

Proof. Let Q be a minimal path (of height hgt(T)) homomorphic to all the
paths S1, . . . ,Sr via ϕ1, . . . , ϕr, respectively. Consider the natural homo-
morphism ϕ : Q →

∏r
i=1 Si defined by ϕ(x̄) = 〈ϕ1(x1), . . . , ϕr(xr)〉. Since

Q is connected, it follows that ϕ : Q →
⊗r

i=1 Si; and thus ϕ(term(Q)) =
〈term(S1), . . . , term(Sr)〉 ∈

⊗r
i=1 Si. The homomorphism ψ ◦ ϕ : Q → T

maps Q onto a minimal path P ∈ Paths. Therefore ψ(init(S1), . . . , init(Sr)) =
(ψ ◦ϕ)(init(Q)) = init P has level 0 and ψ(term(S1), . . . , term(Sr)) has level
hgt(T). The rest is obvious. �

In the following lemma we prove that R is a closure operator on the set
Paths.

Lemma 4.7. The following statements hold:

(i) I ⊆ R(I) for any I ⊆ Paths. (extensivity)
(ii) If I ⊆ J ⊆ Paths, then R(I) ⊆ R(J ). (monotonicity)
(iii) R(R(I)) = R(I) for all I ⊆ Paths. (idempotency)

Proof. In the following, let I = {S1, . . . ,Sr}. The projection homomor-
phisms πj(x̄) = xj witness

⊗r
i=1 Si → Sj for all j and (i) is proved.

To prove (ii), let P ∈ R(I), ϕ :
⊗r

i=1 Si → P. By (i), for each i there
exists a (projection) homomorphism πSi

:
⊗

S∈J S → Si. The mapping ψ :⊗
S∈J S → P defined by ψ(x̄) = ϕ(πS1(x̄), . . . , πSr

(x̄)) is a homomorphism
witnessing P ∈ R(J ).

It remains to prove (iii). The inclusion R(R(I)) ⊇ R(I) follows from (i).
Let P ∈ R(R(I)) and let ϕ :

⊗
S∈R(I) S → P. For each S ∈ R(I) there exists

a homomorphism ϕS :
⊗r

i=1 Si → S. Similarly as before the composition
ψ(x̄) = ϕ(〈ϕS(x̄) : S ∈ R(I)〉) is a homomorphism from

⊗r
i=1 Si to P, and

the proof is finished. �

Now we are ready to define the family A(T).
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Definition 4.8. For any I ⊆ Paths, let T(I) be the digraph on the set
Base ∪ Top defined by the following condition:

a
T(I)
−−→ b iff a is connected to b via P for some P ∈ R(I).

Let us denote by A(T) the family of digraphs A(T) = {T(I) : I ⊆ Paths}.
We say that an operation on the set Base ∪ Top is compatible with A(T), if
it is compatible with all the digraphs T(I) ∈ A(T).

Below is a figure of the digraph T(Paths). From Lemma 4.7 it follows
that all digraphs from A(T) are subgraphs of this digraph.
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Figure 3. The digraph T(Paths).

The following immediate corollary summarizes the connection between R
and compatible operations of T.

Corollary 4.9. Let f be an r-ary operation compatible with T and I ⊆

Paths. If ai
T(I)
−−→ bi for all i = 1, . . . , r, then

f(ā)
T(I)
−−→ f(b̄).

Finally, we conclude this section with the ”reduction” lemma, which al-
lows us to look for compatible weak-NUs on A(T), a family of quite simple
digraphs, instead of T.

Lemma 4.10. Let T be a special polyad. The following statements hold:

(i) T admits an r-ary compatible weak-NU, if and only if A(T) admits
an r-ary compatible weak-NU.

(ii) T admits an r-ary compatible NU, if and only if A(T) admits an
r-ary compatible NU.

(iii) T admits an r-ary compatible TSI, if and only if A(T) admits an
r-ary compatible TSI.

Proof. For an r-ary operation f compatible with T, let f ′ be the restriction
of f to the domain Baser ∪Topr. Choose arbitrary I ⊆ Paths, ā ∈ Baser

and b̄ ∈ Topr such that ai
T(I)
−−→ bi (1 ≤ i ≤ r). From the previous corollary

it follows that the partial operation f ′ is compatible with A(T). The first
implications now follow from Lemma 4.4 (which can be easily generalized to
compatibility with a family of oriented trees on a set), as the properties of
being weak-NU, NU or TSI are preserved by restriction.

