On simple Taylor algebras

Libor Barto, joint work with Marcin Kozik

Charles University in Prague

SSAOS 2014, September 7, 2014

for $R \subseteq A_1 \times \cdots \times A_n$, $i, j \in [n]$ let R_{ij} denote the projection of R onto the coordinates (i, j)i.e. $R_{ij} = \{(a_i, a_j) : (a_1, \dots, a_j) \in R\}$

for $R \subseteq A_1 \times \cdots \times A_n$, $i, j \in [n]$ let R_{ij} denote the projection of R onto the coordinates (i, j)i.e. $R_{ij} = \{(a_i, a_j) : (a_1, \dots, a_j) \in R\}$

Definition

An algebra **A** has the 2-intersection property if for any n, $R, S \leq \mathbf{A}^n$ $\forall i, j \; R_{ij} = S_{ij} \implies R \cap S \neq \emptyset$

for $R \subseteq A_1 \times \cdots \times A_n$, $i, j \in [n]$ let R_{ij} denote the projection of R onto the coordinates (i, j)i.e. $R_{ij} = \{(a_i, a_j) : (a_1, \dots, a_j) \in R\}$

Definition

An algebra **A** has the 2-intersection property if for any n, $R, S \leq \mathbf{A}^n$ $\forall i, j \; R_{ij} = S_{ij} \implies R \cap S \neq \emptyset$

Question: Which finite idempotent algebras have the 2-intersection property?

for $R \subseteq A_1 \times \cdots \times A_n$, $i, j \in [n]$ let R_{ij} denote the projection of R onto the coordinates (i, j)i.e. $R_{ij} = \{(a_i, a_j) : (a_1, \dots, a_j) \in R\}$

Definition

An algebra **A** has the 2-intersection property if for any n, $R, S \leq \mathbf{A}^n$ $\forall i, j \; R_{ij} = S_{ij} \implies R \cap S \neq \emptyset$

Question: Which finite idempotent algebras have the 2-intersection property?

One of the motivations: CSP

► A has an NU (near unanimity) term operation Baker, Pixley

- ► A has an NU (near unanimity) term operation Baker, Pixley
 - Recall f is NU if $f(x, \ldots, x, y, x, \ldots, x) \approx x$

- ► A has an NU (near unanimity) term operation Baker, Pixley
 - Recall f is NU if $f(x, \ldots, x, y, x, \ldots, x) \approx x$
 - ▶ In fact $R \leq \mathbf{A}^n$ is determined by binary projections: $R = \{(a_1, \dots, a_n) : \forall i, j \ (a_i, a_j) \in R_{ij}\}$

- ► A has an NU (near unanimity) term operation Baker, Pixley
 - Recall f is NU if $f(x, \ldots, x, y, x, \ldots, x) \approx x$
 - ▶ In fact $R \leq \mathbf{A}^n$ is determined by binary projections: $R = \{(a_1, \dots, a_n) : \forall i, j \ (a_i, a_j) \in R_{ij}\}$
- A has a semilattice term operation

- ► A has an NU (near unanimity) term operation Baker, Pixley
 - Recall f is NU if $f(x, \ldots, x, y, x, \ldots, x) \approx x$
 - ▶ In fact $R \le \mathbf{A}^n$ is determined by binary projections: $R = \{(a_1, \dots, a_n) : \forall i, j \ (a_i, a_j) \in R_{ij}\}$
- A has a semilattice term operation
 - In fact it has the 1-intersection property

- ► A has an NU (near unanimity) term operation Baker, Pixley
 - Recall f is NU if $f(x, \ldots, x, y, x, \ldots, x) \approx x$
 - ▶ In fact $R \le \mathbf{A}^n$ is determined by binary projections: $R = \{(a_1, \dots, a_n) : \forall i, j \ (a_i, a_j) \in R_{ij}\}$
- A has a semilattice term operation
 - In fact it has the 1-intersection property
 - $R \ni (a_1, \ldots, a_n)$, where $a_i = \min R_i$

