
Finitary set endofunctors are alg-universal

Libor Barto

Abstract. A category is said to be alg-universal, if every category of universal algebras
can be fully embedded into it. We prove here that the category of finitary endofunctors of

the category Set is alg-universal. We also present an example of a proper class of accessible
set functors with no natural transformations between them (except the obvious identities).

1. Introduction

Every group is isomorphic to the monoid of all endotransformations of some
endofunctor of Set (where Set denotes the category of all sets and mappings) –
this was proved by P. Zima and the author, see [3]. Here we are going to prove a
much stronger result: The category of finitary endofunctors of Set is alg-universal,
i.e. every category of universal algebras can be fully embedded into it.

Let us recall related notions and results concerning representations in categories.
The classical result of Birkhoff [4] about representations of groups as automorphism
groups of complete distributive lattices was generalized to the investigation of full
embeddings (i.e. functors which are bijective on hom-sets) of categories starting
from [11] and [10].

We say that a category K is

group-universal, if for every group G, there exists an object A ∈ Obj(K) s. t.
Aut(A), the automorphism group of A, is isomorphic to G;

group-universal in
a stronger sense, if for every group G, there exists A ∈ Obj(K) s. t.

End(A), the endomorphism monoid of A,
is a group isomorphic to G;

monoid-universal, if for every monoid M , there exists A ∈ Obj(K) s. t.
End(A) is isomorphic to G;

alg-universal, if every category of universal algebras
can be fully embedded into K;
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universal, if every concretizable category
(i.e. a category which admits a faithful functor into Set)
can be fully embdedded into K;

hyper-universal, if every category can be fully embdedded into K.

Every small category (in particular, a one object category – a monoid) can be
fully embedded into some category of universal algebras (see [19]), hence every alg-
universal category is monoid-universal. Alg-universality seems to be much stronger
property than monoid-universality. However, no ”natural” example (e.g. a variety
or a quasivariety of algebras) of monoid-universal category which is not alg-universal
is known. Kučera, Pultr and Hedrĺın showed that the statement ”every alg-universal
category is universal” is equivalent to the following set-theoretical assumption: The
class of all measurable cardinals is a set (see [19]). Every universal category has
a factor (morphisms are glued together in an admissible way), which is hyper-
universal (see [17, 21, 24]). No ”natural” example of hyper-universal category is
known.

A very long list of group-universal categories is presented in the survey paper
[6] and all group-universal varieties of unary algebras were characterized in [20].
The category of (abstract) clones and clone homomorphisms [2], and the category
of set functors ([3]) are group-universal in a stronger sense. However, the alg-
universality seems to be the most important notion from the list above. In [10], the
category Rel(2) of graphs and graph homomorphisms, and the category Alg(1, 1)
of algebras with two unary operations and algebra homomorphisms were shown to
be alg-universal. Then a lot of varieties of universal algebras were proved to be
alg-universal, e.g. the variety of (0, 1)-lattices [8], semigroups [9], integral domains
of characteristic zero [5], and many others. These older results are summarized in
the monograph [19] and in the survey article [25], where also many later results are
mentioned, e.g. the full characterization of alg-universal varieties of (0, 1)-lattices
[7] and of semigroups [16].

There are also interesting universal categories, e.g. the category of hypergraphs
(Hedrĺın, Kučera, see [19]), the category of topological spaces and open continuous
maps [19], the category of topological semigroups and continuous homomorphisms
[24]. The regular varieties of topological unary algebras, which are universal, are
characterized in [14].

The basic structural properties of set functors, i.e. endofunctors of the category
Set, were obtained in the articles [22, 23, 13, 15]. The category of all set functors
and all natural transformations is not legitimate, because there are ”too many”
set functors and ”too many” natural transformations. But it has natural legitimate
subcategories – the category of κ-accessible set functors for some cardinal κ and the
category of accessible set functors. See section 2 for the definitions and preliminaries
concerning set functors.