It remains to prove the converse implications. For each I ⊆ Paths we fix
an arbitrary SI ∈ I and whenever

⊗
S∈I S is homomorphic to P ∈ Paths,

we fix a homomorphism ϕI,P :
⊗

S∈I S → P in such a way that if P ∈ I,
then ϕI,P is the projection homomorphism.
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To prove the converse implications of (i) and (ii), let ω′ be an r-ary
weak-NU compatible with A(T). We will define a partial operation ω on T

with domain
⋃hgt T

k=0 Level(k)r. Let ā ∈ Level(k)r. For k /∈ {0,hgt(T)}, let
Si ∈ Paths be such that ai ∈ Si and denote the set {S1, . . . ,Sr} by I. For
each i let a′i be the vertex from {a1, . . . , ar} ∩ Si second closest to init(Si).
(To be precise, if {a1, . . . , ar} ∩ Si = {ai}, then a′i = ai, else if aj is the
vertex from {a1, . . . , ar} ∩ Si with minimal distance from init(Si), then we
define a′i to be the vertex from {a1, . . . , aj−1, aj+1, . . . , ar}∩Si with minimal
distance from init(Si). This is needed to ensure the NU property, i.e., that
a ◦ω b = a, in the case that a, b ∈ P for some P ∈ Paths and b is closer to
init(Paths) than a.)

(1) If k = 0 or k = hgt(T), we put ω(ā) = ω′(ā).
(2) Else, if ā ∈

⊗r
i=1 Si, let P ∈ Paths be the minimal path connecting

ω′(〈init(Si) : 1 ≤ i ≤ r〉) to ω′(〈term(Si) : 1 ≤ i ≤ r〉). We put
ω(ā) = ϕI,P(〈a′i : Si ∈ I〉).

(3) If ā /∈
⊗r

i=1 Si, then
(3a) if r ≥ 3 and there exist i, j ∈ [r] such that {al : l 6= j} ⊆ Si,

we put ω(ā) = a′i.
(3b) if r = 2, we put ω(a1, a2) = a′1 if SI = S1 and ω(a1, a2) = a′2

else.
(3c) In all other cases we define ω(ā) = a1.

It is straightforward to verify that ω is a weak-NU and that if ω′ is a NU,
then ω is also a NU. To prove compatibility, choose any ā ∈ Level(k)r and

b̄ ∈ Level(k + 1)r such that ai
T−→ bi, i = 1, . . . , r. We can assume that

hgt(T) > 1 (otherwise ω = ω′). If ω(ā) is defined by (1), then ω(b̄) is
defined by (2). It is easily seen that in this case b̄ = b̄′ and ω(ā) = ϕI,P(〈a′i :

Si ∈ I〉) T−→ ϕI,P(〈b′i : Si ∈ I〉) = ω(b̄) follows from the fact that ϕI,P is a
homomorphism. The proof is analogous for the case when ω(b̄) is defined
by (1). Now assume that neither ω(ā) nor ω(b̄) are defined by (1). In
this situation, both ω(ā) and ω(b̄) fall into the same case of the definition.
Observe that a′i → b′i, i = 1, . . . , r, and the set I is the same for both ā and b̄.

Now ω(ā) T−→ ω(b̄) follows from the fact that ϕI,P (case (2)) and projections
(cases (3a)-(3c)) are homomorphisms. We extend ω using Lemma 4.4 and
the proof of (i) and (ii) is finished.

To prove the converse implication of (iii) we slightly modify the construc-
tion. Assume that A(T) admits r-ary compatible TSI τ ′r. Similarly as before,
we will construct a partial TSI operation τr compatible with T with domain⋃hgt T

k=0 Level(k)r. Let ā ∈ Level(k)r. For k /∈ {0,hgt(T)}, let Si ∈ Paths be
such that ai ∈ Si and denote the set {S1, . . . ,Sr} by I. For each i let a′i be
the vertex from {a1, . . . , ar} ∩ Si with minimal distance from init(Si).

(1) If k = 0 or k = hgt(T), we put τr(ā) = τ ′r(ā).
(2) Else, if ā ∈

⊗r
i=1 Si, let P ∈ Paths be the minimal path connecting

τ ′r(〈init(Si) : 1 ≤ i ≤ r〉) to τ ′r(〈term(Si) : 1 ≤ i ≤ r〉). We put
τr(ā) = ϕI,P(〈a′i : Si ∈ I〉).

