Topology is relevant in infinite-domain constraint satisfaction

European Research Council Established by the European Commission Antoine Mottet (joint work with Bodirsky, Olšák, Opršal, Pinsker) ISSAOS 2019

- ▶ $\mathbb{A}, \mathbb{B}, \mathbb{X}$: relational structures
- Often infinite base set, finite signature

- ▶ A, B, X: relational structures
- Often infinite base set, finite signature

- ▶ Input: a finite structure X,
- Question: does there exist a homomorphism $\mathbb{X} \to \mathbb{A}$.

- ▶ A, B, X: relational structures
- Often infinite base set, finite signature

- ▶ Input: a finite structure X,
- Question: does there exist a homomorphism $\mathbb{X} \to \mathbb{A}$.

$$h: X \to A, (x_1, \ldots, x_k) \in R^{\mathbb{X}} \Rightarrow (h(x_1), \ldots, h(x_k)) \in R^{\mathbb{A}}$$

- ▶ A, B, X: relational structures
- Often infinite base set, finite signature

- Input: a finite structure X,
- Question: does there exist a homomorphism $\mathbb{X} \to \mathbb{A}$.

$$h: X \to A, (x_1, \ldots, x_k) \in R^{\mathbb{X}} \Rightarrow (h(x_1), \ldots, h(x_k)) \in R^{\mathbb{A}}$$

- Each problem associated with a relational structure: its template.
- A class of decision problems.
- For a large class of templates, the complexity of each problem depends solely on the symmetries of the template.

non-trivial symmetries ~> easier problems

► CSP(K₃): 3-colourability,

► CSP(K₃): 3-colourability,

• $CSP(\{0,1\},1,0,\leq)$: non-reachability,

CSP(K₃): 3-colourability,

► CSP({0,1},1,0,≤): non-reachability,

► CSP(N, <): acyclicity

- "symmetry" = polymorphism
- "non-trivial symmetries" = polymorphisms satisfying non-trivial identities

"symmetry" = polymorphism

"non-trivial symmetries" = polymorphisms satisfying non-trivial identities

Definition

 $\mathbb{G} = (V, E), f \colon V^n \to V$ is a polymorphism of \mathbb{G} if

$$\forall (a_1, b_1), \ldots, (a_n, b_n) \in E, \quad (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in E.$$

"symmetry" = polymorphism

"non-trivial symmetries" = polymorphisms satisfying non-trivial identities

Definition

 $\mathbb{G} = (V, E), f \colon V^n \to V$ is a polymorphism of \mathbb{G} if

$$\forall (a_1, b_1), \ldots, (a_n, b_n) \in E, \quad (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in E.$$

- ▶ Pol(𝔅): set of all polymorphisms of 𝔅,
- \mathscr{P} : clone of projections on $\{0,1\}$

"symmetry" = polymorphism

"non-trivial symmetries" = polymorphisms satisfying non-trivial identities

Definition

 $\mathbb{G} = (V, E), f \colon V^n \to V$ is a polymorphism of \mathbb{G} if

$$\forall (a_1, b_1), \ldots, (a_n, b_n) \in E, \quad (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in E.$$

- ▶ Pol(G): set of all polymorphisms of G,
- ▶ 𝒫: clone of projections on {0,1}
- ▶ $\xi: \mathscr{C} \to \mathscr{D}$ minion homomorphism if it preserves arities and height 1 identities.

 \mathbbm{A} finite structure. Exactly one of the following holds:

- ▶ $Pol(\mathbb{A}) \rightarrow \mathscr{P}$ and $CSP(\mathbb{A})$ is NP-complete,
- ▶ $Pol(\mathbb{A}) \not\rightarrow \mathscr{P}$ and $CSP(\mathbb{A})$ is in P.

 \mathbbm{A} finite structure. Exactly one of the following holds:

- ▶ $Pol(\mathbb{A}) \rightarrow \mathscr{P}$ and $CSP(\mathbb{A})$ is NP-complete,
- ▶ $Pol(\mathbb{A}) \not\rightarrow \mathscr{P} and CSP(\mathbb{A}) is in P.$

Second condition has several reformulations:

Theorem

Let \mathbb{A} be finite. TFAE:

- ▶ $\mathsf{Pol}(\mathbb{A}) \not\rightarrow \mathscr{P}$,
- Pol(A) satisfies some non-trivial identities,

 \mathbbm{A} finite structure. Exactly one of the following holds:

- ▶ $Pol(\mathbb{A}) \rightarrow \mathscr{P}$ and $CSP(\mathbb{A})$ is NP-complete,
- ▶ $Pol(\mathbb{A}) \not\rightarrow \mathscr{P} and CSP(\mathbb{A}) is in P.$