The category of finitary (ω-accessible) set functors and natural transformations
is related to the category Clone of (abstract) clones and clone homomorphisms,
or, in a different view, to the category of (finitary) varieties and interpretations.
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Indeed, an interpretation between varieties can be viewed as a natural transfor-
mation between their free functors, which, in some sense, preserves equations. It
turned out that our main theorem is the right direction to prove alg-universality of
the category Clone. This result will appear in a forthcoming article.

Section 3 contains the proof of the main theorem of this paper: The category of
finitary set functors is alg-universal. Since the category of κ-accessible set functors
is algebraic for every κ (algebraic means here, that it can be fully embedded into
some category of universal algebras), universality of this category is equivalent to
the above mentioned set-theoretical assumption.

Recall that a class Obj(S) of objects in some category is said to be rigid, if
End(A) = {idA} and Hom(A,B) = ∅ for every A 6= B ∈ Obj(S). In any alg-
universal category, there exists an arbitrarily large rigid set of objects, because
we can embed arbitrarily large discrete (small) category. It turned out, that the
statement ”every (or some) algebraic alg-universal category contains a rigid proper
class of objects” is again a set-theoretical assumption, the negation of Vopěnka
principle (see [12]). In section 4 we present an example of a rigid proper class of
accessible set functors. The idea is due to V. Koubek. The following questions
naturaly arise:

Open problem 1.1. Is the category of all accessible set functors and natural
transformations universal?

Open problem 1.2. Is the (ilegitimate) category of all set functors and natural
transformations hyper-universal?

Notation. We are working in a standard set theory with the axiom of choice (for
example ZFC). An ordinal is the set of all smaller ordinals and a cardinal is the least
ordinal with its cardinality. Let f : X → Y be a mapping. Im(f) denotes the image
of f ; f(x) means the image of the element x ∈ X; f [R] means the image of the
subset R ⊆ X; f−1 is always the mapping f−1 : PY → PX (where PX is the set
of all subsets of X), not the inverse mapping. Let F,G be set functors, µ : F → G

be a natural transformation. By µX we mean the component µX : FX → GX of
µ.

2. Set functors

In this section, we recall some known facts about set functors, which will be
needed in this paper. Their proofs can be found in [22, 13]. Every set functor F

can be written as a coproduct

F =
∐

i∈F1

Fi,

where all components Fi are connected, i.e. |Fi1| = 1. Each connected set
functor either contains precisely one isomorphic copy of the identity functor (this
is precisely when it is faithful), or contains precisely one isomorphic copy of the
constant functor C1– the functor which assigns empty set to empty set and a one-
point set to all nonempty sets. The following easy criterion will be used:
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Proposition 2.1. Let F be a connected set functor and x ∈ FX an arbitrary
element. Then F is faithful, iff Ff(x) 6= Fg(x) for the two distinct constant map-
pings f, g : X → 2.

All set functors in this article are connected and faithful. For this reason, we
formulate the next definition and propositions just for this situation. There would
be some technical difficulties in the general case. The most important structural
properties of a (faithful connected) set functor F are filters and monoids of elements
x ∈ FX.

Flt(x) = {U ⊆ X ; (∃u ∈ FU) Fi(u) = x, i : U → X is the inclusion }

= {f [U ] ; (∃u ∈ FU) Ff(u) = x, f : U → X is a mapping }

Mon(x) = {f : X → X ; Ff(x) = x}.

Theorem 2.2. Let F be a faithful connected set functor, x ∈ FX. Then Flt(x)
is a filter on X, Mon(x) is a submonoid of the transformation monoid on X and
Flt(x) = {Im(f) ; f ∈ Mon(x)}. If U ∈ Flt(x) and f ∈ Mon(x), then f [U ] ∈
Flt(x).

F is said to be κ-accessible, if for every set X and x ∈ FX there exists a set
U ∈ Flt(x) such that |U | < κ. In the other words, every element can be accessed
from an element of an image of some ”small” set (small means here, with cardi-
nality less than κ). This definition agrees with the general notion of κ-accessibility
(preservation of κ-filtered colimits) from [18]. An ω-accessible functor is called
finitary.