(3) If ā /∈
⊗r

i=1 Si, then τr(ā) = a′i, where i is such that Si = SI .

It is not hard to verify that τr is a TSI operation, just note that if
{a1, . . . , ar} = {b1, . . . , br}, then the set I and the paths P (case (2)) and
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SI (case (3)) are the same for both ā and b̄. The argumentation to verify
compatibility is similar as before. We conclude the proof by extending τr
using Lemma 4.4. �

4.3. A(T) and compatible weak-NUs.

Lemma 4.11. If A(T) admits a compatible binary weak-NU (i.e., a commu-
tative idempotent operation), then A(T) admits compatible TSI operations
of all arities.

Proof. Let ⋆ be a binary weak-NU compatible with A(T). First, we will
prove that the following holds:

(∃z ∈ Base)(∀a ∈ Base, a 6= z) a ⋆ 0 = 0.

Let z, z′ ∈ Base be such that z ⋆0 6= 0, z′ ⋆0 6= 0. Since ⋆ is compatible with
the digraph T(Paths) in which a→ â and 0 → â for all a 6= 0, it follows that
a ⋆ 0 → â ⋆ â = â; and so a ⋆ 0 ∈ {0, a} for all a ∈ Base. Therefore z ⋆ 0 = z

and z′ ⋆ 0 = z′. But as z ⋆ 0 → ẑ ⋆ ẑ′ and z′ ⋆ 0 = 0 ⋆ z′ → ẑ ⋆ ẑ′ in T(Paths),
we conclude that z = z′.

Now fix z ∈ Base with the above property. We will define a partial order
on the set Base∪Top and then use ⋆ to ”compare the incomparable” elemets.
For all â ∈ Top, â 6= ẑ we put z ≺ ẑ ≺ 0 ≺ â and if â /∈ Half, then also â ≺ a.
We define � to be the partial order generated by these relations. Let us fix
an arbitrary linear order ≤ on the set Top \{ẑ}. (We can assume without

loss of generality that z = 1 and Top \{ẑ} = {2̂ < 3̂ < · · · < n̂+ k}.)
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Figure 4. The partial order �.

For each i > 0 we denote by ti the i-ary operation defined in the following
way (note that all these operations are compatible with A(T)):

t1(x) = x,

t2(x1, x2) = x1 ⋆ x2,

...

ti(x1, . . . , xi) = ti−1(x1, . . . , xi−1) ⋆ xi.

For each ĉ ∈ Top we define the set R(ĉ) as follows: we put R(ĉ) = {ĉ} if
ĉ ∈ Half and R(ĉ) = {ĉ, c} else.
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Now we are ready to define the TSI operations. Again, we will use Lemma
4.4. For each r ≥ 1 we define a partial r-ary operation τr in the following
way: For any ā ∈ Baser ∪Topr let S(ā) be the smallest subset of Base∪Top
containing {a1, . . . , ar} and closed under the operation ⋆ (i.e., c ⋆ c′ ∈ S(ā)
whenever c, c′ ∈ S(ā)).

(1) If S(ā) has the least element with respect to �, we define τr(ā) to
be that element,

(2) else let {ĉ1 < ĉ2 < · · · < ĉm} be the set of all ĉ ∈ Top \{ẑ} such
that S(ā) ∩ R(ĉ) 6= ∅. Note that m ≥ 2. For i = 1, . . . ,m we
denote by a′i the �-least element of S(ā) ∩ R(ĉi). Finally, we put
τr(ā) = tm(a′1, a

′
2, . . . , a

′
m).

It is easy to check that τr is totally symmetric and idempotent. To verify

compatibility, choose I ⊆ Paths, ā ∈ Baser and b̄ ∈ Topr such that ai
T(I)
−−→

bi, i = 1, . . . , r. If τr(ā) and τr(b̄) are defined by the same case, then it is not

hard to see that τr(ā)
T(I)
−−→ τr(b̄).If ā falls into case (2), then so does τr(b̄).

Thus it only remains to investigate the case when τr(ā) is defined by (1) and
τr(b̄) by (2). In this case, we have that τ(ā) = 0 and τ(b̄) = tm(ĉ1, . . . , ĉm)
for some m ≥ 2 and ĉi ∈ Top \{ẑ}.

