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Abstract. This paper gives a brief survey of current research on the complexity of the

constraint satisfaction problem over fixed constraint languages.

§1. Introduction. The Constraint Satisfaction Problem (CSP) provides a
common framework for expressing a wide range of both theoretical and real-life
combinatorial problems [50]. One solves an instance of the CSP by assigning
values to its variables so that its constraints are satisfied.

The topic of this paper is a very active theoretical subfield which studies the
computational complexity of the CSP over a fixed constraint language. This
restricted framework is still broad enough to include many decision problems
in the class NP, yet it is narrow enough to potentially allow for a complete
classification of all such CSP problems.

One particularly important achievement is the understanding of what makes
the problems over a fixed constraint language computationally easy or hard. It
is not surprising that hardness comes from a lack of symmetry. However, the
usual objects capturing symmetry, automorphisms (or endomorphisms) and their
groups (or semigroups), are not sufficient in this context. It turns out that the
complexity of the CSP over a template is determined by more general symmetries
of it: polymorphisms and their clones.

My aim is to introduce the basics of this exciting area and to highlight selected
deeper results, in a way that is understandable to readers with a basic knowledge
of computational complexity (see [47, 1]). The presentation of the material is
based on my talk “Universal algebra and the constraint satisfaction problem”
delivered at the Association for Symbolic Logic North American Annual Meeting
held in Boulder, Colorado, in 2014. A shorter version has appeared in SIGLOG
News [3].

§2. CSP over a fixed constraint language. A constraint – such asR(x3, x1, x4)
– restricts the allowed values for a tuple of variables – in this case (x3, x1, x4) –
to be an element of a particular relation on the domain – in this case R ⊆ D3.1

By an n-ary relation R on a domain D we mean a subset of the n-th cartesian

The author gratefully acknowledges the support of the Grant Agency of the Czech Republic,
grant GAČR 13-01832S.

1There are also different types of constraints considered in the literature, see e.g. Chapter 7

in [50].
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power Dn. It is sometimes convenient to work with the corresponding predicate
which is a mapping from Dn to {true, false} specifying which tuples are in R.
We will use both formalisms, so e.g. (a, b, c) ∈ R and R(a, b, c) both mean that
the triple (a, b, c) ∈ D3 is from the relation R.

An instance of the CSP is a list of constraints, e.g.,

R(x), S(y, y, z), T (y, w),

where R, S, T are relations of appropriate arity on a common domain D and
x, y, z, w are variables. A mapping f assigning values from the domain to the
variables is a solution if it satisfies all the constraints, that is, in our example,

R(f(x)) and S(f(y), f(y), f(z)) and T (f(y), f(w)) .

A standard formal definition of an instance of the CSP over a finite domain
goes as follows.

Definition 2.1. An instance of the CSP is a triple P = (V,D, C) with

• V a finite set of variables,
• D a finite domain,
• C a finite list of constraints, where each constraint is a pair C = (x, R) with

– x a tuple of variables of length n, called the scope of C, and
– R an n-ary relation on D, called the constraint relation of C.

An assignment, that is, a mapping f : V → D, satisfies a constraint C = (x, R)
if f(x) ∈ R, where f is applied component-wise. An assignment f is a solution
if it satisfies all constraints.

Three basic computational problems associated with an instance are the fol-
lowing:2

• Satisfiability. Does the given instance have a solution? (A related prob-
lem, the search problem, is to find some solution if at least one solution
exists.)

• Optimization. Even if the instance has no solution, find an optimal as-
signment, i.e., one that satisfies the maximum possible number of con-
straints. (Approximation algorithms are extensively studied, where the
aim is, for example, to find an assignment that satisfies at least 80% of
the number of constraints satisfied by an optimal assignment.)

• Counting. How many solutions does the given instance have? (This prob-
lem also has an approximation version: approximate counting.)

2.1. Satisfiability over a fixed constraint language. Even the easiest
of the problems, satisfiability, is computationally hard: It contains many NP-
complete problems including, e.g., 3-SAT (see Example 2.3). However, certain
natural restrictions to CSP satisfiability ensure tractability. The main types
of restrictions that have been studied are structural restrictions, which limit
how constraints interact, and language restrictions, which limit the choice of
constraint relations.

2To study the computational complexity of these problems we need to specify a representa-

tion of instances. We will assume that the constraint relation in every constraint is given by a
list of all its members. Note, however, that for most of the problems considered in this article

any reasonable representation can be taken.
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In this paper, we focus just on satisfiability problems with language restric-
tions. Please see [55] for optimization problems and a generalization to valued
CSPs, [33] for approximation, [25] for counting, and [12] for a generalization to
infinite domains.

Definition 2.2. A constraint language D is a set of relations on a common
finite domain, D. We use CSP(D) to denote the set of CSP satisfiability problems
whose relations are drawn from D.