The category of κ-accessible (κ is a fixed cardinal) set functors and natural
transformations is algebraic: A κ-accesible set functor is determined (up to natural
equivalence) by its restriction Card<κ → Set, where Card<κ is the full subcate-
gory of Set generated by cardinals less than κ. Indeed, the original functor is the
Kan extension of this restriction. A functor G : Card<κ → Set can be viewed
as a many-sorted algebra (sorts are Gα,α < κ) with operations Gf : Gα → Gβ

for every f : α → β, α, β < κ. Algebra homomorphisms correspond precisely to
natural transformations. It is known and easy to see that the category of S-sorted
algebras is algebraic for every set S.

The next proposition is easy and often useful.

Proposition 2.3. Let µ : F → G be a natural transformation of faithful con-
nected set functors, X a set, x ∈ FX. Then Flt(x) ⊆ Flt(µX(x)), Mon(x) ⊆
Mon(µX(x)).

Finally, we will need the following simple observation:

Proposition 2.4. Let µ : F → G be a natural transformation of faithful con-
nected set functors, X be a finite set, x ∈ FX. Let f ∈ Mon(x) for every bijection
f : X → X. Then Flt(µX(x)) = {X}.

Proof. Due to the preceding proposition, we have f ∈ Mon(µX(x)) for every
bijection f : X → X. Suppose, we have ∅ 6= U ⊂ X, U ∈ Flt(µX(x)). We can
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choose a sequence f1, . . . , fn : X → X of bijections, such that U ∩ f1[U ] ∩ · · · ∩
fn[U ] = ∅. From the last part of 2.2, it follows that fi[U ] ∈ Flt(µX(x)). Because
Flt(µX(x)) is a filter, we have ∅ = U ∩f1[U ]∩· · · ∈ Flt(µX(x)), a contradiction. ¤

In the situation of this proposition, one can easily see, that Flt(x) = {X} (the
same argument as in the proof) and Mon(x) = Mon(µX(x)) = {f ; f is a bijection}
(from 2.2).

3. The full embedding

Theorem 3.1. The category SetFuncfin of finitary set functors and natural
transformations is algebraic and alg-universal.

Remark. In fact, we will prove a stronger result: The category of 7-accessible
connected faithful set functors is alg-universal.

We are going to construct a full embedding Φ : Alg(1, 1) → SetFuncfin. This
is enough, since the category Alg(1, 1) is alg-universal and SetFuncfin is algebraic
(see sections 1,2).

Let M = (M,α, β) ∈ Alg(1, 1) be an algebra with two unary operations. For
every m ∈ M , we now define a mapping

sM,m : P6 → M ∪ {o, j}.

The union is assumed to be disjoint. For R ⊆ 6, we let

sM,m(R) =























o if R = 0
m if |R| = 1 or |R| = 5
α(m) if |R| = 2 or |R| = 4
β(m) if |R| = 3
j if R = 6

Observe, that the mappings sM,m1
and sM,m2

are distinct for distinct m1,m2 ∈
M . For a set X and a mapping f : X → Y , we put

MX = {sM,mg−1 : PX → M ∪ {o, j}; m ∈ M, g : 6 → X is a map}

Mf(sM,mg−1) = sM,mg−1f−1.

M is a set functor: For every f1 : X → Y, f2 : Y → Z, we have

MidX(sM,mg−1) = sM,mg−1id−1
X = sM,mg−1,

Mf1(Mf2(sM,mg−1)) = sM,mg−1f−1
2 f−1

1 = sM,mg−1(f1f2)
−1 =

= Mf1f2(sM,mg−1)).

Let R ⊆ X. Let χR,X : X → 2 denote the characteristic mapping of R, i.e.
χR,X(x) = 1, iff x ∈ R.