For each i, let c′i ∈ S(ā) be �-minimal such that c′i
T(I)
−−→ ĉi (c′i = 0 if

ĉi ∈ Half and c′i ∈ {0, ci} else.) Since 0 ∈ S(ā), there exists j such that
c′j = 0. We will prove that tm(c′1, . . . , c

′
m) = 0. Then the proof will be

concluded, as we will have that

τr(ā) = 0 = tm(c′1, . . . , c
′
m)

T(I)
−−→ tm(ĉ1, . . . , ĉm) = τr(b̄).

Since the �-least element of S(ā) is 0 and S(ā) is closed under ⋆, it follows
that tj−1(c

′
1, . . . , c

′
j−1) 6= z; and so tj(c

′
1, . . . , c

′
j−1, c

′
j) = tj−1(c

′
1, . . . , c

′
j−1) ⋆

0 = 0. Now we have that

tj+1(c
′
1, . . . , c

′
j+1) = tj(c

′
1, . . . , c

′
j) ⋆ c

′
j+1 = 0 ⋆ c′j+1

and since c′j+1 6= z, it follows that tj+1(c
′
1, . . . , c

′
j+1) = 0. We can proceed

by induction, proving that tm(c′1, . . . , c
′
m) = 0. �

The following lemma plays a key role in our proof of Theorem 3.2.

Lemma 4.12. If A(T) admits an r-ary weak-NU ω, then it admits an (r+1)-
ary weak-NU ω′.

Proof. First, let us consider the case when there exists z ∈ Base, z 6= 0 such
that 0 ◦ω z = z. We will prove that then A(T) admits a binary idempotent
commutative operation ⋆; and thus by Lemma 4.11 also an (r+1)-ary weak-
NU (even totally symmetric) operation.

Let �, ≤ and R(ĉ), ĉ ∈ Top be the same as in the proof of Lemma 4.11.
We will define ⋆ for 〈a, b〉 ∈ Base2 ∪Top2 and then extend it using Lemma
4.4.

(1) If a � b, then we put a ⋆ b = b ⋆ a = a and if b � a, we put
a ⋆ b = b ⋆ a = b.

(2) If a and b are �-incomparable, then a ∈ R(ĉ) and b ∈ R(d̂) for some

ĉ 6= d̂ ∈ Top \{ẑ}. We define a ⋆ b = b ⋆ a = a ◦ω b if ĉ < d̂ and
a ⋆ b = b ⋆ a = b ◦ω a else.
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From the compatibility of ◦ω with T(Paths) we get that ĉ ◦ω ẑ = ẑ for all
ĉ ∈ Top. Since c ◦ω 0 → ĉ ◦ω ẑ = ẑ and

0 ◦ω c = ω(c, 0, . . . , 0, 0) → ω(ĉ, ĉ, . . . , ĉ, ẑ) = ĉ ◦ω ẑ = ẑ

in T(Paths), we conclude that 0 ◦ω c = c ◦ω 0 = 0 for all ĉ ∈ Top, ĉ 6= ẑ.
Now it is not hard to prove that ⋆ is an idempotent commutative operation
compatible with A(T), we leave the verification to the reader.

Second, we consider the case when ω satisfies

(∀a ∈ Base) 0 ◦ω a = 0.

We may assume that for all a, b ∈ Base \{0}, if â ◦ω b̂ = â, then a ◦ω b = a;
otherwise we can ”redefine” ω to satisfy the desired property, i.e., replace ω
with the operation ω∗ defined by

ω∗(x̄) =






a if x̄ ∈ {〈a, . . . , a, b〉, 〈a, . . . , a, b, a〉, . . . , 〈b, a, . . . , a〉}

for some a, b ∈ Base \{0} such that â ◦ω b̂ = â,
ω(x̄) else.

It is easy to see that ω∗ is also an r-ary weak-NU compatible with A(T)
satisfying (∀a ∈ Base) 0 ◦∗ω a = 0.

Let us define the set Maj = {a ∈ Base : a ◦ω 0 = a}. We will prove the
following:

(∀a ∈ Maj)(∀b ∈ Base) a ◦ω b = a.

For a = 0 the claim follows from the assumptions and for b = 0 from the
definition of Maj. Let a, b 6= 0. Since ◦ω is compatible with T(Paths) and

a ◦ω 0 = a, it follows that â ◦ω b̂ = â. Hence a ◦ω b = a and the claim is
proved.

