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2-intersection property

for R ⊆ A1 × · · · × An, i , j ∈ [n]
let Rij denote the projection of R onto the coordinates (i , j)
i.e. Rij = {(ai , aj) : (a1, . . . , aj) ∈ R}

Definition

An algebra A has the 2-intersection property if
for any n, R,S ≤ An

∀i , j Rij = Sij ⇒ R ∩ S 6= ∅

Question: Which finite idempotent algebras have the
2-intersection property?

One of the motivations: CSP
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Examples

A has the 2-intersection property if

I A has an NU (near unanimity) term operation Baker, Pixley

I Recall f is NU if f (x , . . . , x , y , x , . . . , x) ≈ x
I In fact R ≤ An is determined by binary projections:

R = {(a1, . . . , an) : ∀i , j (ai , aj) ∈ Rij}

I A has a semilattice term operation

I In fact it has the 1-intersection property
I R 3 (a1, . . . , an), where ai = minRi

I A is CD(3) Kiss, Valeriote
I A has a 2-semilattice term operation Bulatov

I Example: rock-paper-scissors 3-element algebra
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Non-examples and characterization

A does not have the 2-intersection property if

I A is affine (=essentially a module)

I Rb = {(a1, . . . , an) : a1 + · · ·+ an = b}
I (Rb)ij = A2

I if b 6= b′ then Rb ∩ Rb = ∅

I B ∈ HS(A) is a reduct of an affine algebra

Recall: No algebra in HS(A) is a reduct of affine algebra
⇔ HSP(A) omits 1 and 2
⇔ A is SD(∧) (= HSP(A) is congruence meet semi-distributive)

Theorem (BK, conjectured by Valeriote)

A has the 2-intersection property ⇔ A is SD(∧).
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End of story?

Possible generalizations to Taylor algebras?

Recall: A is Taylor
⇔ No algebra in HS(A) is a set
⇔ HSP(A) omits 1
⇔ . . .
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The old and the new (result)

Theorem (The old)

If

I A is SD(∧)

Then A has the 2-intersection property

Theorem (The new)

If

I A1, . . . , An are Taylor, simple, non-abelian

I R,S ≤sd A1 × · · · × An

I ∀i , j Rij = Sij

Then R ∩ S 6= ∅
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The real result: a rectangularity theorem

Recall: B ≤ A is absorbing if A has a term operation t with
t(B,B, . . . ,B,A,B,B, . . . ,B) ⊆ B

Theorem

If

I A1, . . . , An are Taylor, simple, non-abelian

I B1, . . . ,Bn are minimal absorbing subuniverses of A1, . . . , An

I R ≤sd A1 × · · · × An is irredundant

I R ∩ (B1 × · · · × Bn) 6= ∅
Then B1 × · · · × Bn ⊆ R.

I One of the Ai s can be abelian and non-simple
I Proof of the intersection result using this result: non-trivial,

but uses known techniques
I Similar theorem for conservative algebras → Dichotomy for

conservative CSPs
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A consequence: pointing operation

Definition

A a term operation t of A points to b ∈ A if
∃(a1, . . . , an) ∈ An such that
t(c1, . . . , cn) = b whenever ai = ci for all but at most one i

Theorem

Every (idempotent, finite) Taylor, simple, absorption-free algebra
has a pointing term operation.

I Let A = {1, . . . , n}
I Let b1, . . . ,bk be a list of 2n-tuples of elements of A which

differ from (1, 1, 2, 2, . . . , n, n) on at most 1-coordinate
I Let R = {(t(b1), . . . , t(bk)) : t ∈ Clo2n A}
I R is a subdirect subpower of A (a projection of the free

algebra to some coordinates)
I R is irredundant
I Rectangularity theorem ⇒ R = Ak .
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Thank you!


