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Definition

An algebra A has the 2-intersection property if
forany n, R,S < A"
Vi,j Rj=5; = RNS#0D

Question: Which finite idempotent algebras have the
2-intersection property?

One of the motivations: CSP
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» A has an NU (near unanimity) term operation Baker, Pixley

» Recall fis NUif f(x,...,x,y,X,...,x) = x
» In fact R < A" is determined by binary projections:
R= {(al, ey a,,) : Vl',j (a;, aj) S R,'j}

» A has a semilattice term operation

> In fact it has the l-intersection property
» R>(a1,...,an), where a; = min R;

» Ais CD(3) Kiss, Valeriote

» A has a 2-semilattice term operation Bulatov
» Example: rock-paper-scissors 3-element algebra
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Non-examples and characterization

A does not have the 2-intersection property if

» A is affine (=essentially a module)

>Rb:{(al’_._’an):‘91_‘_...4_3”:[)}
> (R%); = A
>ifb7£b/theanﬂRb:®

» B € HS(A) is a reduct of an affine algebra

Recall: No algebra in HS(A) is a reduct of affine algebra
& HSP(A) omits 1 and 2
< Ais SD(A) (= HSP(A) is congruence meet semi-distributive)

Theorem (BK, conjectured by )

A has the 2-intersection property < A is SD(A).
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Possible generalizations to Taylor algebras?

Recall: A is Taylor

< No algebra in HS(A) is a set
< HSP(A) omits 1

=
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If
» Ay, ..., A, are SD(A)
» R,S <s4 A1 X -+ x A, (sd=subdirect product)
» Vi,j Rj=Sj

Then RNS # 1)

Theorem (The new)
If

» Ay, ..., A, are Taylor, simple, non-abelian
> RS <A1 x---xXA,
» Vi,j Rj=Sj

Then RNS # 0
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The real result: a rectangularity theorem

Recall: B < A is absorbing if A has a term operation t with
t(B,B,...,B,A,B,B,...,.B)CB

If

» Ay, ..., A, are Taylor, simple, non-abelian

> Bi,..., B, are minimal absorbing subuniverses of Ay, ..., A,
> R<. A1 X ---x A, is irredundant
» RN(Bix---xBy)#0

Then By x --- x B, C R.

» One of the A;s can be abelian and non-simple

» Proof of the intersection result using this result: non-trivial,
but uses known techniques

» Similar theorem for conservative algebras — Dichotomy for
conservative CSPs
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A consequence: pointing operation

Definition

A a term operation t of A points to b € A if
(a1,...,an) € A" such that
t(c1,...,¢cn) = b whenever a; = ¢; for all but at most one |

Theorem

Every (idempotent, finite) Taylor, simple, absorption-free algebra
has a pointing term operation.

» Let A={1,...,n}

> Let by,..., by be a list of 2n-tuples of elements of A which
differ from (1,1,2,2,...,n,n) on at most 1-coordinate
» Let R ={(t(by),...,t(bx)): t € Cloy, A}

v

R is a subdirect subpower of A (a projection of the free
algebra to some coordinates)

R is irredundant

Rectangularity theorem = R = A,

vV Yy
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> if Sp is linked for some b

Sp = A1 x A, (from absorption theorem)

R is linked

Fact: Ri; = A; X A, is absorption-free

absorption theorem = R = Rjp x Az = (A; x A) x A3

v

v vVvYyyw
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» if Sp is a graph of a bijection for every b
» R is a graph of surjective mapping Ry» — Az (from simplicity)
» = {Sp: b€ As} is a partition of A; X A, that defines a
congruence a on Ay x Ap
» Using o we can find a congruence 3 on A2
whose one block is the diagonal
» = A; (and A;) is abelian.



Thank youl!