Second condition has several reformulations:

Theorem

Let \mathbb{A} be finite. TFAE:

- ▶ $\mathsf{Pol}(\mathbb{A}) \not\rightarrow \mathscr{P}$,
- Pol(A) satisfies some non-trivial identities,
- Pol(A) contains a cyclic operation

(Barto-Kozik)

▶ $Pol(\mathbb{A})$ contains an s: $A^4 \to A$ such that $s(a, r, e, a) \approx s(r, a, r, e)$. (Siggers)

 \mathbbm{A} finite structure. Exactly one of the following holds:

- ▶ $Pol(\mathbb{A}) \rightarrow \mathscr{P}$ and $CSP(\mathbb{A})$ is NP-complete,
- ▶ $Pol(\mathbb{A}) \not\rightarrow \mathscr{P} and CSP(\mathbb{A}) is in P.$

Second condition has several reformulations:

Theorem

Let \mathbb{A} be finite. TFAE:

- ▶ $\mathsf{Pol}(\mathbb{A}) \not\rightarrow \mathscr{P}$,
- Pol(A) satisfies some non-trivial identities,
- Pol(A) contains a cyclic operation

- (Barto-Kozik)
- ▶ Pol(A) contains an s: $A^4 \rightarrow A$ such that $s(a, r, e, a) \approx s(r, a, r, e)$. (Siggers)

Infinite-domain constraint satisfaction problems:

- Step 0: what relational structures to look at?
- Step 1: identify the borderline,
- Step 2: find a useful characterisation of the borderline.

Algebraic approach works for structures with a large automorphism group: \mathbb{A} is ω -categorical templates if the action of Aut(\mathbb{A}) on A^n has finitely many orbits, for all n.

- Algebraic approach works for structures with a large automorphism group: A is *ω*-categorical templates if the action of Aut(A) on Aⁿ has finitely many orbits, for all *n*.
- Example: (\mathbb{Q} ; <). #orbits on $\mathbb{Q}^n =$ #weak linear orders on *n* elements,

- Algebraic approach works for structures with a large automorphism group: A is *ω*-categorical templates if the action of Aut(A) on Aⁿ has finitely many orbits, for all *n*.
- Example: (\mathbb{Q} ; <). #orbits on $\mathbb{Q}^n =$ #weak linear orders on *n* elements,
- More examples: homogeneous structures,

- Algebraic approach works for structures with a large automorphism group: A is *ω*-categorical templates if the action of Aut(A) on Aⁿ has finitely many orbits, for all *n*.
- Example: (\mathbb{Q} ; <). #orbits on $\mathbb{Q}^n =$ #weak linear orders on *n* elements,
- More examples: homogeneous structures,
- More more examples: any structure definable in a homogeneous structure.

- Algebraic approach works for structures with a large automorphism group: \mathbb{A} is ω -categorical templates if the action of Aut(\mathbb{A}) on A^n has finitely many orbits, for all n.
- Example: (\mathbb{Q} ; <). #orbits on $\mathbb{Q}^n =$ #weak linear orders on *n* elements,
- More examples: homogeneous structures,
- More more examples: any structure definable in a homogeneous structure.

Sad Fact (Bodirsky-Grohe)

There are examples of homogeneous templates with undecidable and coNP-intermediate complexity.

- Algebraic approach works for structures with a large automorphism group: A is *ω*-categorical templates if the action of Aut(A) on Aⁿ has finitely many orbits, for all *n*.
- Example: (\mathbb{Q} ; <). #orbits on $\mathbb{Q}^n =$ #weak linear orders on *n* elements,
- More examples: homogeneous structures,
- More more examples: any structure definable in a homogeneous structure.

Sad Fact (Bodirsky-Grohe)

There are examples of homogeneous templates with undecidable and coNP-intermediate complexity.

A class \mathcal{K} of finite relational structures has (AP) if $\forall \mathbb{X}, \mathbb{Y}_1, \mathbb{Y}_2 \in \mathcal{K}$ and $f_i \colon \mathbb{X} \to \mathbb{Y}_i$, there exists $\mathbb{Z} \in \mathcal{K}$ and $g_i \colon \mathbb{Y}_i \to \mathbb{Z}$ s.t.

$$g_1\circ f_1=g_2\circ f_2.$$

A class \mathcal{K} of finite relational structures has (AP) if $\forall \mathbb{X}, \mathbb{Y}_1, \mathbb{Y}_2 \in \mathcal{K}$ and $f_i \colon \mathbb{X} \to \mathbb{Y}_i$, there exists $\mathbb{Z} \in \mathcal{K}$ and $g_i \colon \mathbb{Y}_i \to \mathbb{Z}$ s.t.