► A has an NU (near unanimity) term operation Baker, Pixley

- Recall f is NU if $f(x, \ldots, x, y, x, \ldots, x) \approx x$
- ▶ In fact $R \le \mathbf{A}^n$ is determined by binary projections: $R = \{(a_1, \dots, a_n) : \forall i, j \ (a_i, a_j) \in R_{ij}\}$
- A has a semilattice term operation
 - In fact it has the 1-intersection property
 - $R \ni (a_1, \ldots, a_n)$, where $a_i = \min R_i$

► A is CD(3) Kiss, Valeriote

- ► A has an NU (near unanimity) term operation Baker, Pixley
 - Recall f is NU if $f(x, \ldots, x, y, x, \ldots, x) \approx x$
 - ▶ In fact $R \leq \mathbf{A}^n$ is determined by binary projections: $R = \{(a_1, \dots, a_n) : \forall i, j \ (a_i, a_j) \in R_{ij}\}$
- A has a semilattice term operation
 - In fact it has the 1-intersection property
 - $R \ni (a_1, \ldots, a_n)$, where $a_i = \min R_i$
- ► A is CD(3) Kiss, Valeriote
- ► A has a 2-semilattice term operation Bulatov

- ► A has an NU (near unanimity) term operation Baker, Pixley
 - Recall f is NU if $f(x, \ldots, x, y, x, \ldots, x) \approx x$
 - ▶ In fact $R \leq \mathbf{A}^n$ is determined by binary projections: $R = \{(a_1, \dots, a_n) : \forall i, j \ (a_i, a_j) \in R_{ij}\}$
- A has a semilattice term operation
 - In fact it has the 1-intersection property
 - $R \ni (a_1, \ldots, a_n)$, where $a_i = \min R_i$
- ► A is CD(3) Kiss, Valeriote
- ► A has a 2-semilattice term operation Bulatov
 - Example: rock-paper-scissors 3-element algebra

 $\boldsymbol{\mathsf{A}}$ does not have the 2-intersection property if

► A is affine (=essentially a module)

A does not have the 2-intersection property if

► A is affine (=essentially a module)

•
$$R^b = \{(a_1, \ldots, a_n) : a_1 + \cdots + a_n = b\}$$

A does not have the 2-intersection property if

► A is affine (=essentially a module)

▶
$$R^b = \{(a_1, ..., a_n) : a_1 + \dots + a_n = b\}$$

▶ $(R^b)_{ij} = A^2$

A does not have the 2-intersection property if

• A is affine (=essentially a module)

•
$$R^b = \{(a_1, \dots, a_n) : a_1 + \dots + a_n = b\}$$

• $(R^b)_{ii} = A^2$

• if
$$b \neq b'$$
 then $R_b \cap R_b = \emptyset$

 $\boldsymbol{\mathsf{A}}$ does not have the 2-intersection property if

► A is affine (=essentially a module)

▶
$$R^b = \{(a_1, ..., a_n) : a_1 + \dots + a_n = b\}$$

▶ $(R^b)_{ij} = A^2$

• if
$$b \neq b'$$
 then $R_b \cap R_b = \emptyset$

▶ $\mathbf{B} \in HS(\mathbf{A})$ is a reduct of an affine algebra

A does not have the 2-intersection property if

• A is affine (=essentially a module)

▶
$$R^b = \{(a_1, ..., a_n) : a_1 + \dots + a_n = b\}$$

▶ $(R^b)_{ij} = A^2$

- if $b \neq b'$ then $R_b \cap R_b = \emptyset$
- $\mathbf{B} \in HS(\mathbf{A})$ is a reduct of an affine algebra

Recall: No algebra in $HS(\mathbf{A})$ is a reduct of affine algebra \Leftrightarrow $HSP(\mathbf{A})$ omits 1 and 2

 \Leftrightarrow **A** is SD(\land) (= HSP(**A**) is congruence meet semi-distributive)

A does not have the 2-intersection property if

• A is affine (=essentially a module)