2.2. Examples.

Example 2.3. An instance of the standard NP-complete problem [47, 1], 3-
SAT, is a Boolean formula in conjunctive normal form with exactly three literals
per clause. For example, the formula,

ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x4 ∨ x5 ∨ ¬x1) ∧ (¬x1 ∨ ¬x4 ∨ ¬x3)

is a satisfiable instance of 3-SAT. (Any assignment making x1 and x2 false,
satisfies ϕ.) 3-SAT is equivalent to CSP(D3SAT), where D3SAT = {0, 1} and

D3SAT = {Sijk : i, j, k ∈ {0, 1}}, where Sijk = {0, 1}3 \ {(i, j, k)} .
For example, the above formula ϕ corresponds to the following instance of CSP(D3SAT)

S010(x1, x2, x3), S101(x4, x5, x1), S111(x1, x4, x3) .

More generally, for a natural number k, k-SAT denotes a similar problem
where each clause is a disjunction of k literals.

Since 3-SAT is NP-complete, it follows that k-SAT is NP-complete for each
k ≥ 3. On the other hand, 2-SAT is solvable in polynomial time, and is in fact
complete for the complexity class NL (non-deterministic logarithmic space) [47,
1] (see also Example 2.7).

Example 2.4. HORN-3-SAT is a restricted version of 3-SAT, where each
clause may have at most one positive literal. This problem is equivalent to
CSP(DHornSAT) for DHornSAT = {S011, S101, S110, S111} (or just DHornSAT =
{S011, S111}). HORN-3-SAT is solvable in polynomial time, in fact, it is a P-
complete problem [47, 1].

Example 2.5. For a fixed natural number k, the k-COLORING problem is to
decide whether it is possible to assign colors {0, 1, . . . , k − 1} to the vertices of
an input graph in such a way that adjacent vertices receive different colors. This
problem is equivalent to CSP(DkCOLOR), where Dk = {0, 1, 2, . . . , k − 1} and
DkCOLOR = {6=k} consists of a single relation – the binary inequality relation
6=k= {(a, b) ∈ D2

k : a 6= b}.
Indeed, given an instance of CSP(DkCOLOR), we can form a graph whose ver-

tices are the variables and whose edges correspond to the binary constraints (that
is, x has an edge to y iff the instance contains the constraint x 6=k y). It is easily
seen that the original instance has a solution if and only if the obtained graph is
k-colorable. The translation in the other direction is similar.

The k-COLORING problem is NP-complete for k ≥ 3 [47, 1]. 2-COLORING
is equivalent to deciding whether an input graph is bipartite. It is solvable in poly-
nomial time, in fact, it is an L-complete problem (where L stands for logarithmic
space) by a celebrated result of Reingold [49].
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Example 2.6. Let p be a prime number. An input of 3-LIN(p) is a system of
linear equations over the p-element field GF(p), where each equation contains 3
variables, and the question is whether the system has a solution. This problem
is equivalent to CSP(D3LINp), where D3LINp = GF(p) and D3LINp consists of all

affine subspaces Rabcd of GF(p)
3

of dimension 2 or 3, where

Rabcd = {(x, y, z) ∈ GF(p)
3

: ax+ by + cz = d} .
This problem is solvable in polynomial time, e.g. by Gaussian elimination.3 It
is complete for a somewhat less familiar class ModpL [24].

Example 2.7. An instance of the s, t-connectivity problem, STCON, consists
of a directed graph and two of its vertices, s and t. The question is whether there
exists a directed path from s to t.

A closely related (but not identical) problem is CSP(DSTCON), where DSTCON =
{0, 1} and DSTCON = {C0, C1,≤}, C0 = {0}, C1 = {1}, ≤= {(0, 0), (0, 1), (1, 1)}.
Indeed, given an instance of CSP(DSTCON) we form a directed graph much as
we did in Example 2.5 and label some vertices 0 or 1 according to the unary
constraints. Then the original instance has a solution if and only if there is no
directed path from a vertex labeled 1 to a vertex labeled 0. Thus CSP(DSTCON)
can be solved by invoking the complement of STCON, the s, t-non-connectivity
problem, several times.

Both STCON and CSP(DSTCON) can clearly be solved in polynomial time. By
the Immerman-Szelepcsényi theorem [37, 53] both problems are NL-complete.

In the same way, the s, t-connectivity problem for undirected graphs is closely
related to CSP(DUSTCON), where DUSTCON = {0, 1} and DUSTCON = {C0, C1,=
}. These problems are L-complete by [49].

2.3. The dichotomy conjecture. The most fundamental problem in the
area was formulated in the landmark paper by Feder and Vardi [31].

Conjecture 2.8 (The dichotomy conjecture). For every finite4 constraint lan-
guage D, the problem CSP(D) is in P or is NP-complete.

Recall that if P 6= NP, then there are problems of intermediate complexity [42].
Feder and Vardi argued that the class of CSPs over fixed constraint languages
is a good candidate for the largest natural class of problems which exhibit a P
versus NP-complete dichotomy.

At that time the conjecture was supported by two major cases: the dichotomy
theorem for all languages over a two-element domain by Schaefer [51] and the
dichotomy theorem for languages consisting of a single binary symmetric relation
by Hell and Nešetřil [34].