$$g_1\circ f_1=g_2\circ f_2.$$

Theorem (Fraïssé)

Every countable class \mathcal{K} with (AP) and closed under substructures has a Fraissé limit \mathbb{A} : a homogeneous structure such that $\mathcal{K} = \{\mathbb{X} \text{ finite } | \mathbb{X} \hookrightarrow \mathbb{A}\}.$

A class \mathcal{K} of finite relational structures has (AP) if $\forall \mathbb{X}, \mathbb{Y}_1, \mathbb{Y}_2 \in \mathcal{K}$ and $f_i \colon \mathbb{X} \to \mathbb{Y}_i$, there exists $\mathbb{Z} \in \mathcal{K}$ and $g_i \colon \mathbb{Y}_i \to \mathbb{Z}$ s.t.

$$g_1\circ f_1=g_2\circ f_2.$$

Theorem (Fraïssé)

Every countable class \mathcal{K} with (AP) and closed under substructures has a Fraissé limit \mathbb{A} : a homogeneous structure such that $\mathcal{K} = \{\mathbb{X} \text{ finite } | \mathbb{X} \hookrightarrow \mathbb{A}\}.$

Definition

 \mathcal{K} is *m*-bounded if $\mathbb{X} \in \mathcal{K} \Leftrightarrow$ all small substructures of \mathbb{X} ($\leq m$ elements) are in \mathcal{K} .

A class \mathcal{K} of finite relational structures has (AP) if $\forall \mathbb{X}, \mathbb{Y}_1, \mathbb{Y}_2 \in \mathcal{K}$ and $f_i \colon \mathbb{X} \to \mathbb{Y}_i$, there exists $\mathbb{Z} \in \mathcal{K}$ and $g_i \colon \mathbb{Y}_i \to \mathbb{Z}$ s.t.

$$g_1\circ f_1=g_2\circ f_2.$$

Theorem (Fraïssé)

Every countable class \mathcal{K} with (AP) and closed under substructures has a Fraissé limit \mathbb{A} : a homogeneous structure such that $\mathcal{K} = \{\mathbb{X} \text{ finite } | \mathbb{X} \hookrightarrow \mathbb{A}\}.$

Definition

 \mathcal{K} is *m*-bounded if $\mathbb{X} \in \mathcal{K} \Leftrightarrow$ all small substructures of \mathbb{X} ($\leq m$ elements) are in \mathcal{K} .

Bodirsky-Pinsker: consider A Fraïssé limit of a bounded amalgamation class, and any structure definable within A.

A class \mathcal{K} of finite relational structures has (AP) if $\forall \mathbb{X}, \mathbb{Y}_1, \mathbb{Y}_2 \in \mathcal{K}$ and $f_i \colon \mathbb{X} \to \mathbb{Y}_i$, there exists $\mathbb{Z} \in \mathcal{K}$ and $g_i \colon \mathbb{Y}_i \to \mathbb{Z}$ s.t.

$$g_1\circ f_1=g_2\circ f_2.$$

Theorem (Fraïssé)

Every countable class \mathcal{K} with (AP) and closed under substructures has a Fraissé limit \mathbb{A} : a homogeneous structure such that $\mathcal{K} = \{\mathbb{X} \text{ finite } | \mathbb{X} \hookrightarrow \mathbb{A}\}.$

Definition

 \mathcal{K} is *m*-bounded if $\mathbb{X} \in \mathcal{K} \Leftrightarrow$ all small substructures of \mathbb{X} ($\leq m$ elements) are in \mathcal{K} .

Bodirsky-Pinsker: consider $\mathbb A$ Fraïssé limit of a bounded amalgamation class, and any structure definable within $\mathbb A.$

- This class contains all finite structures,
- all such CSPs are in NP,
- all such templates are ω-categorical, in particular polymorphisms still capture complexity.

- Complexity still captured by polymorphisms: Pol(A) = Pol(B) ⇒ ptime equivalent CSPs
- ▶ If $\exists \xi \colon \mathsf{Pol}(\mathbb{A}) \to \mathscr{P}$ uniformly continuous, then $\mathsf{CSP}(\mathbb{A})$ is NP-hard.

- Complexity still captured by polymorphisms: Pol(A) = Pol(B) ⇒ ptime equivalent CSPs
- ▶ If $\exists \xi \colon \mathsf{Pol}(\mathbb{A}) \to \mathscr{P}$ uniformly continuous, then $\mathsf{CSP}(\mathbb{A})$ is NP-hard.

 \mathbbm{A} definable over a finitely bounded homogeneous structure.