▶
$$R^b = \{(a_1, ..., a_n) : a_1 + \dots + a_n = b\}$$

▶ $(R^b)_{ij} = A^2$

- if $b \neq b'$ then $R_b \cap R_b = \emptyset$
- $\mathbf{B} \in HS(\mathbf{A})$ is a reduct of an affine algebra

Recall: No algebra in $HS(\mathbf{A})$ is a reduct of affine algebra \Leftrightarrow $HSP(\mathbf{A})$ omits **1** and **2**

 \Leftrightarrow **A** is SD(\land) (= HSP(**A**) is congruence meet semi-distributive)

Theorem (BK, conjectured by Valeriote)

A has the 2-intersection property \Leftrightarrow **A** is SD(\land).

Possible generalizations to Taylor algebras?

Possible generalizations to Taylor algebras?

Recall: A is Taylor

- \Leftrightarrow No algebra in $HS(\mathbf{A})$ is a set
- $\Leftrightarrow \quad \textit{HSP}(\textbf{A}) \text{ omits } \textbf{1}$

 \Leftrightarrow ...

The old and the new (result)

Theorem (The old)

lf

▶ **A** is SD(∧)

Then A has the 2-intersection property

Theorem (The old)

lf

- ▶ **A** is SD(∧)
- ► *R*, *S* ≤ **A**^{*n*}
- $\blacktriangleright \forall i,j \quad R_{ij} = S_{ij}$

Then $R \cap S \neq \emptyset$

Theorem (The old)

lf

► A₁, ..., A_n are SD(
$$\land$$
)
► R, S ≤_{sd} A₁ × ··· × A_n (sd=subdirect product)
► $\forall i, j$ $R_{ij} = S_{ij}$
Then $R \cap S \neq \emptyset$

Theorem (The old)

lf

► A₁, ..., A_n are SD(
$$\land$$
)
► R, S ≤_{sd} A₁ × ··· × A_n (sd=subdirect product)
► $\forall i, j$ R_{ij} = S_{ij}
Then $R \cap S \neq \emptyset$

Theorem (The new)

lf

$$\blacktriangleright R, S \leq_{sd} \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$$

$$\blacktriangleright \forall i,j \quad R_{ij} = S_{ij}$$

Then $R \cap S \neq \emptyset$

Recall: $B \le A$ is absorbing if **A** has a term operation *t* with $t(B, B, \ldots, B, A, B, B, \ldots, B) \subseteq B$

Recall: $B \le A$ is absorbing if A has a term operation t with $t(B, B, \ldots, B, A, B, B, \ldots, B) \subseteq B$

Theorem
lf
▶ A ₁ ,, A _n are Taylor, simple, non-abelian
• B_1, \ldots, B_n are minimal absorbing subuniverses of A_1, \ldots, A_n
• $R \leq_{sd} \mathbf{A}_1 imes \cdots imes \mathbf{A}_n$ is irredundant
$\blacktriangleright \ R \cap (B_1 \times \cdots \times B_n) \neq \emptyset$
Then $B_1 \times \cdots \times B_n \subseteq R$.

Recall: $B \le A$ is absorbing if **A** has a term operation *t* with $t(B, B, \ldots, B, A, B, B, \ldots, B) \subseteq B$

Theorem
lf
▶ A ₁ ,, A _n are Taylor, simple, non-abelian
▶ B_1, \ldots, B_n are minimal absorbing subuniverses of A_1, \ldots, A_n
• $R \leq_{sd} \mathbf{A}_1 imes \cdots imes \mathbf{A}_n$ is irredundant
$\blacktriangleright \ R \cap (B_1 \times \cdots \times B_n) \neq \emptyset$
Then $B_1 \times \cdots \times B_n \subseteq R$.
Then $B_1 \times \cdots \times B_n \subseteq R$.