3The problem of solving general systems of linear equations over GF(p) without the re-
striction on number of variables cannot be faithfully phrased as CSP(D) with D consisting of

all affine subspaces, since the input representation of the latter problem can be substantially
larger. However, a system of linear equation can be easily rewritten to an instance of 3-LIN(p)

by introducing new variables.
4It is conjectured in [16] that the dichotomy remains true without the finiteness assumption

on D (the domain D still needs to be finite). Namely, the local-global conjecture states that
CSP(D) is in P (NP-complete) whenever CSP(D′) is in P (NP-complete) for every (some)

finite D′ ⊆ D.
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Feder and Vardi identified two sources of polynomial-time solvability and made
several important contributions towards understanding them. In particular, they
observed that the known polynomial cases were tied to algebraic closure proper-
ties and asked whether polynomial solvability for CSP can always be explained
in such a way. Subsequent papers have shown that this is indeed the case and
this connection to algebra brought the area to another level.

The algebraic approach is outlined in section 3 and some fruits of the theory
discussed in section 4.

2.4. Alternative views. Note that a constraint language D with domain D
can be viewed as a relational structure (D;R1, R2, . . . ), or equivalently relational
database, with universe D.

Recall that a conjunctive query over the database D is an existential sentence
whose quantifier-free part is a conjunction of atoms. CSP(D) is exactly the
problem of deciding whether D satisfies a given conjunctive query. For example,
the instance

R(x), S(y, y, z), T (y, w)

has a solution if and only if the sentence

(∃x, y, z, w ∈ D) R(x) ∧ S(y, y, z) ∧ T (y, w)

is true in D.
From this perspective, it is natural to ask what happens if we allow some

other combination of logical connectives from {∃,∀,∧,∨,¬,=, 6=}. It turns out
that out of the 27 cases only 3 are interesting (the other cases either reduce to
these, or are almost always easy or hard by known results): {∃,∧} which is CSP,
{∃,∀,∧} which is so called quantified CSP, and {∃,∀,∧,∨}. Determining the
complexity of quantified CSP is also an active research area [27] with a possible
trichotomy – P, NP-complete or Pspace-complete. Recently, a tetrachotomy was
obtained for the last case [45] – for every D, the corresponding problem is either
in P, NP-complete, co-NP-complete, or Pspace-complete.

The CSP over a fixed language can also be formulated as the homomorphism
problem between relational structures with a fixed target structure [31]. The
idea of the translation is shown in Examples 2.5, 2.7.

§3. Universal algebra in CSPs. If a computational problem A can sim-
ulate (in some sense) another problem B, then A is at least as hard as B.
This simple idea is widely used in computational complexity; for instance, NP-
completeness is often shown by a gadget reduction of a known NP-complete prob-
lem to the given one. A crucial fact for the algebraic theory of the CSP is that
a so called primitive positive (pp-, for short) interpretation between constraint
languages gives such a reduction between corresponding CSPs (more precisely,
if D pp-interprets E , then CSP(E) is reducible to CSP(D)). Pp-interpretations
have been, indirectly, the main subject of universal algebra for the last 80 years!

The algebraic theory of CSPs was developed in a number of papers includ-
ing [39, 38, 16, 43]. The viewpoint taken here is close to [12]. All results in this
section come from these sources unless stated otherwise.

To simplify formulations, all structures (relational or algebraic) are assumed to
have finite domains, all constraint languages are assumed to contain finitely many
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relations, all of them nonempty. By a reduction we mean a logarithmic space
reduction (although first-order reductions are often possible under additional
weak assumptions).

3.1. Primitive positive interpretations. An important special case of pp-
interpretability is pp-definability.

Definition 3.1. Let D, E be constraint languages on the same domain D = E.
We say that D pp-defines E (or E is pp-definable from D) if each relation in E
can be defined by a first order formula which only uses relations in D, the equality
relation, conjunction and existential quantification.

Theorem 3.2. If D pp-defines E, then CSP(E) is reducible to CSP(D).

Proof by example. Let R be an arbitrary ternary relation on a domain D.
Consider the relations on D defined by

S(x, y) iff (∃z)R(x, y, z) ∧R(y, y, x), T (x, y) iff R(x, x, x) ∧ (x = y) ,

where the existential quantification is understood over D. The relations S and
T are defined by pp-formulae, therefore the constraint language D = {R} pp-
defines the constraint language E = {S, T}.

We sketch the reduction of CSP(E) to CSP(D) using the instance

S(x3, x2), T (x1, x4), S(x2, x4) .

We first replace S and T with their pp-definitions by introducing a new variable
for each quantified variable:

R(x3, x2, y1), R(x2, x2, x3), R(x1, x1, x1), x1 = x4, R(x2, x4, y2), R(x4, x4, x2)

and then we get rid of the equality constraint x1 = x4 by identifying these
variables. This way we obtain an instance of CSP(D):

R(x3, x2, y1), R(x2, x2, x3), R(x1, x1, x1), R(x2, x1, y2), R(x1, x1, x2) .