Claim 3.1.1. The functor M is faithful, connected and 7-accessible.
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Proof. 7-accessibility is clear – every element can be accessed from some sM,m ∈
M6.

Connectedness: The elements of M1 are of the form sM,mf−1, where f : 6 → 1
is the unique mapping. But sM,mf−1(0) = sM,m(0) = o and sM,mf−1(1) =
sM,m(6) = j, hence sM,mf−1 doesn’t depend on m – |M1| = 1.

Faithfulness: We will use Proposition 2.1. Take arbitrary s = sM,m ∈ M6. Then

sχ−1
0,6 and sχ−1

6,6 differs on {0}:

sχ−1
0,6({0}) = s(6) = j

sχ−1
6,6({0}) = s(0) = o

¤

Given two algebras M = (M,α, β), N = (N, γ, δ) and a homomorphism h :
M → N , we define a natural transformation µh : M → N as follows

µh
X(sM,mg−1) = sN ,h(m)g

−1.

Claim 3.1.2. The definition is correct.

Proof. We should check, that if sM,m1
g−1
1 = sM,m2

g−1
2 , then sN ,h(m1)g

−1
1 =

sN ,h(m2)g
−1
2 . For R ⊆ X, we have

sN ,h(m1)g
−1
1 (R) =























o |g−1
1 [R]| = 0

h(m1) |g−1
1 [R]| = 1, 5

γ(h(m1)) |g−1
1 [R]| = 2, 4

δ(h(m1)) |g−1
1 [R]| = 3

j |g−1
1 [R]| = 6

=

=























o |g−1
1 [R]| = ∅

h(m1) |g−1
1 [R]| = 1, 5

h(α(m1)) |g−1
1 [R]| = 2, 4

h(β(m1)) |g−1
1 [R]| = 3

j |g−1
1 [R]| = 6

= h̄(sM,m1
g−1
1 (R)),

where h̄ : M ∪{o, j} → N ∪{o, j} coincides with h on M and is identical on {o, j}.
The same computation gives sN ,h(m2)g

−1
2 (R) = h̄(sM,m2

g−1
2 (R)).

Since sM,m1
g−1
1 (R) = sM,m2

g−1
2 (R), we are done. ¤

Claim 3.1.3. µ is natural.

Proof. Let sM,mg−1 ∈ MX, f : X → Y be arbitrary. Then

Nf(µh
X(sM,mg−1)) = Nf(sN ,h(m)g

−1) = sN ,h(m)g
−1f−1,

µh
Y (Mf(sM,mg−1)) = µh

Y (sN ,mg−1f−1) = sN ,h(m)g
−1f−1.

¤

The functor Φ : Alg(1, 1) → SetFuncfin given by

Φ(M) = M, Φ(h) = µh

is the wanted full and faithful functor.
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Claim 3.1.4. Φ is a faithful functor.

Proof. It is clear, that Φ preserves the identities and composition.
Faithfulness: Take distinct homomorphisms h, h′ : M → N and then, an element

m ∈ M , for which h(m) 6= h′(m). Then µh
6 (sM,m) = sN ,h(m) 6= sN ,h′(m) =

µh′

6 (sM,m) from the note after the definition of the mappings s.... ¤

Let M = (M,α, β), N = (N, γ, δ) be algebras. Let µ : M → N be a natural
transformation. We will check that µ = µh for some homomorphism h : M → N

proving the fullness of Φ.

Claim 3.1.5. Let g : 6 → 6, n ∈ N . Then Im(g) ∈ Flt(sN ,ng−1).

Proof. Take the factorization g = ih, where i : Im(g) → 6 is the inclusion. Then
clearly Fi(sN ,nh−1) = sN ,ng−1. ¤

Claim 3.1.6. Let g : 6 → 6 be a bijection, then g ∈ Mon(sM,m).