We will define ω′(ā) for ā = 〈a1, . . . , ar+1〉 ∈ Baser+1 ∪Topr+1 and then
apply Lemma 4.4.

(1) If ā = 〈a, . . . , a, b〉 for some a, b ∈ Base, a /∈ Maj, we put ω′(ā) =

a ◦ω b, and if ā = 〈â, . . . , â, b̂〉 for some â, b̂ ∈ Top, a /∈ Maj, we put

ω′(ā) = â ◦ω b̂,
(2) else we define ω′(ā) = ω(a1, . . . , ar).

To prove that ω′ is a weak-NU, choose a, b ∈ Base. For â, b̂ ∈ Top we
can proceed analogously. If a ∈ Maj, then case (2) applies. We have that
ω′(b, a, . . . , a) = · · · = ω′(a, . . . , a, b, a) = a ◦ω b = a, while ω′(a, . . . , a, b) =
ω(a, . . . , a) = a. Now suppose that a /∈ Maj. In that case ω′(a, . . . , a, b) =
a ◦ω b by (1) and ω′(a, . . . , a, b, a) = · · · = ω′(b, a, . . . , a) = a ◦ω b by (2);
and so the weak-NU property is verified.

To verify compatibility, choose I ⊆ Paths, ā ∈ Baser+1 and b̄ ∈ Topr+1

such that ai
T(I)
−−→ bi, i = 1, . . . , r + 1. If ω′(ā) and ω′(b̄) are defined by

the same case, then ω′(ā)
T(I)
−−→ ω′(b̄) follows from the compatibility of

◦ω in case (1) and ω in case (2). If ā falls into case (1), then so does
b̄. The only remaining case is when ω′(ā) is defined by (2) and ω′(b̄) by

(1). In this situation we have that b̄ = 〈ĉ, . . . , ĉ, d̂〉 for some ĉ, d̂ ∈ Top,

c /∈ Maj and ω′(b̄) = ĉ ◦ω d̂. Since ai
T(I)
−−→ ĉ for i = 1, . . . , r, we get

ω′(ā) = ω(a1, . . . , ar)
T(I)
−−→ ω(ĉ, . . . , ĉ) = ĉ; and so ω(a1, . . . , ar) ∈ {0, c}. We

also know that 0 ∈ {a1, . . . , ar}, as otherwise case (1) would apply for ā.
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First, let ω(a1, . . . , ar) = 0. Since 0
T(I)
−−→ ĉ and ar+1

T(I)
−−→ d̂, from the

compatibility of ◦ω we obtain

ω′(ā) = ω(a1, . . . , ar) = 0 = 0 ◦ω ar+1
T(I)
−−→ ĉ ◦ω d̂ = ω′(b̄),

proving the compatibility condition for ω′ in this case.
Second, assume that ω(a1, . . . , ar) = c. Notice that c ∈ {a1, . . . , ar} (as

ω(0, . . . , 0) = 0), implying that c
T(I)
−−→ ĉ. We will prove that ĉ ◦ω d̂ = ĉ.

Then it will follow that

ω′(ā) = ω(a1, . . . , ar) = c
T(I)
−−→ ĉ = ĉ ◦ω d̂ = ω′(b̄),

which will conclude the proof. Let j ∈ [r] be such that aj = 0. In the

digraph T(Paths) we have aj → d̂ and ai → ĉ for all i = 1, . . . , r. Therefore

c = ω(a1, . . . , aj−1, aj , aj+1, . . . , ar) → ω(ĉ, . . . , ĉ, d̂, ĉ, . . . , ĉ) = ĉ ◦ω d̂.

Hence ĉ ◦ω d̂ = ĉ and the proof is finished. �

4.4. Q.E.D. Finally, everything is set to prove the main result.

Proof of Theorem 3.2. Let T be a special polyad. By Lemma 4.1, core(T)
is also a special polyad.

(i) If core(T) admits no compatible weak-NUs, then CSP(T) is NP-complete
by Theorem 2.3. By Theorem 2.4 and the ”reduction” Lemma 4.10, it is
enough to prove that if A(core(T)) admits a weak-NU of arity r0, then
A(core(T)) admits weak-NUs of all arities r ≥ r0. But the latter fact fol-
lows by induction from Lemma 4.12.