Clearly, the new instance of CSP(D) has a solution if and only if the original
instance does. a

This simple theorem provides a quite powerful tool for comparing CSPs over
different languages on the same domain. A more powerful tool, which can also
be used to compare languages with different domains, is pp-interpretability. In-
formally, a constraint language D pp-interprets E , if the domain of E is a pp-
definable relation (from D) modulo a pp-definable equivalence, and the relations
of E (viewed, in a natural way, as relations on D) are also pp-definable from D.5

Formally:

Definition 3.3. Let D, E be constraint languages. We say that D pp-interprets
E if there exists a natural number n, F ⊆ Dn, and an onto mapping f : F → E
such that D pp-defines

• the relation F ,
• the f -preimage of the equality relation on E, and
• the f -preimage of every relation in E,

5This is the classical notion of interpretation from model theory restricted to pp-formulas.
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where by the f -preimage of a k-ary relation S on E we mean the nk-ary relation
f−1(S) on D defined by

f−1(S)(x11, . . . , x1k, x21, . . . , x2k, . . . , xn1, . . . , xnk) iff S(f(x11, . . . , xn1), . . . , f(x1k, . . . , xnk))

Theorem 3.4. If D pp-interprets E, then CSP(E) is reducible to CSP(D).

Proof sketch. The properties of the mapping f from Definition 3.3 allow
us to rewrite an instance of CSP(E) to an instance of the CSP over a constraint
language which is pp-definable from D. Then we apply Theorem 3.2. a

Pp-interpretability is a reflexive and transitive relation on the class of con-
straint languages. By identifying equivalent languages, i.e. languages which mu-
tually pp-interpret each other, we get a partially ordered set, the pp-interpretability
poset. Theorem 3.4 then says that the “higher” we are in the poset the “easier”
the CSP we are dealing with. 3-SAT is terribly hard – we will see later that
its constraint language is the least element of this poset. Surprisingly, this is
“almost” the case for all known NP-complete CSPs! For a precise formulation
of this we will need the reduction described in the following subsection.

3.2. Cores and singleton expansions. Let D be a constraint language on
a finite set D. A mapping f : D → D is called an endomorphism if it preserves
every relation D, that is, f(R) := {f(a) : a ∈ R} ⊆ R for every R ∈ D.

Theorem 3.5. Let D be a constraint language and f an endomorphism of
D. Then CSP(D) is reducible to CSP(f(D)) and vice versa, where f(D) is the
constraint language with domain f(D) defined by f(D) = {f(R) : R ∈ D}.

Proof sketch. An instance of the CSP(D) has a solution if and only if the
corresponding instance of CSP(f(D)), obtained by replacing each R ∈ D with
f(R), has a solution. a

A language D is a core if every endomorphism of D is a bijection. It is not hard
to show that if f is an endomorphism of a constraint language D with minimal
range, then f(D) is a core. Moreover, this core is unique up to isomorphism,
therefore we speak about the core of D.

An important fact is that we can add all singleton unary relations to a core
constraint language without increasing the complexity of its CSP:

Theorem 3.6. Let D be a core constraint language and E = D ∪
⋃
a∈D Ca,

where Ca denotes the unary relation Ca = {a}. Then CSP(E) is reducible to
CSP(D).

Proof idea. The crucial step is to observe that the set of endomorphisms
of D, viewed as a |D|-ary relation, is pp-definable from D. More precisely, the
relation

S = {(f(a1), . . . , f(an)) : f is an endomorphism of D} ,
where a1, . . . , an is a list of all elements of D, is pp-definable from D (even
without existential quantification). Indeed, f is, by definition, an endomorphism
of D if for every R ∈ D of arity ar(R) and every (b1, . . . , bar(R)) ∈ R we have
(f(b1), . . . , f(bar(R))) ∈ R. This directly leads to a pp-definition of S:

S(xa1 , . . . , xan) iff
∧
R∈D

∧
(b1,...,bar(R))∈R

R(xb1 , . . . , xbar(R)
) .
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Given an instance of CSP(E) we introduce new variables xa1 , . . . , xan , replace ev-
ery constraint of the form Ca(x) by x = xa, and add the constraint S(xa1 , . . . , xan).
In this way we obtain an instance of CSP(D ∪ {=}). Clearly, if the original in-
stance has a solution, then the new instance has a solution as well. In the other
direction, if g is a solution to the new instance, then its values on xa1 , . . . , xan
determine an endomorphism f of D. As D is a core, f is a bijection, thus f−1

is an endomorphism as well, and f−1 ◦ g restricted to the original variables is a
solution of the original instance. a

We will call constraint languages containing all singletons idempotent. Note
that an idempotent constraint language is automatically a core as the only en-
domorphism is the identity. By Theorems 3.5, 3.6, CSP over D is reducible to
CSP over the singleton expansion of the core of D and vice versa. It is therefore
enough to study CSPs over idempotent constraint languages.