Proof. We should check that sM,m(R) = sM,mg−1(R) (= sM,m(g−1(R))) for
every R ⊆ 6. This is true, since |g−1(R)| = |R| and the value of sM,m on some
subset S ⊆ 6 depends only on the cardinality of S. ¤

From these two claims, it follows that the only elements s ∈ N6 with Flt(s) = {6}
are the elements sN ,n (n ∈ N). Combining this with Proposition 2.4, we obtain
Flt(µ6(sM,m)) = {6}, hence

µ6(sM,m) = sN ,h(m)

for some h(m) ∈ N . Now we aim to show, that this h : M → N is a homomorphism
of the algebras M, N .

Let dM,m : P2 → M ∪ {o, j} be the following mapping (R ⊆ 2):

dM,m(R) =







o if R = 0
m if R = {0} or R = {1}
j if R = 2

Claim 3.1.7. Let m ∈ M , R ⊆ 6. Then

dM,m = MχR,6(sM,m), if |R| = 1

dM,α(m) = MχR,6(sM,m), if |R| = 2

dM,β(m) = MχR,6(sM,m), if |R| = 3

In particular dM,m ∈ M2.

Proof. This is an easy calculation. ¤

Of course, a similar claim holds for n, γ, δ and the functor N.

Claim 3.1.8. Let m ∈ M . Then µ2(dM,m) = dN ,h(m).
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Proof. We use the naturality of µ for χR,6 : 6 → 2, where |R| = 1, and the
preceding claim.

NχR,6(µ6(sM,m)) = NχR,6(sN ,h(m))) = dN ,h(m)

= µ2(MχR,6(sM,m)) = µ2(dM,m).

¤

Claim 3.1.9. Let m ∈ M . Then h(α(m)) = γ(h(m)).

Proof. We use the naturality of µ for χR,6 : 6 → 2, where |R| = 2, and the last
two claims.

NχR,6(µ6(sM,m)) = NχR,6(sN ,h(m))) = dN ,γ(h(m))

= µ2(MχR,6(sM,m)) = µ2(dM,α(m)) = dN ,h(α(m)).

Because the mappings dN ,n, dN ,n′ are distinct for distinct n, n′ ∈ N , we have
γ(h(m)) = h(α(m)). ¤

Claim 3.1.10. Let m ∈ M . Then h(β(m)) = δ(h(m)).

Proof. The proof is similar to the previous – use a subset R ⊆ 6 such that
|R| = 3. ¤

We have proved, that h is a homomorphism. To finish the proof, we must observe:

Claim 3.1.11. µ = µh.

Proof. Let g : 6 → X be an arbitrary mapping, m ∈ M . From the naturality of
µ, we have

Ng(µ6(sM,m)) = Ng(sN ,h(m)) = sN ,h(m)g
−1

= µX(Mg(sM,m)) = µX(sM,mg−1).

¤

4. Rigid proper class of accessible set functors

Let F be a filter on a set X and f : X → Y be a mapping. By an f -image of F
is meant the following filter on Y :

f(F) = {S ⊆ Y ; f [R] ⊆ S for some R ∈ F}

= {f−1(R) ⊆ Y ; R ∈ F}

It is known and easy to see that the filter functor F defined by

FX = {F ; F is a filter on X} for a set X

Ff(F) = f(F) for a mapping f : X → Y

is a faithful connected set functor. In this functor Flt(F) = F for every F ∈ FX.
For an infinite cardinal κ, we put

Fκ = {R ⊆ κ ; |κ − R| < κ}.

It is easy to see that Fκ is a filter on κ.
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Let A be a nonempty class of regular cardinals. For a set X and a mapping
f : X → Y we define

AX = {g(Fκ) ; κ ∈ A, g : κ → X}

Af(g(Fκ)) = fg(Fκ)

A is a subfunctor of the filter functor F. Hence it is faithful and connected and
Flt(F) = F for every F ∈ AX. It is λ-accessible for every cardinal λ greater than
all κ ∈ A.

Theorem 4.1. Let A,B be nonempty classes of regular cardinals. Then there
exists a natural transformation A → B, iff A ⊆ B. In this case, it is unique.