- ▶ $Pol(\mathbb{A}) \rightarrow \mathscr{P}$ and $CSP(\mathbb{A})$ is NP-complete,
- ▶ $Pol(\mathbb{A}) \xrightarrow{y.c.} \mathscr{P} and CSP(\mathbb{A}) is in P.$

- Complexity still captured by polymorphisms: Pol(A) = Pol(B) ⇒ ptime equivalent CSPs
- ▶ If $\exists \xi$: Pol(\mathbb{A}) $\rightarrow \mathscr{P}$ uniformly continuous, then CSP(\mathbb{A}) is NP-hard.

 \mathbbm{A} definable over a finitely bounded homogeneous structure.

- ▶ $Pol(\mathbb{A}) \rightarrow \mathscr{P}$ and $CSP(\mathbb{A})$ is NP-complete,
- ▶ $Pol(\mathbb{A}) \xrightarrow{y.c.} \mathscr{P} and CSP(\mathbb{A}) is in P.$

Ways to make the conjecture easier to work with:

- Is there a weakest system of nontrivial height 1 identities for such structures?
- Can topology be dropped in the statement?

 \blacktriangleright Finite undirected graph $\mathbb{G} \rightsquigarrow$ system $\Sigma_{\mathbb{G}}$ of equations

 \blacktriangleright Finite undirected graph $\mathbb{G} \rightsquigarrow$ system $\Sigma_{\mathbb{G}}$ of equations

$$\begin{split} f_1(x, y, z) &= g_{1,2}(x, y, x, z, y, z) \\ f_2(x, y, z) &= g_{1,2}(y, x, z, x, z, y) \\ f_1(x, y, z) &= g_{1,3}(x, y, x, z, y, z) \\ f_3(x, y, z) &= g_{1,3}(y, x, z, x, z, y) \end{split}$$

• Finite undirected graph $\mathbb{G} \rightsquigarrow$ system $\Sigma_{\mathbb{G}}$ of equations

• \mathbb{G} not 3-colourable $\Rightarrow \Sigma_{\mathbb{G}}$ is nontrivial

Finite undirected graph $\mathbb{G} \rightsquigarrow$ system $\Sigma_{\mathbb{G}}$ of equations

- \mathbb{G} not 3-colourable $\Rightarrow \Sigma_{\mathbb{G}}$ is nontrivial
- Every system Σ implies some $\Sigma_{\mathbb{G}}$

• Finite undirected graph $\mathbb{G} \rightsquigarrow$ system $\Sigma_{\mathbb{G}}$ of equations

- $\blacktriangleright \ \mathbb{G} \text{ not } 3\text{-colourable} \Rightarrow \Sigma_{\mathbb{G}} \text{ is nontrivial}$
- Every system Σ implies some Σ_G

Fact

If \mathbb{A} contains a triangle and $\mathsf{Pol}(\mathbb{A})$ satisfies $\Sigma_{\mathbb{G}}$, then \mathbb{A} contains \mathbb{G} .

Finite undirected graph $\mathbb{G} \rightsquigarrow$ system $\Sigma_{\mathbb{G}}$ of equations

- \mathbb{G} not 3-colourable $\Rightarrow \Sigma_{\mathbb{G}}$ is nontrivial
- Every system Σ implies some Σ_G

Fact

If \mathbb{A} contains a triangle and $\mathsf{Pol}(\mathbb{A})$ satisfies $\Sigma_{\mathbb{G}}$, then \mathbb{A} contains \mathbb{G} .

$$\begin{array}{c} \begin{array}{c} x \ y \ x \ z \ y \ z \\ y \ x \ z \ x \ z \ y \ z \\ y \ x \ z \ x \ z \ y \\ y \ x \ z \ x \ z \ y \\ y \ x \ z \ x \ z \ y \\ \end{array} \begin{array}{c} \begin{array}{c} f_{1}(x,y,z) \\ g_{1,z}(x,g_{1,x},z,y,z) \\ g_{1,z}(x,g_{1,x},z,y,z) \\ g_{1,z}(y_{1,x},z,x,z,y) \\ g_{1,z}(y_{1,x},z,x,z,y) \\ \end{array} \end{array}$$

Let \mathbb{G} be a finite connected graph. There exists an ω -categorical $CSS(\mathbb{G})$ such that for all \mathbb{X} , $\mathbb{X} \to CSS(\mathbb{G})$ iff $\mathbb{G} \not\to \mathbb{X}$.

Let \mathbb{G} be a finite connected graph. There exists an ω -categorical $CSS(\mathbb{G})$ such that for all \mathbb{X} , $\mathbb{X} \to CSS(\mathbb{G})$ iff $\mathbb{G} \not\to \mathbb{X}$.