(ii) By Lemma 4.11 (and Lemma 4.10), T admits a binary weak-NU, if
and only if it admits TSI operations of all arities. The rest follows from
Theorem 2.5. �

5. Constructing special polyads

In this section we will present a method of constructing special polyads
with certain desired properties using A(T) and the ”reduction” from Lemma
4.10. We will apply this technique to construct an interesting example: a
core special polyad which is tractable, but does not have width 1 and admits
no compatible near-unanimity operations.

5.1. From A(T) back to T. Our aim in this subsection is to provide a
characterization of families of digraphs A for which we can construct a spe-
cial polyad T such that A = A(T). We start with the definition of closure
system.

Definition 5.1. By a closure system on a finite set A we mean a family
C ⊆ P(A) of subsets of A such that

(i) A ∈ C,
(ii) if C1, C2 ∈ C, then C1 ∩ C2 ∈ C.

The sets C ∈ C are called C-closed sets.
Let D be a closure system on a finite set B. We say that C and D are

isomorphic if there exists a bijection f : A→ B such that D = {f [C] : C ∈
C}.
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Closure systems can be in a natural way identified with closure operators.
The following definition is essentially just a reformulation of Definition 4.5
(ii):

Definition 5.2. Let Paths = {P1, . . . ,Pn} be a finite set of minimal paths
of the same height. We define the closure system RPaths⊗ on Paths in the

following way: let the RPaths⊗ -closed sets be precisely the empty set and the

nonempty sets I ⊆ Paths such that

I = {P ∈ Paths :
⊗

S∈I

S → P}.

It is easy to check that RPaths⊗ is indeed a closure system. The following

proposition states that each closure system on a finite set (such that the
empty set is closed) is isomorphic to RPaths⊗ for some set of minimal paths.

Proposition 5.3. Let C be a closure system on [n], ∅ ∈ C. There exists a
set Paths = {P1, . . . ,Pn} of minimal paths of the same height such that for
each I ⊆ [n],

I ∈ C ⇐⇒ {Pi : i ∈ I} ∈ RPaths⊗ .

Proof. Let us fix an arbitrary linear order of the nontrivial C-closed sets (i.e.,
C \ {∅, [n]}), say C = {∅, C1, . . . , Cq, [n]}. By an arrow we mean a digraph
with a single edge a → b (and possibly some other discrete vertices); a zig-
zag is a digraph with just three edges a → b, c → b, c → d (see the figure
below).

a

b

a

b

c

dJJ�����

JJ�����

TT*****

JJ�����

Figure 5. An arrow and a zig-zag.

We say that a minimal path P has an arrow at level k if P[LevelP(k) ∪
LevelP(k + 1)] (the subgraph induced by vertices of level k or k + 1) is an
arrow; if it is a zig-zag, then P has a zig-zag at level k. It is an easy excercise
to prove the following claim:

Claim. Let l be a positive integer and for I ⊆ [l] let PI denote the minimal
path of height l + 2 which has zig-zag’s at levels i ∈ I and arrows at levels
j ∈ {0, . . . , l + 1} \ I. For any I1, . . . , Im ⊆ [l] the core of

⊗m
i=1 PIi

is
isomorphic to PI1∪···∪Im

.

The above claim is the key to our construction: For i ∈ [n], let Pi be
the minimal path of height q + 2 (uniquely) determined by the following
conditions:

(i) Pi has an arrow at level 0,
(ii) for k = 1, . . . , q, Pi has an arrow at level k if i ∈ Ck and a zig-zag

at level k else,
(iii) Pi has an arrow at level q + 1.



CSP DICHOTOMY FOR SPECIAL POLYADS 17

To demonstrate the construction, consider the following example: let n =
3, q = 3, C1 = {1}, C2 = {1, 2}, C3 = {1, 3}. The minimal paths P1, P2 and
P3 are depicted in Figure 6.
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Figure 6. The resulting minimal paths.

The above claim implies that for all nonempty I ⊆ [n] and j ∈ [n],⊗
i∈I Pi → Pj , if and only if for all C ∈ C such that j /∈ C there exists i ∈ I

with i /∈ C. Equivalently,
⊗

i∈I

Pi → Pj ⇐⇒ (∀C ∈ C) (I ⊆ C → j ∈ C).

Now, choose arbitrary nonempty I ⊆ [n]. Let D =
⋂
{C ∈ C : I ⊆ C} be

the minimal (w.r.t. inclusion) C-closed set containg I. From the above we
get that ⊗

i∈I

Pi → Pj ⇐⇒ j ∈ D.