An interesting consequence of these reductions is that the search problem for
CSP(D) is solvable in polynomial time whenever CSP(D) is. The idea is to
gradually guess values for variables using the unary singleton constraints.

3.3. Example.

Example 3.7. We show that 3-SAT is reducible to 3-COLORING.
Recall the constraint language D3COLOR = {6={0,1,2}} of 3-COLORING from

Example 2.5 and the constraint language D3SAT = {S000, . . . , S111} of 3-SAT
from Example 2.3.

Since D3COLOR is a core, CSP(D′3COLOR), where D′3COLOR = {6=, C0, C1, C2},
is reducible to CSP(D3COLOR) by Theorem 3.6. By Theorem 3.4, it is now
enough to show that D′3COLOR pp-interprets D3SAT. We give a pp-interpretation
with n = 1, F = {0, 1}, and f the identity map (see Definition 3.3). The set
(=unary relation) {0, 1} can be pp-defined by

E(x) iff (∃y) C2(y) ∧ x 6= y (iff x 6= 2) .

The preimage of the equality relation is the equality relation on {0, 1} which is
clearly pp-definable. The relation S000 can be defined by

S000(x1, x2, x3) iff (∃y1, y2, y3, z) C2(z) ∧ y1 6= y2 ∧ y2 6= y3 ∧ y1 6= y3

∧
∧

i=1,2,3

z 6= xi ∧ T (xi, yi) ,

where T is the binary relation

T (x, y) iff (∃u, v) C1(u) ∧ u 6= v ∧ x 6= v ∧ y 6= v

The other relations Sijk are defined similarly.

While it is easy to verify that the presented pp-definitions work, it is not so
easy to find them without any tools. The proof of Theorem 3.9 gives an algorithm
to produce pp-definitions whenever they exist (although the obtained definitions
will usually be very long).

3.4. Tractability conjecture. Now we return to the pp-interpretability poset.
Recall that “higher” in the poset means “easier” CSP and that 3-SAT corre-
sponds to the least (the hardest) element. When we restrict to idempotent
constraint languages (which we can do by the previous discussion), all known
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NP-complete CSPs are at the bottom of the poset. Bulatov, Jeavons and Krokhin
conjectured that this is not a coincidence.

Conjecture 3.8 (Tractability conjecture). If an idempotent constraint lan-
guage D does not pp-interpret the language of 3-SAT, then CSP(D) is solvable
in polynomial time.

This conjecture is also known as the algebraic dichotomy conjecture because
many equivalent formulations, including the original one, are algebraic.

Similar hardness results and conjectures have been formulated for other com-
putational/descriptive complexity classes.

3.5. Algebraic counterpart of pp-definability. The link between rela-
tions and operations is provided by a natural notion of compatibility. An n-ary
operation f on a finite set D (that is, a mapping f : Dn → D) is compatible with
a k-ary relation R ⊆ Dk if f applied component-wise to any n-tuple of elements
of R gives an element of R. In more detail, whenever (aij) is an n × k matrix
such that every row is in R, then f applied to the columns gives a k-tuple which
is in R as well.

We say that an operation f on D is a polymorphism of a constraint language
D if f is compatible with every relation in D. Note that a unary polymor-
phism is the same as an endomorphism. If endomorphisms can be thought of as
symmetries, then polymorphisms can be viewed as symmetries of higher arities.

The set of all polymorphisms of D will be denoted by D. This algebraic object
has the following two properties.

• D contains all projections, that is, for every natural number n and i ≤ n
the n-ary projection onto the i-th coordinate, defined by

πni (a1, . . . , an) = ai,

is in D.
• D is closed under composition, that is, for any n-ary g ∈ D and k-ary
f1, . . . , fn ∈ D their (k-ary) composition g(f1, . . . , fn), defined by

g(f1, . . . , fn)(a1, . . . , ak) = g(f1(a1, . . . , ak), . . . , fn(a1, . . . , ak)),

is in D.

Sets of operations with these properties are called concrete clones (or function
clones, or simply clones), therefore we refer to D as the clone of polymorphisms
of D.

The clone of polymorphisms controls pp-definability in the sense of the follow-
ing old result [32, 13].

Theorem 3.9. Let D, E be constraint languages with D = E. Then D pp-
defines E if and only if D ⊆ E.6

Proof sketch. The implication “⇒” is quite easy. For the other implica-
tion it is enough to prove that whenever R is a relation compatible with every
polymorphism of D, then R is pp-definable from D. A crucial step is a more
general version of the observation made in the proof of Theorem 3.6: For any k,

6Moreover, every concrete clone is the clone of polymorphisms of some (possibly infinite)
constraint language.
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the set of k-ary polymorphisms of D can be viewed as a |D|k-ary relation S on
D, and this relation is pp-definable from D. Now R can be defined from such a
relation S (where k is the number of tuples in R) by existential quantification
over suitable coordinates as in Example 3.11. a

In view of this result, Theorem 3.2 says that the complexity of CSP(D) only
depends on the clone D. More precisely, if D ⊆ E, then CSP(E) is reducible to
CSP(D). Moreover, the proof of Theorem 3.9 gives a generic pp-definition of E
from D, which gives us a generic reduction of CSP(E) to CSP(D).