Proof:

1. Suppose $\mathcal{K} = \{ \mathbb{X} \text{ finite } | \mathbb{G} \not\rightarrow \mathbb{X} \}$ has the amalgamation property (AP),

Let \mathbb{G} be a finite connected graph. There exists an ω -categorical $CSS(\mathbb{G})$ such that for all \mathbb{X} , $\mathbb{X} \to CSS(\mathbb{G})$ iff $\mathbb{G} \not\to \mathbb{X}$.

Proof:

- **1**. Suppose $\mathcal{K} = \{ \mathbb{X} \text{ finite } | \mathbb{G} \not\rightarrow \mathbb{X} \}$ has the amalgamation property (AP),
- 2. Take its Fraïssé limit $CSS(\mathbb{G})$.

Let \mathbb{G} be a finite connected graph. There exists an ω -categorical $CSS(\mathbb{G})$ such that for all \mathbb{X} , $\mathbb{X} \to CSS(\mathbb{G})$ iff $\mathbb{G} \not\to \mathbb{X}$.

Proof:

- **1**. Suppose $\mathcal{K} = \{ \mathbb{X} \text{ finite } | \mathbb{G} \not\rightarrow \mathbb{X} \}$ has the amalgamation property (AP),
- 2. Take its Fraïssé limit $CSS(\mathbb{G})$.
- 3. In case \mathcal{K} does not have (AP), add relation symbols for the cuts of \mathbb{G} .

Let \mathbb{G} be a finite connected graph. There exists an ω -categorical $CSS(\mathbb{G})$ such that for all \mathbb{X} , $\mathbb{X} \to CSS(\mathbb{G})$ iff $\mathbb{G} \not\to \mathbb{X}$.

Proof:

- **1**. Suppose $\mathcal{K} = \{ \mathbb{X} \text{ finite } | \mathbb{G} \not\rightarrow \mathbb{X} \}$ has the amalgamation property (AP),
- 2. Take its Fraïssé limit $CSS(\mathbb{G})$.
- 3. In case \mathcal{K} does not have (AP), add relation symbols for the cuts of \mathbb{G} .

Moreover:

▶ A is definable in a finitely bounded homogeneous structure

Let \mathbb{G} be a finite connected graph. There exists an ω -categorical $CSS(\mathbb{G})$ such that for all \mathbb{X} , $\mathbb{X} \to CSS(\mathbb{G})$ iff $\mathbb{G} \not\to \mathbb{X}$.

Proof:

- **1**. Suppose $\mathcal{K} = \{ \mathbb{X} \text{ finite } | \mathbb{G} \not\rightarrow \mathbb{X} \}$ has the amalgamation property (AP),
- 2. Take its Fraïssé limit $CSS(\mathbb{G})$.
- 3. In case \mathcal{K} does not have (AP), add relation symbols for the cuts of \mathbb{G} .

Moreover:

- ▶ A is definable in a finitely bounded homogeneous structure
- ▶ If \mathbb{G} is not 3-colourable, Pol(\mathbb{A}) does not satisfy $\Sigma_{\mathbb{G}}$ (\mathbb{A} contains a triangle, does not contain \mathbb{G})

Let \mathbb{G} be a finite connected graph. There exists an ω -categorical $CSS(\mathbb{G})$ such that for all \mathbb{X} , $\mathbb{X} \to CSS(\mathbb{G})$ iff $\mathbb{G} \not\to \mathbb{X}$.

Proof:

- **1**. Suppose $\mathcal{K} = \{ \mathbb{X} \text{ finite } | \mathbb{G} \not\rightarrow \mathbb{X} \}$ has the amalgamation property (AP),
- 2. Take its Fraïssé limit $CSS(\mathbb{G})$.
- 3. In case \mathcal{K} does not have (AP), add relation symbols for the cuts of \mathbb{G} .

Moreover:

- ▶ A is definable in a finitely bounded homogeneous structure
- ▶ If \mathbb{G} is not 3-colourable, Pol(\mathbb{A}) does not satisfy $\Sigma_{\mathbb{G}}$ (\mathbb{A} contains a triangle, does not contain \mathbb{G})
- ▶ Pol(A) satisfies some nontrivial global height 1 equations

Let \mathbb{G} be a finite connected graph. There exists an ω -categorical CSS(\mathbb{G}) such that for all \mathbb{X} , $\mathbb{X} \to CSS(\mathbb{G})$ iff $\mathbb{G} \not\to \mathbb{X}$.