Thus I ∈ C (i.e., I = D), if and only if {Pi : i ∈ I} is RPaths⊗ -closed. �

Remark. The above construction of minimal paths was chosen for its sim-
plicity, it is by no means optimal regarding the number of vertices of the
resulting paths.

We conclude this subsection with an easy corollary of the above proposi-
tion; a key to the construction below.

Corollary 5.4. Let A be a family of digraphs on the same vertex set H.
The following are equivalent:

(i) A = A(T) for some special polyad T,
(ii) There exists a special polyad H = (H,E) of height 1 such that

(H, ∅) ∈ A and the edge relations of members of A form a closure
system on E.

Moreover, if (ii) holds and (H, {e}) ∈ A for all e ∈ E, then T is a core.
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Proof. (i) ⇒ (ii): For a special polyad T, A = A(T) clearly satisfies (ii).
(Note that T(PathsT) is a special polyad of height 1).

(ii) ⇒ (i): Label the edges of H with positive integers 1, . . . , n and use the
previous proposition to construct the minimal paths Pi. For i = 1, . . . , n,
replace the edge i with the minimal path Pi. The resulting digraph T is a
special polyad such that A = A(T).

The rest follows from the fact that if T is not a core, then P → P′ for
some P,P′ ∈ PathsT. �

5.2. An interesting special polyad. In this subsection we construct a
special polyad satisfying the following:

Proposition 5.5. There exists a core special polyad T having the following
properties:

(i) CSP(T) is tractable,
(ii) T does not have width 1,
(iii) T does not admit any compatible near-unanimity operation.

In order to construct such a special polyad, we will first introduce some
notation. Let H = (H,E) be a special polyad of height 1 with 4 branches
with the vertices and edges labeled as in the figure below:

0

1̂

1

2̂

2

3̂

3

4̂

4

P1JJJJJJJ

ddJJJJJJJ
P2////

WW///
P3����

GG���
P4ttttttt

::ttttttt

P′

1

��

P′

2

��

P′

3

��

P′

4

��

Figure 7. The special polyad H of height 1.

For J ⊆ [4], we denote the set {j′ : j ∈ J} by J ′. For I, J ⊆ [4], we define

HJ ′

I to be the subgraph of H with vertex set H and edges {Pi : i ∈ I}∪{P′
j :

j ∈ J}.
We define the family A of subgraphs of H in the following way:

A = A0 ∪ A1 ∪ A2 ∪ A3,

where

• A0 = {H,H∅
∅
},

0

1̂

1

2̂

2

3̂

3

4̂

4

ddJJJJJJJJ

WW////
GG����

::tttttttt

�� �� �� ��

0

1̂

1

2̂

2

3̂

3

4̂

4

• A1 = {H∅
i : i ∈ [4]} ∪ {Hi′

∅
: i ∈ [4]},
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0

1̂

1

2̂

2

3̂

3

4̂

4

ddJJJJJJJJ
. . . 0

1̂

1

2̂

2

3̂

3

4̂

4

��

• A2 = {Hj′

i : i, j ∈ [3], i 6= j},

0

1̂

1

2̂

2

3̂

3

4̂

4

ddJJJJJJJJ

��

0

1̂

1

2̂

2

3̂

3

4̂

4

WW////

��

. . . 0

1̂

1

2̂

2

3̂

3

4̂

4

GG����

��

• A3 = {H4′
2,3,H

3′,4′

2 ,H2′,4′

3 ,H4′
2 ,H

4′
3 }.

0

1̂

1

2̂

2

3̂

3

4̂

4

WW////
GG����

��

0

1̂

1

2̂

2

3̂

3

4̂

4

WW////

�� ��

0

1̂

1

2̂

2

3̂

3

4̂

4

GG����

�� ��

0

1̂

1

2̂

2

3̂

3

4̂

4

WW////

��

0

1̂

1

2̂

2

3̂

3

4̂

4

GG����

��

It can be easily seen that the edge relations of the members of A form a
closure system. The rest of the proof follows:

Proof of Proposition 5.5. By Corollary 5.4, there exists a core special polyad
T such that A = A(T). In the following, we use Theorem 3.2 and the
”reduction” Lemma 4.10.

(i) It is enough to prove that A admits a compatible weak near-unanimity
operation. We will define a 4-ary weak-NU ω on the set H. Let x̄ ∈
{0, 1, 2, 3, 4}4.