Example 3.10. It is a nice exercise to show that the language D3SAT of 3-
SAT has no polymorphisms except for the projections. This means that D3SAT

pp-defines every constraint language with domain {0, 1}. It follows (see also
Theorem 3.14) that D3SAT pp-interprets every constraint language, so it is the
least element of the pp-interpretability poset, as claimed earlier.

Example 3.11. Another nice exercise is to show that the language D′3COLOR =
{6=, C0, C1, C2} on the domain {0, 1, 2} (see Example 3.7) also does not have any
polymorphisms except for projections.

We show how the proof of Theorem 3.9 produces a pp-definition of the relation

R = {(0, 1), (0, 2), (1, 1), (2, 2)} .
Since R contains 4 pairs, we pp-define the 34-ary relation

S = {(f(0, 0, 0, 0), f(0, 0, 0, 1), . . . , f(2, 2, 2, 2)) : f is a 4-ary polymorphism

of D′3COLOR}.
which corresponds to the set of all 4-ary polymorphisms of D′3COLOR:

S(x0000, . . . , x2222) iff
∧
i

xiiii = i ∧
∧

i1 6=i2,j1 6=j2,k1 6=k2,l1 6=l2

xi1j1k1l1 6= xi2j2k2l2 .

Now we existentially quantify over all variables but x0012 and x1212 – the ex-
ceptions are those variables which correspond to the i-th coordinates of pairs in
R, i ∈ {1, 2}. The obtained binary relation R′(x0012, x1212) contains R since S
contains the projections, and is contained in R since R is compatible with every
polymorphism of D′3COLOR.

Note that the definition of S000 from Example 3.7 obtained in this way contains
37 variables. This is the price we need to pay for genericity.

3.6. Algebraic counterpart of pp-interpretability. For the algebraic de-
scription of pp-interpretability we introduce three constructions which are clone
versions of standard constructions for groups, rings, etc.

Let D be a (concrete) clone.
The domain D of D is also called the universe of D. We say that E ⊆ D is a

subuniverse of D if it is closed under all operations of D. In this situation, we
can form a clone E by restricting all operations of D to the set E. The clone
E is called a subalgebra of D (the word subclone is reserved for set theoretic
inclusion).

For a natural number n we can form the n-th power Dn of D with domain Dn

and operations from D acting coordinate-wise. (More generally, we can form
the X-th power DX of D for any set X.) A subpower is a subuniverse (or a
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subalgebra, depending on the context) of a power. Note that if D is the clone
of polymorphisms of a constraint language D, then R is a subpower of D if and
only if R is pp-definable from D (by Theorem 3.9).

Finally, let φ : D → E be an onto mapping such that for any operation f ∈ D
(say of arity n), the formula

fφ(φ(a1), . . . , φ(an)) = φ(f(a1, . . . , an)) ∀a1, . . . , an ∈ D

correctly defines an operation fφ on E. Then E = {fφ : f ∈ D} is a clone with
domain E called a concrete homomorphic image of D and φ is called a concrete
homomorphism.

The definition of pp-interpretability can be translated into algebraic terms as
follows.

Theorem 3.12. Let D, E be constraint languages. Then D pp-interprets E if
and only if E contains a concrete homomorphic image of a subpower of D.

3.7. Identities and Mal’tsev conditions. An alternative algebraic char-
acterization of pp-interpretability, which is missing on the relational side, follows
from the foundation stone of universal algebra, the Birkhoff HSP theorem [11]:
pp-interpretability depends on the identities (i.e. universally quantified equa-
tions) satisfied by polymorphisms.

We first present a formulation using abstract clone homomorphisms and then
explain the connection to identities.

Definition 3.13. A mapping H from a clone D to a clone E is called a clone
homomorphism if

• it preserves the arities of operations,
• it maps projections to projections (that is, H(πni ) = πni , where the projection

on the left hand side works on the set D, while on the right hand side on
the set E), and

• it preserves the composition (that is,

H(g(f1, . . . , fn)) = H(g)(H(f1), . . . ,H(fn))

if g, f1, . . . , fn are from D and have appropriate arities).

Theorem 3.14. Let D, E be constraint languages. Then D pp-interprets E if
and only if there exists an abstract clone homomorphism from D to E.

Proof sketch. There are natural abstract clone homomorphisms associated
to the three constructions on clones (taking sublagebras, powers and concrete
homomorphic images). The implication ⇒ follows from this observation and
Theorem 3.12.