Proof:

- **1**. Suppose $\mathcal{K} = \{ \mathbb{X} \text{ finite } | \mathbb{G} \not\rightarrow \mathbb{X} \}$ has the amalgamation property (AP),
- 2. Take its Fraïssé limit $CSS(\mathbb{G})$.
- 3. In case \mathcal{K} does not have (AP), add relation symbols for the cuts of \mathbb{G} .

Moreover:

- ▶ A is definable in a finitely bounded homogeneous structure
- ▶ If \mathbb{G} is not 3-colourable, Pol(\mathbb{A}) does not satisfy $\Sigma_{\mathbb{G}}$ (\mathbb{A} contains a triangle, does not contain \mathbb{G})
- Pol(A) satisfies some nontrivial global height 1 equations
- ► CSP(A) is in FO!

Let \mathbb{G} be a finite connected graph. There exists an ω -categorical CSS(\mathbb{G}) such that for all \mathbb{X} , $\mathbb{X} \to CSS(\mathbb{G})$ iff $\mathbb{G} \not\to \mathbb{X}$.

Proof:

- **1**. Suppose $\mathcal{K} = \{ \mathbb{X} \text{ finite } | \mathbb{G} \not\rightarrow \mathbb{X} \}$ has the amalgamation property (AP),
- 2. Take its Fraïssé limit $CSS(\mathbb{G})$.
- 3. In case \mathcal{K} does not have (AP), add relation symbols for the cuts of \mathbb{G} .

Moreover:

- ▶ A is definable in a finitely bounded homogeneous structure
- ▶ If \mathbb{G} is not 3-colourable, Pol(\mathbb{A}) does not satisfy $\Sigma_{\mathbb{G}}$ (\mathbb{A} contains a triangle, does not contain \mathbb{G})
- ▶ Pol(A) satisfies some nontrivial global height 1 equations
- ► CSP(A) is in FO!

Theorem (BMOOPW)

There is no weakest non-trivial system of global height 1 identities. In particular, one cannot replace $\operatorname{Pol}(\mathbb{A}) \xrightarrow{q.c.} \mathscr{P}$ by some global identities in the statement of the dichotomy conjecture.

 \mathbbm{A} definable over a finitely bounded homogeneous structure. One of the following holds:

- ▶ $Pol(A) \rightarrow Pol(SAT)$ uniformly continuously and CSP(A) is NP-complete,
- ▶ $Pol(\mathbb{A}) \xrightarrow{y.c.} \mathscr{P} and CSP(\mathbb{A}) is in P.$

 \mathbbm{A} definable over a finitely bounded homogeneous structure. One of the following holds:

- ▶ $Pol(A) \rightarrow Pol(SAT)$ uniformly continuously and CSP(A) is NP-complete,
- ▶ $Pol(\mathbb{A}) \xrightarrow{y.c.} \mathscr{P} and CSP(\mathbb{A}) is in P.$

Theorem (BMOOPW)

There exists an ω -categorical structure such that $\mathsf{Pol}(\mathbb{A}) \xrightarrow{y.c.} \mathscr{P}$ and $\mathsf{Pol}(\mathbb{A}) \longrightarrow \mathscr{P}$.

 \mathbbm{A} definable over a finitely bounded homogeneous structure. One of the following holds:

- ▶ $Pol(A) \rightarrow Pol(SAT)$ uniformly continuously and CSP(A) is NP-complete,
- ▶ $Pol(\mathbb{A}) \xrightarrow{q.c.} \mathscr{P} and CSP(\mathbb{A}) is in P.$

Theorem (BMOOPW)

There exists an ω -categorical structure such that $\operatorname{Pol}(\mathbb{A}) \xrightarrow{\psi.c.} \mathscr{P}$ and $\operatorname{Pol}(\mathbb{A}) \longrightarrow \mathscr{P}$. Proof:

• For each \mathbb{G} not 3-colorable, $\mathbb{A}(\mathbb{G})$ that does not satisfy $\Sigma_{\mathbb{G}}$,

 \mathbbm{A} definable over a finitely bounded homogeneous structure. One of the following holds:

- ▶ $Pol(A) \rightarrow Pol(SAT)$ uniformly continuously and CSP(A) is NP-complete,
- ▶ $Pol(\mathbb{A}) \xrightarrow{y.c.} \mathscr{P} and CSP(\mathbb{A}) is in P.$

Theorem (BMOOPW)

There exists an ω -categorical structure such that $\operatorname{Pol}(\mathbb{A}) \xrightarrow{\psi.c.} \mathscr{P}$ and $\operatorname{Pol}(\mathbb{A}) \longrightarrow \mathscr{P}$. Proof:

- For each \mathbb{G} not 3-colorable, $\mathbb{A}(\mathbb{G})$ that does not satisfy $\Sigma_{\mathbb{G}}$,
- Superpose all these structures A := A(G₁) ⊕ A(G₂) ⊕ ..., → A that does not satisfy any Σ_G so Pol(A) → Pol(SAT),

 \mathbbm{A} definable over a finitely bounded homogeneous structure. One of the following holds:

- ▶ $Pol(A) \rightarrow Pol(SAT)$ uniformly continuously and CSP(A) is NP-complete,
- ▶ $Pol(\mathbb{A}) \xrightarrow{y.c.} \mathscr{P} and CSP(\mathbb{A}) is in P.$

Theorem (BMOOPW)

There exists an ω -categorical structure such that $\mathsf{Pol}(\mathbb{A}) \xrightarrow{q.c.} \mathscr{P}$ and $\mathsf{Pol}(\mathbb{A}) \longrightarrow \mathscr{P}$. Proof:

- For each G not 3-colorable, A(G) that does not satisfy Σ_G,
- Superpose all these structures $\mathbb{A} := \mathbb{A}(\mathbb{G}_1) \oplus \mathbb{A}(\mathbb{G}_2) \oplus \dots$, $\rightsquigarrow \mathbb{A}$ that does not satisfy any $\Sigma_{\mathbb{G}}$ so $\mathsf{Pol}(\mathbb{A}) \to \mathsf{Pol}(SAT)$,
- ▶ A has local Barto-Pham terms (Gillibert, Jonušas, Kompatscher, M, Pinsker) ⇒ Pol(A) $\xrightarrow{\mu.c.} \mathscr{P}$

 \mathbbm{A} definable over a finitely bounded homogeneous structure. One of the following holds:

- ▶ $Pol(A) \rightarrow Pol(SAT)$ uniformly continuously and CSP(A) is NP-complete,
- ▶ $Pol(\mathbb{A}) \xrightarrow{y.c.} \mathscr{P} and CSP(\mathbb{A}) is in P.$

Theorem (BMOOPW)

There exists an ω -categorical structure such that $\mathsf{Pol}(\mathbb{A}) \xrightarrow{\psi.c.} \mathscr{P}$ and $\mathsf{Pol}(\mathbb{A}) \longrightarrow \mathscr{P}$. Proof:

- For each \mathbb{G} not 3-colorable, $\mathbb{A}(\mathbb{G})$ that does not satisfy $\Sigma_{\mathbb{G}}$,
- ▶ Superpose all these structures $\mathbb{A} := \mathbb{A}(\mathbb{G}_1) \oplus \mathbb{A}(\mathbb{G}_2) \oplus \dots$, $\rightsquigarrow \mathbb{A}$ that does not satisfy any $\Sigma_{\mathbb{G}}$ so $\mathsf{Pol}(\mathbb{A}) \to \mathsf{Pol}(SAT)$,
- ▶ A has local Barto-Pham terms (Gillibert, Jonušas, Kompatscher, M, Pinsker) ⇒ Pol(A) $\xrightarrow{y.c.} \mathscr{P}$

More recently:

Theorem

There exists an ω -categorical structure with finite signature with the same properties.

Antoine Mottet

 $\blacktriangleright \mathbb{G}_1, \mathbb{G}_2 \mapsto \mathbb{A}(\mathbb{G}_1) \oplus \mathbb{A}(\mathbb{G}_2)$

$$\blacktriangleright \ \mathbb{G}_1, \mathbb{G}_2 \mapsto \mathbb{A}(\mathbb{G}_1) \oplus \mathbb{A}(\mathbb{G}_2)$$

 $\blacktriangleright \ \mathcal{K}_1 = \{ \mathbb{X} \text{ finite } \mid \mathbb{G}_1 \not\to \mathbb{X} \}$

$$\blacktriangleright \ \mathbb{G}_1, \mathbb{G}_2 \mapsto \mathbb{A}(\mathbb{G}_1) \oplus \mathbb{A}(\mathbb{G}_2)$$

$$\blacktriangleright \mathcal{K}_1 = \{ \mathbb{X} \text{ finite } | \mathbb{G}_1 \not\to \mathbb{X} \}$$

$$\blacktriangleright \mathcal{K}_2 = \{ \mathbb{X} \text{ finite } | \mathbb{G}_2 \not\to \mathbb{X} \},\$$

$$\blacktriangleright \mathbb{G}_1, \mathbb{G}_2 \mapsto \mathbb{A}(\mathbb{G}_1) \oplus \mathbb{A}(\mathbb{G}_2)$$

$$\blacktriangleright \ \mathcal{K}_1 = \{ \mathbb{X} \text{ finite } \mid \mathbb{G}_1 \not\to \mathbb{X} \}$$