One of the A_is can be abelian and non-simple

Recall: $B \le A$ is absorbing if **A** has a term operation *t* with $t(B, B, \ldots, B, A, B, B, \ldots, B) \subseteq B$

Theorem
lf
▶ A ₁ ,, A _n are Taylor, simple, non-abelian
▶ B_1, \ldots, B_n are minimal absorbing subuniverses of A_1, \ldots, A_n
• $R \leq_{sd} \mathbf{A}_1 imes \cdots imes \mathbf{A}_n$ is irredundant
$\blacktriangleright \ R \cap (B_1 \times \cdots \times B_n) \neq \emptyset$
Then $B_1 \times \cdots \times B_n \subseteq R$.
▶ $R \leq_{sd} \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ is irredundant ▶ $R \cap (B_1 \times \cdots \times B_n) \neq \emptyset$ Then $B_1 \times \cdots \times B_n \subseteq R$.

- One of the A_is can be abelian and non-simple
- Proof of the intersection result using this result: non-trivial, but uses known techniques

Recall: $B \le A$ is absorbing if **A** has a term operation *t* with $t(B, B, \ldots, B, A, B, B, \ldots, B) \subseteq B$

- One of the A_is can be abelian and non-simple
- Proof of the intersection result using this result: non-trivial, but uses known techniques
- ► Similar theorem for conservative algebras → Dichotomy for conservative CSPs

Definition

A a term operation t of **A** points to $b \in A$ if $\exists (a_1, \ldots, a_n) \in A^n$ such that $t(c_1, \ldots, c_n) = b$ whenever $a_i = c_i$ for all but at most one i

Definition

A a term operation t of **A** points to $b \in A$ if $\exists (a_1, \ldots, a_n) \in A^n$ such that $t(c_1, \ldots, c_n) = b$ whenever $a_i = c_i$ for all but at most one i

Known: A is $SD(\land) \Leftrightarrow$ every subalgebra of A has a pointing term operation.

Definition

A a term operation t of **A** points to $b \in A$ if $\exists (a_1, \ldots, a_n) \in A^n$ such that $t(c_1, \ldots, c_n) = b$ whenever $a_i = c_i$ for all but at most one i

Theorem

Definition

A a term operation t of **A** points to $b \in A$ if $\exists (a_1, \ldots, a_n) \in A^n$ such that $t(c_1, \ldots, c_n) = b$ whenever $a_i = c_i$ for all but at most one i

Theorem

• Let
$$A = \{1, ..., n\}$$

Definition

A a term operation t of **A** points to $b \in A$ if $\exists (a_1, \ldots, a_n) \in A^n$ such that $t(c_1, \ldots, c_n) = b$ whenever $a_i = c_i$ for all but at most one i

Theorem

- Let $A = \{1, ..., n\}$
- ▶ Let b₁,..., b_k be a list of 2*n*-tuples of elements of A which differ from (1, 1, 2, 2, ..., n, n) on at most 1-coordinate

Definition

A a term operation t of **A** points to $b \in A$ if $\exists (a_1, \ldots, a_n) \in A^n$ such that $t(c_1, \ldots, c_n) = b$ whenever $a_i = c_i$ for all but at most one i

Theorem

- Let $A = \{1, ..., n\}$
- ▶ Let b₁,..., b_k be a list of 2*n*-tuples of elements of A which differ from (1, 1, 2, 2, ..., n, n) on at most 1-coordinate
- Let $R = \{(t(\mathbf{b}_1), \ldots, t(\mathbf{b}_k)) : t \in \operatorname{Clo}_{2n} \mathbf{A}\}$

Definition

A a term operation t of **A** points to $b \in A$ if $\exists (a_1, \ldots, a_n) \in A^n$ such that $t(c_1, \ldots, c_n) = b$ whenever $a_i = c_i$ for all but at most one i

Theorem

- Let $A = \{1, ..., n\}$
- ▶ Let b₁,..., b_k be a list of 2*n*-tuples of elements of A which differ from (1, 1, 2, 2, ..., n, n) on at most 1-coordinate
- Let $R = \{(t(\mathbf{b}_1), \ldots, t(\mathbf{b}_k)) : t \in \operatorname{Clo}_{2n} \mathbf{A}\}$
- ► *R* is a subdirect subpower of **A** (a projection of the free algebra to some coordinates)