(1) If 4 /∈ {x1, x2, x3}, then
(1.1) if {x1, x2, x3} = {1, 2, 3}, we put ω(x̄) = 1
(1.2) else x1, x2, x3 lie on an oriented path in H; we define ω(x̄) to

be the middle vertex from x1, x2, x3 on this path.
(2) If 4 ∈ {x1, x2, x3}, then

(2.1) if x̄ = 〈4, 4, 4, 4〉, we put ω(x̄) = 4
(2.2) else ω(x̄) = xi where i is smallest such that xi 6= 4.

For ̂̄x ∈ [̂4]
4

we put ω(̂̄x) = ω̂(x̄). Finally, we extend ω using Lemma 4.4. It

can be easily verified that ω is a weak-NU. (In fact, ω restricted to H \{4, 4̂}
is a near-unanimity.)

Compatibility with A0 is trivial and compatibility with A1 follows from
the idempotency of ω. Let x̄ ∈ ({0} ∪ [4])4, ȳ ∈ [4]4. To prove compatibility

with A2, pick any i, j ∈ [3], i 6= j. If x̄→ ̂̄y in Hj′

i , then both ω(x̄) and ω(̂̄y)
are defined by (1.2) and it is easily seen that ω(x̄) → ω(̂̄y) in Hj′

i . As for
compatibility with A3, let x̄ → ̂̄y in some H′ ∈ A3. The only interesting
case is when 4 ∈ x̄; we see that xi = 4 iff yi = 4 for all i ∈ [4]. It follows that
ω(x̄) and ω(̂̄y) are defined by the same case of the definition, (1.2), (2.1) or
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(2.2); in all of these cases we have ω(x̄) → ω(̂̄y) in H′. Thus ω is compatible
with A and we have proved that CSP(T) is tractable.

(ii) It suffices to prove that A does not admit a compatible binary weak-
NU (binary idempotent commutative operation). Striving for contradiction,
let ⋆ be a binary weak-NU compatible with A. In the following, a digraph
above an arrow indicates that the implication was deduced from the com-
patibility with that digraph.

For any i 6= j ∈ [3] we have

î ⋆ î = î
H

=⇒ i ⋆ 0 ∈ {i, 0}
Hi′

j
=⇒ î ⋆ ĵ ∈ {̂i, ĵ}

Hi′

j , H
j′

i
=⇒ i ⋆ 0 = i or j ⋆ 0 = j.

Without loss of generality we may assume that 1 ⋆ 0 = 1. Now

1 ⋆ 0 = 1
H1′

2 , H1′

3=⇒ 1̂ ⋆ 2̂ = 1̂ ⋆ 3̂ = 1̂
H2′

1 , H3′

1=⇒ 2 ⋆ 0 = 3 ⋆ 0 = 0;

a contradiction.
(iii) Again, it is enough to prove that A admits no compatible near-

unanimity operation. Suppose for contradiction that there exists an r-ary
NU operation ν compatible with A. We will prove the following claim: For
all i ∈ [r − 2],

ν(4, . . . , 4︸ ︷︷ ︸
i-times

, 0, 0, . . . , 0) = 0 =⇒ ν(4, . . . , 4, 4︸ ︷︷ ︸
(i + 1)-times

, 0, . . . , 0) = 0.

This claim contradicts the fact that ν(4, 0, . . . , 0) = 0 and ν(4, . . . , 4, 0) = 4.
Fix i ∈ [r − 2] and let

t(x, y, z) = ν(x, . . . , x︸ ︷︷ ︸
i-times

, y, z, . . . , z).

As t is also compatible with A, we have that

t(4, 0, 0) = 0
H4′

2,3
=⇒ t(4̂, 2̂, 3̂) ∈ {2̂, 3̂}.

If t(4̂, 2̂, 3̂) = 2̂, then by compatibility with H2′,4′

3 we have t(4, 2, 0) = 2 and

from H we get t(4̂, 2̂, 4̂) = 2̂; a contradiction with the NU property of ν.

Therefore t(4̂, 2̂, 3̂) = 3̂. But

t(4̂, 2̂, 3̂) = 3̂
H

3′,4′

2=⇒ t(4, 0, 3) = 3
H

=⇒ t(4̂, 4̂, 3̂) = 3̂)
H

2′,4′

3=⇒ t(4, 4, 0) = 0;

and the claim is proved. �
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