Now assume that H : D → E is a clone homomorphism. For simplicity, let
E = {1, 2, . . . , n}. It is easy to check that the set F of all n-ary operations in
D is a subuniverse of DDn

. Let F be the corresponding subalgebra of DDn

.
(This important object, the n-generated free algebra for D, already appeared
in the proof of Theorem 3.9. Indeed, if D is the clone of polymorphisms of
a constraint language D, then F is the set of all n-ary polymorphisms of D.)
A simple calculation shows that the mapping φ : F → E, defined by φ(f) =
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(H(f))(1, 2, . . . , n), is a concrete clone homomorphism from F onto H(D) ⊆ E
and thus D pp-interprets E by Theorem 3.12. a

Observe that the existence of an abstract clone homomorphism H : D → E
does not depend on the concrete operations in D and E – it only depends on
the way in which operations compose and which operations are projections. The
skeleton of a concrete clone, which only remembers projections and compositions,
is called an abstract clone.7

We now explain the promised link to identities, first with an example. A
binary operation f on D is a semilattice operation if satisfies the identities

f(f(x, y), z) ≈ f(x, f(y, z)), f(x, y) ≈ f(y, x), and f(x, x) ≈ x,

meaning that f(f(a, b), c) = f(a, f(b, c)), f(a, b) = f(b, a), and f(a, a) = a
hold for any a, b, c ∈ D. This can be expressed in terms of composition and
projections: f is a semilattice operation if and only if

f(f(π3
1 , π

3
2), π3

3) = f(π3
1 , f(π3

2 , π
3
3)), f(π2

1 , π
2
2) = f(π2

2 , π
2
1), and f(π1

1 , π
1
1) = π1

1 .

It follows that if H : D→ E is an abstract clone homomorphism and D contains
a semilattice operation f , then E contains a semilattice operation as well, namely
H(f).

More generally, if there exists an abstract clone homomorphism from D to E,
then E satisfies all properties of the form “there exist operations . . . satisfying
identities . . . ” which are satisfied by D. We will call such properties Mal’tsev
conditions (although we deviate from the standard definition).

It is not hard to see that the converse is also true: if no abstract clone homo-
morphism D→ E exists, then there is some Mal’tsev condition which is satisfied
by D while not satisfied by E. In short:

The complexity of CSP(D) only depends on the Mal’tsev conditions
satisfied by the clone of polymorphisms of D.

To illustrate this, we state one of increasingly many (e.g., [54, 35, 46, 41,
52]) characterizations of the conjectured borderline between P and NP-complete
CSPs by means of cyclic operations [6].

Theorem 3.15. Let D be an idempotent constraint language and p > |D| a
prime. Then the following are equivalent.

• D does not interpret the language of 3-SAT.
• D contains an operation t (equivalently, D has a polymorphism t) of arity
p such that

t(x1, . . . , xp) ≈ t(x2, . . . , xp, x1) .

Even if the tractability conjecture or the dichotomy conjecture (or finer clas-
sification conjectures) turns out to be incorrect, we know that classes of CSPs
in P, L, NL, . . . can be characterized by Mal’tsev conditions on polymorphisms.

Example 3.16. We show how to apply cyclic operations to prove the dichotomy
theorem for undirected graphs [34].

7The relation between abstract clones and concrete clones is similar to the relation between
groups and permutation groups, or between monoids and transformation monoids.
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Let R be a symmetric binary relation viewed as an undirected graph and D =
{R}. Let D′ = {R′, ....} be the singleton expansion of the core of D. If R contains
a loop then CSP(D) is trivially tractable. If R is bipartite, then the core of R is
an edge and CSP(D) is essentially 2-COLORING, which is tractable.

Finally, if R is not bipartite and does not contain a loop, then R′ does not
contain a loop and does contain a closed walk a1, a2, . . . , ap, a1 for some prime
p > |D′|. Assume that D′ contains a cyclic operation t of arity p. Since t is a
polymorphism, the pair

t((a1, a2), . . . , (ap−1, ap), (ap, a1)) = (t(a1, . . . , ap), t(a2, . . . , ap, a1))

is in R′, but it is a loop since t is cyclic. This contradiction shows that D′ does
not contain a cyclic operation of arity p, therefore CSP(D′) (and thus CSP(D))
is NP-complete.

§4. Results. Universal algebra serves the investigation in two ways: as a
toolbox containing heavy hammers (such as the Tame Congruence Theory by
Hobby and McKenzie [35]) and as a guideline for identifying interesting interme-
diate cases, which are hard to spot from the purely relational perspective. Major
results include the following.

• The dichotomy theorem of Schaefer for CSPs over a two-element domain
was generalized to a three-element domain by Bulatov [19]. A simplification
of this result and a generalization to four-element domains was announced
by Marković et al.

• The dichotomy theorem of Hell and Nešetřil for CSPs over undirected
graphs was generalized to digraphs with no sources or sinks [9].

• The dichotomy conjecture was proved for all constraint languages contain-
ing all unary relations by Bulatov [18] (a simpler proof is in [2]).

Notably, all known tractable cases are solvable by a combination of two basic
algorithms, or rather algorithmic principles – local consistency, and the “few
subpowers” algorithm. It is another significant success of the algebraic approach
that the applicability of these principles is now understood.