Definition

A a term operation t of **A** points to $b \in A$ if $\exists (a_1, \ldots, a_n) \in A^n$ such that $t(c_1, \ldots, c_n) = b$ whenever $a_i = c_i$ for all but at most one i

Theorem

- Let $A = \{1, ..., n\}$
- ▶ Let b₁,..., b_k be a list of 2*n*-tuples of elements of A which differ from (1, 1, 2, 2, ..., n, n) on at most 1-coordinate
- Let $R = \{(t(\mathbf{b}_1), \ldots, t(\mathbf{b}_k)) : t \in \operatorname{Clo}_{2n} \mathbf{A}\}$
- ► *R* is a subdirect subpower of **A** (a projection of the free algebra to some coordinates)
- R is irredundant

Definition

A a term operation t of **A** points to $b \in A$ if $\exists (a_1, \ldots, a_n) \in A^n$ such that $t(c_1, \ldots, c_n) = b$ whenever $a_i = c_i$ for all but at most one i

Theorem

- Let $A = \{1, ..., n\}$
- ▶ Let b₁,..., b_k be a list of 2*n*-tuples of elements of A which differ from (1, 1, 2, 2, ..., n, n) on at most 1-coordinate
- Let $R = \{(t(\mathbf{b}_1), \ldots, t(\mathbf{b}_k)) : t \in \operatorname{Clo}_{2n} \mathbf{A}\}$
- ► *R* is a subdirect subpower of **A** (a projection of the free algebra to some coordinates)
- R is irredundant
- Rectangularity theorem $\Rightarrow R = A^k$.

► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.

- ► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.
- *R* irredundant, $\mathbf{A}_1, \mathbf{A}_2$ simple $\Rightarrow R_{12}$ linked

- ► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.
- *R* irredundant, $\mathbf{A}_1, \mathbf{A}_2$ simple $\Rightarrow R_{12}$ linked
- ▶ absorption theorem \Rightarrow $R_{12} = A_1 \times A_2$ (similarly for R_{23}, R_{13})

- ► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.
- *R* irredundant, $\mathbf{A}_1, \mathbf{A}_2$ simple $\Rightarrow R_{12}$ linked
- ▶ absorption theorem \Rightarrow $R_{12} = A_1 \times A_2$ (similarly for R_{23}, R_{13})
- View R as $\bar{R} \leq_{sd} R_{12} \times \mathbf{A}_3 = (\mathbf{A}_1 \times \mathbf{A}_2) \times \mathbf{A}_3$

- ► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.
- *R* irredundant, $\mathbf{A}_1, \mathbf{A}_2$ simple $\Rightarrow R_{12}$ linked
- ▶ absorption theorem \Rightarrow $R_{12} = A_1 \times A_2$ (similarly for R_{23}, R_{13})
- View R as $\bar{R} \leq_{sd} R_{12} imes \mathbf{A}_3 = (\mathbf{A}_1 imes \mathbf{A}_2) imes \mathbf{A}_3$
- ▶ for $b \in A_3$ denote $S_b = \{(a_1, a_2) : (a_1, a_2, b) \in R\}$

- ► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.
- *R* irredundant, $\mathbf{A}_1, \mathbf{A}_2$ simple $\Rightarrow R_{12}$ linked
- ▶ absorption theorem \Rightarrow $R_{12} = A_1 \times A_2$ (similarly for R_{23}, R_{13})
- ▶ View *R* as $\bar{R} \leq_{sd} R_{12} \times \mathbf{A}_3 = (\mathbf{A}_1 \times \mathbf{A}_2) \times \mathbf{A}_3$
- ▶ for $b \in A_3$ denote $S_b = \{(a_1, a_2) : (a_1, a_2, b) \in R\}$
- ▶ R_{23} , R_{13} full \Rightarrow $S_b \leq_{sd} \mathbf{A}_1 \times \mathbf{A}_2$ (for each b)

- ► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.
- R irredundant, $\mathbf{A}_1, \mathbf{A}_2$ simple $\Rightarrow R_{12}$ linked
- ▶ absorption theorem \Rightarrow $R_{12} = A_1 \times A_2$ (similarly for R_{23}, R_{13})
- View R as $\bar{R} \leq_{sd} R_{12} \times \mathbf{A}_3 = (\mathbf{A}_1 \times \mathbf{A}_2) \times \mathbf{A}_3$
- ▶ for $b \in A_3$ denote $S_b = \{(a_1, a_2) : (a_1, a_2, b) \in R\}$
- ► R_{23} , R_{13} full \Rightarrow $S_b \leq_{sd} \mathbf{A}_1 \times \mathbf{A}_2$ (for each b)
- For each b, S_b either linked or graph of a bijection A₁ → A₂ (from simplicity)

- ► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.
- R irredundant, $\mathbf{A}_1, \mathbf{A}_2$ simple $\Rightarrow R_{12}$ linked
- ▶ absorption theorem \Rightarrow $R_{12} = A_1 \times A_2$ (similarly for R_{23}, R_{13})
- View R as $\bar{R} \leq_{sd} R_{12} \times \mathbf{A}_3 = (\mathbf{A}_1 \times \mathbf{A}_2) \times \mathbf{A}_3$
- ▶ for $b \in A_3$ denote $S_b = \{(a_1, a_2) : (a_1, a_2, b) \in R\}$
- ► R_{23} , R_{13} full \Rightarrow $S_b \leq_{sd} \mathbf{A}_1 \times \mathbf{A}_2$ (for each b)
- ▶ for each b, S_b either linked or graph of a bijection A₁ → A₂ (from simplicity)
- if S_b is linked for some b

- ► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.
- R irredundant, $\mathbf{A}_1, \mathbf{A}_2$ simple $\Rightarrow R_{12}$ linked
- ▶ absorption theorem \Rightarrow $R_{12} = A_1 \times A_2$ (similarly for R_{23}, R_{13})
- View R as $\bar{R} \leq_{sd} R_{12} \times \mathbf{A}_3 = (\mathbf{A}_1 \times \mathbf{A}_2) \times \mathbf{A}_3$
- ▶ for $b \in A_3$ denote $S_b = \{(a_1, a_2) : (a_1, a_2, b) \in R\}$
- ► R_{23} , R_{13} full \Rightarrow $S_b \leq_{sd} \mathbf{A}_1 \times \mathbf{A}_2$ (for each b)
- For each b, S_b either linked or graph of a bijection A₁ → A₂ (from simplicity)
- if S_b is linked for some b

• $S_b = A_1 \times A_2$ (from absorption theorem)

- ► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.
- R irredundant, $\mathbf{A}_1, \mathbf{A}_2$ simple $\Rightarrow R_{12}$ linked
- ▶ absorption theorem \Rightarrow $R_{12} = A_1 \times A_2$ (similarly for R_{23}, R_{13})
- View R as $\bar{R} \leq_{sd} R_{12} \times \mathbf{A}_3 = (\mathbf{A}_1 \times \mathbf{A}_2) \times \mathbf{A}_3$
- ▶ for $b \in A_3$ denote $S_b = \{(a_1, a_2) : (a_1, a_2, b) \in R\}$
- ► R_{23} , R_{13} full \Rightarrow $S_b \leq_{sd} \mathbf{A}_1 \times \mathbf{A}_2$ (for each b)
- For each b, S_b either linked or graph of a bijection A₁ → A₂ (from simplicity)
- if S_b is linked for some b
 - $S_b = A_1 \times A_2$ (from absorption theorem)
 - ► *R* is linked

- ► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.
- *R* irredundant, $\mathbf{A}_1, \mathbf{A}_2$ simple $\Rightarrow R_{12}$ linked
- ▶ absorption theorem \Rightarrow $R_{12} = A_1 \times A_2$ (similarly for R_{23}, R_{13})
- View R as $\bar{R} \leq_{sd} R_{12} \times \mathbf{A}_3 = (\mathbf{A}_1 \times \mathbf{A}_2) \times \mathbf{A}_3$
- ▶ for $b \in A_3$ denote $S_b = \{(a_1, a_2) : (a_1, a_2, b) \in R\}$
- ► R_{23} , R_{13} full \Rightarrow $S_b \leq_{sd} \mathbf{A}_1 \times \mathbf{A}_2$ (for each b)
- For each b, S_b either linked or graph of a bijection A₁ → A₂ (from simplicity)
- if S_b is linked for some b
 - $S_b = A_1 \times A_2$ (from absorption theorem)
 - R
 is linked
 - Fact: $R_{12} = \mathbf{A}_1 \times \mathbf{A}_2$ is absorption-free

- ► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.
- R irredundant, $\mathbf{A}_1, \mathbf{A}_2$ simple $\Rightarrow R_{12}$ linked
- ▶ absorption theorem \Rightarrow $R_{12} = A_1 \times A_2$ (similarly for R_{23}, R_{13})
- View R as $\bar{R} \leq_{sd} R_{12} \times \mathbf{A}_3 = (\mathbf{A}_1 \times \mathbf{A}_2) \times \mathbf{A}_3$
- ▶ for $b \in A_3$ denote $S_b = \{(a_1, a_2) : (a_1, a_2, b) \in R\}$
- ► R_{23} , R_{13} full \Rightarrow $S_b \leq_{sd} \mathbf{A}_1 \times \mathbf{A}_2$ (for each b)
- For each b, S_b either linked or graph of a bijection A₁ → A₂ (from simplicity)
- if S_b is linked for some b
 - $S_b = A_1 \times A_2$ (from absorption theorem)
 - R
 is linked
 - Fact: $R_{12} = \mathbf{A}_1 \times \mathbf{A}_2$ is absorption-free
 - ▶ absorption theorem $\Rightarrow \bar{R} = R_{12} \times A_3 = (A_1 \times A_2) \times A_3$

- ► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.
- R irredundant, $\mathbf{A}_1, \mathbf{A}_2$ simple $\Rightarrow R_{12}$ linked
- ▶ absorption theorem \Rightarrow $R_{12} = A_1 \times A_2$ (similarly for R_{23}, R_{13})
- View R as $\bar{R} \leq_{sd} R_{12} \times \mathbf{A}_3 = (\mathbf{A}_1 \times \mathbf{A}_2) \times \mathbf{A}_3$
- ▶ for $b \in A_3$ denote $S_b = \{(a_1, a_2) : (a_1, a_2, b) \in R\}$
- ► R_{23} , R_{13} full \Rightarrow $S_b \leq_{sd} \mathbf{A}_1 \times \mathbf{A}_2$ (for each b)
- For each b, S_b either linked or graph of a bijection A₁ → A₂ (from simplicity)
- if S_b is a graph of a bijection for every b

- ► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.
- R irredundant, $\mathbf{A}_1, \mathbf{A}_2$ simple $\Rightarrow R_{12}$ linked
- ▶ absorption theorem \Rightarrow $R_{12} = A_1 \times A_2$ (similarly for R_{23}, R_{13})
- View R as $\bar{R} \leq_{sd} R_{12} \times \mathbf{A}_3 = (\mathbf{A}_1 \times \mathbf{A}_2) \times \mathbf{A}_3$
- ▶ for $b \in A_3$ denote $S_b = \{(a_1, a_2) : (a_1, a_2, b) \in R\}$
- ► R_{23} , R_{13} full \Rightarrow $S_b \leq_{sd} \mathbf{A}_1 \times \mathbf{A}_2$ (for each b)
- For each b, S_b either linked or graph of a bijection A₁ → A₂ (from simplicity)
- if S_b is a graph of a bijection for every b
 - \bar{R} is a graph of surjective mapping $R_{12} \rightarrow A_3$ (from simplicity)

- ► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.
- R irredundant, $\mathbf{A}_1, \mathbf{A}_2$ simple $\Rightarrow R_{12}$ linked
- ▶ absorption theorem \Rightarrow $R_{12} = A_1 \times A_2$ (similarly for R_{23}, R_{13})
- View R as $\bar{R} \leq_{sd} R_{12} \times \mathbf{A}_3 = (\mathbf{A}_1 \times \mathbf{A}_2) \times \mathbf{A}_3$
- ▶ for $b \in A_3$ denote $S_b = \{(a_1, a_2) : (a_1, a_2, b) \in R\}$
- ► R_{23} , R_{13} full \Rightarrow $S_b \leq_{sd} \mathbf{A}_1 \times \mathbf{A}_2$ (for each b)
- For each b, S_b either linked or graph of a bijection A₁ → A₂ (from simplicity)
- if S_b is a graph of a bijection for every b
 - \bar{R} is a graph of surjective mapping $R_{12} \rightarrow A_3$ (from simplicity)
 - ► \Rightarrow { $S_b : b \in A_3$ } is a partition of $A_1 \times A_2$ that defines a congruence α on $\mathbf{A}_1 \times \mathbf{A}_2$

- ► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.
- *R* irredundant, $\mathbf{A}_1, \mathbf{A}_2$ simple $\Rightarrow R_{12}$ linked
- ▶ absorption theorem \Rightarrow $R_{12} = A_1 \times A_2$ (similarly for R_{23}, R_{13})
- View R as $\bar{R} \leq_{sd} R_{12} imes \mathbf{A}_3 = (\mathbf{A}_1 imes \mathbf{A}_2) imes \mathbf{A}_3$
- ▶ for $b \in A_3$ denote $S_b = \{(a_1, a_2) : (a_1, a_2, b) \in R\}$
- ► R_{23} , R_{13} full \Rightarrow $S_b \leq_{sd} \mathbf{A}_1 \times \mathbf{A}_2$ (for each b)
- ▶ for each b, S_b either linked or graph of a bijection A₁ → A₂ (from simplicity)
- if S_b is a graph of a bijection for every b
 - \bar{R} is a graph of surjective mapping $R_{12} \rightarrow A_3$ (from simplicity)
 - ► \Rightarrow { $S_b : b \in A_3$ } is a partition of $A_1 \times A_2$ that defines a congruence α on $\mathbf{A}_1 \times \mathbf{A}_2$
 - Using α we can find a congruence β on A²₁ whose one block is the diagonal

- ► Assume R ≤_{sd} A₁ × A₂ × A₃ is irredundant and each A_i is simple, absorption-free, non-abelian.
- R irredundant, $\mathbf{A}_1, \mathbf{A}_2$ simple $\Rightarrow R_{12}$ linked
- ▶ absorption theorem \Rightarrow $R_{12} = A_1 \times A_2$ (similarly for R_{23}, R_{13})
- View R as $\bar{R} \leq_{sd} R_{12} \times \mathbf{A}_3 = (\mathbf{A}_1 \times \mathbf{A}_2) \times \mathbf{A}_3$
- ▶ for $b \in A_3$ denote $S_b = \{(a_1, a_2) : (a_1, a_2, b) \in R\}$
- ► R_{23} , R_{13} full \Rightarrow $S_b \leq_{sd} \mathbf{A}_1 \times \mathbf{A}_2$ (for each b)
- ▶ for each b, S_b either linked or graph of a bijection A₁ → A₂ (from simplicity)
- if S_b is a graph of a bijection for every b
 - \bar{R} is a graph of surjective mapping $R_{12} \rightarrow A_3$ (from simplicity)
 - ► ⇒ { $S_b : b \in A_3$ } is a partition of $A_1 \times A_2$ that defines a congruence α on $\mathbf{A}_1 \times \mathbf{A}_2$
 - Using α we can find a congruence β on A²₁ whose one block is the diagonal
 - $\blacktriangleright \Rightarrow A_1 \text{ (and } A_2 \text{) is abelian.}$

Thank you!