1. Added after posting

This section corrects two mistakes in the article. The first mistake concerns the situation when a special triad is not a core: the characterization given in Lemma 4.3 is incomplete as it can happen that all the paths P_1, \ldots, P_6 are mapped to one of the paths P_4, \ldots, P_6. Unfortunately this is the case in the example of the special triad in Figure 1. To obtain a special triad which is NP-complete, we replace the path P_4 by P_2 and paths P_5, P_6 both by P_1 (the new triad has 39 vertices). This mistake doesn’t influence the dichotomy result for special triads, as it is well known that CSP(G) is tractable for any oriented path G.

The second mistake is in the classification given in Theorem 3.4. To correct it we need an auxiliary notation: for oriented paths P_1, \ldots, P_k with initial vertices i_1, \ldots, i_k let $c(P_1 \times \cdots \times P_k)$ be the connectivity component of the digraph $P_1 \times \cdots \times P_k$ containing the vertex (i_1, \ldots, i_k). The right statement of Theorem 3.4. is obtained by replacing all products with their connectivity components:

Theorem 3.4. For every special triad G, CSP(G) is either tractable or NP-complete.

More specifically, let G be the special triad given by paths P_1, \ldots, P_6.

1. If there exist $i, j \in \{1, 2, 3\}$, $i \neq j$ and a homomorphism $c(P_{i+3} \times P_j) \rightarrow P_i$, then G admits a compatible totally symmetric idempotent operation of any arity.

2. If there exist $i, j, k \in \{1, 2, 3\}$ pairwise distinct and homomorphisms $c(P_{i+3} \times P_{j+3} \times P_k) \rightarrow P_i$, $c(P_{i+3} \times P_j \times P_{k+3}) \rightarrow P_j$, $c(P_{i+3} \times P_j \times P_k) \rightarrow P_k$, then G admits a compatible majority operation.

3. If G is not a core, then either one of the cases (1), (2) can be applied, or the core of G is an oriented path.

4. Otherwise, CSP(G) is NP-complete.

The proof of the theorem remains the same except for replacing all products of oriented paths with their connectivity component containing the initial vertex. This change is necessary because in their original formulation Lemmas 5.5 and 5.7 might not be true—for example in Lemma 5.5. the nonexistence of a homomorphism from $P_4 \times P_2$ to P_1 doesn’t necessarily imply that $0 \not\rightarrow 1$ in $G^{(2,4)}$, since a homomorphism can map the other connectivity components of $P_4 \times P_2$ outside the path P_1.

Because of this change we also need to adjust the proofs of Lemmas 4.1 and 4.2. In Lemma 4.1 when defining the homomorphism h from \mathbb{H} to G we need to distinguish one more case:
(0) If all the vertices in R have the same level and are in a connectivity component of \mathbb{H} other than $\{0\}$ then we put $h(R)$ to be the smallest vertex in R in the ordering

$$P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow P_5 \rightarrow P_6$$

Note that in this case $R \cap \{0, 1, 2, 3, 4, 5, 6\} = \emptyset$.

In the proof of Lemma 4.2, we also need to add one more case:

(0) If a, b, c have the same level, doesn’t lie on an oriented subpath of G and (a, b, c) is in a connectivity component of G^3 other than the vertex $(0, 0, 0)$, then we put $m(a, b, c) = a$.

We wish to thank Jakub Bulín for carefully reading the article and finding the above two mistakes.