4.1. Local consistency. The CSP over some constraint languages can be
decided in polynomial time by constraint propagation algorithms, or, in other
words, by enforcing local consistency. Such CSPs are said to have bounded width.

This notion comes in various versions and equivalent forms. We refer to [31]
for formalizations using Datalog programs and games, to [23] for a description
using dualities, and to [21, 4] for a notion suitable for infinite languages.

We informally sketch one possible definition. Let k ≤ l be positive integers.
The (k, l)-algorithm derives the strongest possible constraints on k variables by
considering l variables at a time. If a contradiction is found, the algorithm
answers “no (solution)”, otherwise it answers “yes”. These algorithms work in
polynomial time (for fixed k, l) and “no” answers are always correct. A constraint
language D (or CSP(D)) has width (k, l), if “yes” answers are correct for every
instance of CSP(D). If D has width (k, l) for some k, l, we say that D has bounded
width.
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As an example, we consider the constraint language D2COLOR and the instance

x1 6= x2, x2 6= x3, x3 6= x4, x4 6= x5, x5 6= x1 .

The (2, 3)-algorithm can certify that this instance has no solution as follows:

• We consider the variables x1, x2, x3. Using x1 6= x2, x2 6= x3 we derive
x1 = x3.

• We consider x1, x3, x4. Using x3 6= x4 and the already derived constraint
x1 = x3 we derive x1 6= x4.

• We consider x1, x4, x5 and using x1 6= x4, x4 6= x5 and x5 6= x1 we derive a
contradiction.

In fact, 2-COLORING has width (2, 3), that is, such reasoning finds a contradic-
tion for every unsatisfiable instance. Other examples of bounded width problems
include HORN-3-SAT and 2-SAT.

Feder and Vardi [31] proved that problems 3-LIN(p) (and more generally,
similar problems 3-LIN(M) over finite modules) do not have bounded width
and conjectured that linear equations are essentially the only obstacles for hav-
ing bounded width. An algebraic formulation of this was given by Larose and
Zádori [44]. They proved that analogues of results in section 3 hold for bounded
width, therefore no problem which pp-interprets the language of 3-LIN(M) has
bounded width, and conjectured that the converse is also true. After a sequence
of partial results [40, 26, 5, 20], the conjecture was eventually confirmed in [8]8

and independently in [14].

Theorem 4.1. An idempotent constraint language D has bounded width if and
only if D does not interpret the language of 3-LIN(M) for a finite module M.9

4.2. Few subpowers. Gaussian elimination not only solves 3-LIN(p), it also
describes all the solutions in the sense that the algorithm can output a small
(polynomially large) set of points in GF(p)n so that the affine hull of these points
is equal to the solution set of the original instance. A sequence of papers [31,
17, 15, 29] culminating in [36, 10] pushed this idea, in a way, to its limit.

We need some terminology to state the result. Let D be a constraint language
and D its clone of polymorphisms. Recall that a relation on D is a subpower
of D if and only if it is pp-definable from D. Note that the set of solutions of
any instance of CSP(D) can be viewed as a subpower of D. Now D has few
subpowers if each subpower can be obtained as a closure under polymorphisms
of a small set (polynomially large with respect to the arity).10

Theorem 4.2. Let D be an idempotent constraint language. If D has few
subpowers, then CSP(D) can be solved in polynomial time.

8A modification required to handle infinite languages was given in [4].
9Moreover, if D has bounded width, then it has width (2, 3) with an appropriate notion of

width. Also, the property of having bounded width can be checked in polynomial time given
an idempotent D on input.

10The name comes from an equivalent property that D has only exponentially many

subpowers.
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§5. Conclusion. We have seen that the complexity of the satisfiability prob-
lem for CSP over a fixed constraint language depends on “higher arity symme-
tries” – polymorphisms of the language. (We have only discussed languages with
finite domains. The algebraic theory extends to interesting subclasses of infinite
domain CSP [12]). Significant progress has been achieved using this insight, but
the main problem, the dichotomy conjecture, is still open.

A similar approach can be applied to other variants of CSP over a fixed con-
straint language. In two of them, the main goal has been reached: the dichotomy
for the counting problem was proved in [22] (substantially simplified in [30]) and
for the robust satisfiability problem in [7]. A generalization of the theory for
the optimization problem and valued CSPs was given in [28], and some links
to universal algebra are emerging from research in the area of approximation
algorithms (such as [48]).

Is this approach only applicable to CSPs over fixed languages? Or are we
merely seeing a piece of a bigger theory?

Acknowledgement. I thank Matt Valeriote for carefully reading the paper
and correcting mistakes.
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[34] Pavol Hell and Jaroslav Nešetřil, On the complexity of H-coloring, J. Combin.
Theory Ser. B, vol. 48 (1990), no. 1, pp. 92–110.

[35] David Hobby and Ralph McKenzie, The structure of finite algebras, Contemporary

Mathematics, vol. 76, American Mathematical Society, Providence, RI, 1988.
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