 $\blacktriangleright \ \mathcal{K}_2 = \{ \mathbb{X} \text{ finite } \mid \mathbb{G}_2 \not\to \mathbb{X} \},\$

•
$$\mathcal{K} = \mathsf{all}(V, E_1, E_2) \mathsf{ s.t.}(V, E_1) \in \mathcal{K}_1 \mathsf{ and}(V, E_2) \in \mathcal{K}_2$$

- $\blacktriangleright \ \mathbb{G}_1, \mathbb{G}_2 \mapsto \mathbb{A}(\mathbb{G}_1) \oplus \mathbb{A}(\mathbb{G}_2)$
- $\blacktriangleright \ \mathcal{K}_1 = \{ \mathbb{X} \text{ finite } \mid \mathbb{G}_1 \not\to \mathbb{X} \}$
- $\blacktriangleright \ \mathcal{K}_2 = \{ \mathbb{X} \text{ finite } \mid \mathbb{G}_2 \not\to \mathbb{X} \},\$
- $\mathcal{K} = \mathsf{all}(V, E_1, E_2) \mathsf{ s.t.}(V, E_1) \in \mathcal{K}_1 \mathsf{ and}(V, E_2) \in \mathcal{K}_2$
- $\mathbb{A}(\mathbb{G}_1) \oplus \mathbb{A}(\mathbb{G}_2)$ is the Fraïssé limit of \mathcal{K} .

- $\blacktriangleright \ \mathbb{G}_1, \mathbb{G}_2 \mapsto \mathbb{A}(\mathbb{G}_1) \oplus \mathbb{A}(\mathbb{G}_2)$
- $\blacktriangleright \ \mathcal{K}_1 = \{ \mathbb{X} \text{ finite } \mid \mathbb{G}_1 \not\to \mathbb{X} \}$
- $\blacktriangleright \ \mathcal{K}_2 = \{ \mathbb{X} \text{ finite } \mid \mathbb{G}_2 \not\to \mathbb{X} \},\$
- $\mathcal{K} = \mathsf{all}(V, E_1, E_2) \mathsf{ s.t.}(V, E_1) \in \mathcal{K}_1 \mathsf{ and}(V, E_2) \in \mathcal{K}_2$
- $\mathbb{A}(\mathbb{G}_1) \oplus \mathbb{A}(\mathbb{G}_2)$ is the Fraïssé limit of \mathcal{K} .

Fact

orbits of pairs in $\mathbb{A}(\mathbb{G}_1) \oplus \mathbb{A}(\mathbb{G}_2) = (\# \dots \text{ in } \mathbb{A}(\mathbb{G}_1)) \times (\# \dots \text{ in } \mathbb{A}(\mathbb{G}_2))$

- $\blacktriangleright \mathbb{G}_1, \mathbb{G}_2 \mapsto \mathbb{A}(\mathbb{G}_1) \oplus \mathbb{A}(\mathbb{G}_2)$
- $\blacktriangleright \ \mathcal{K}_1 = \{ \mathbb{X} \text{ finite } \mid \mathbb{G}_1 \not\to \mathbb{X} \}$
- $\blacktriangleright \ \mathcal{K}_2 = \{ \mathbb{X} \text{ finite } \mid \mathbb{G}_2 \not\to \mathbb{X} \},\$
- $\mathcal{K} = \mathsf{all}(V, E_1, E_2) \mathsf{ s.t.}(V, E_1) \in \mathcal{K}_1 \mathsf{ and}(V, E_2) \in \mathcal{K}_2$
- $\mathbb{A}(\mathbb{G}_1) \oplus \mathbb{A}(\mathbb{G}_2)$ is the Fraïssé limit of \mathcal{K} .

Fact

orbits of pairs in $\mathbb{A}(\mathbb{G}_1) \oplus \mathbb{A}(\mathbb{G}_2) = (\# \dots \text{ in } \mathbb{A}(\mathbb{G}_1)) \times (\# \dots \text{ in } \mathbb{A}(\mathbb{G}_2))$ Final trick: first encode $\mathbb{A}(\mathbb{G}_n)$ as a graph on *n*-tuples.

Theorem (BMOOPW)

There is no weakest non-trivial system of global height 1 identities. In particular, one cannot replace $\operatorname{Pol}(\mathbb{A}) \xrightarrow{q.c.} \mathscr{P}$ by some global identities in the statement of the dichotomy conjecture.

Theorem (BMOOPW)

There exists a closed oligomorphic clone \mathscr{C} such that $\mathscr{C} \xrightarrow{u.c.} \mathscr{P}$ and $\mathscr{C} \longrightarrow \mathscr{P}$.