Proof. First, we describe the filters f(Fκ) for a regular cardinal κ and f : κ → X.
Let U ⊆ V ⊆ X. Let FU,V,X,κ be the following filter on X:

FU,V,X,κ = {R ⊆ X ; U ⊆ R, |V − R| < κ}

Note that

• If U,U ′ ⊆ X, U 6= U ′, then FU,V,X,κ 6= FU ′,V ′,X,λ for every V, V ′, where
U ⊆ V ⊆ X, U ′ ⊆ V ′ ⊆ X, and κ, λ are regular cardinals.
• Let V, V ′ ⊆ κ, |V | = λ. Then F0,V,κ,λ = F0,V ′,κ,λ iff the symmetric
difference (V − V ′) ∪ (V ′ − V ) has cardinality less than λ.

Claim 4.1.1. Let κ be a regular cardinal, f : κ → X be a mapping. Let U =
{x ; |f−1({x})| = κ}, V = f [κ]. Then f(Fκ) = FU,V,X,κ. If U = 0 then |V | = κ.

Proof. The inclusion ”⊆”. Let R ∈ f(Fκ), so |κ − f−1(R)| < κ. If x ∈ U and
x 6∈ R, then |κ− f−1(R)| ≥ |κ− f−1(X − {x})| = |f−1({x})| = κ, a contradiction,
hence U ⊆ R. Since moreover |f [κ]−R| ≤ |κ−f−1(R)| < κ, we have R ∈ FU,V,X,κ.

The inclusion ”⊇”. Let R ∈ FU,V,X,κ, so U ⊆ R, |V −R| < κ. Since κ−f−1(R) =
∪x∈V −Rf−1({x}), we have |κ − f−1(R)| < κ (the right hand side is a union of less
then κ sets, each of cardinality fewer than κ, κ is regular). Thus R ∈ f(Fκ).

The last statement is obvious. ¤

Now, let µ : A → B be a natural transformation.

Claim 4.1.2. Let κ ∈ A. Then κ ∈ B and µκ(Fκ) = Fκ.

Proof. Let λ ∈ B, f : λ → κ, U ⊆ V ⊆ κ be such that µκ(Fκ) = f(Fλ) =
FU,V,κ,λ.

Every bijection is in the monoid of Fκ ∈ Aκ. According to 2.4, every bijection
is in the monoid of FU,V,κ,λ. It is obvious that b(FU,V,κ,λ) = Fb[U ],b[V ],κ,λ. Thus
b[U ] = U for every bijection (see the note above), hence either U = 0 or U = κ.

Suppose U = κ. Let x ∈ κ be arbitrary. The set X − {x} is in the filter of Fκ,
but it isn’t in the filter of Fκ,κ,κ,λ. This contradicts 2.4 (recall that Flt(F) = F).

Now, we have U = 0, thus λ = |V | (see the last statement in the previous
claim). If |κ − V | = κ, we can find a bijection such that the symmetric difference
(V − b[V ])∪ (b[V ]− V ) has cardinality κ, hence F0,V,κ,λ 6= F0,b[V ],κ,λ (see the note
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above again), a contradiction. Hence λ = κ and |κ − V | < κ. Then F0,V,κ,κ =
F0,κ,κ,κ = Fκ. ¤

We now know that A ⊆ B and µκ(Fκ) = Fκ. From the naturality of µ, it follows
that for every κ ∈ A, set X and mapping f : κ → X

µX(f(Fκ)) = f(µκ(Fκ)) = f(Fκ).

Thus the transformation µ is uniqely determined - it is the inclusion. ¤

Let A be a conglomerate (i.e. collection of classes in the sense of [1]) of pair-
wise incomparable classes of regular cardinals. From the last theorem, it fol-
lows that {A ; A ∈ A} is a rigid conglomerate of set functors. Putting A =
{{κ} ; κ is a regular cardinal}, we obtain:

Corollary 4.2. There exists a rigid proper class of accessible set functors.
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