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Introduction Constraint Satisfaction Problems

I A,B,X: relational structures

I Often infinite base set, finite signature

Definition

I Input: a finite structure X,

I Question: does there exist a homomorphism X→ A.

h : X → A, (x1, . . . , xk ) ∈ RX ⇒ (h(x1), . . . , h(xk )) ∈ RA

I Each problem associated with a relational structure: its template.

I A class of decision problems.

I For a large class of templates, the complexity of each problem depends solely on
the symmetries of the template.

non-trivial symmetries  easier problems
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Introduction Examples

I CSP(K3): 3-colourability,

I CSP({0, 1}, 1, 0,≤): non-reachability,

I CSP(N, <): acyclicity
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Introduction Symmetries

I “symmetry” = polymorphism

I “non-trivial symmetries” = polymorphisms satisfying non-trivial identities

Definition

G = (V ,E), f : V n → V is a polymorphism of G if

∀(a1, b1), . . . , (an, bn) ∈ E , (f (a1, . . . , an), f (b1, . . . , bn)) ∈ E .

I Pol(G): set of all polymorphisms of G,

I P: clone of projections on {0, 1}
I ξ : C → D minion homomorphism if it preserves arities and height 1 identities.
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Introduction Finite-Domain Dichotomy

Theorem (Bulatov ’17, Zhuk ’17)

A finite structure. Exactly one of the following holds:

I Pol(A)→P and CSP(A) is NP-complete,

I Pol(A) 6→P and CSP(A) is in P.

Second condition has several reformulations:

Theorem

Let A be finite. TFAE:

I Pol(A) 6→P,

I Pol(A) satisfies some non-trivial identities,

I Pol(A) contains a cyclic operation (Barto-Kozik)

I Pol(A) contains an s : A4 → A such that s(a, r , e, a) ≈ s(r , a, r , e). (Siggers)

Infinite-domain constraint satisfaction problems:

I Step 0: what relational structures to look at?

I Step 1: identify the borderline,

I Step 2: find a useful characterisation of the borderline.
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Topology is relevant Step 0: the scope

I Algebraic approach works for structures with a large automorphism group: A is
ω-categorical templates if the action of Aut(A) on An has finitely many orbits, for
all n.

I Example: (Q;<). #orbits on Qn = #weak linear orders on n elements,

I More examples: homogeneous structures,

I More more examples: any structure definable in a homogeneous structure.

Sad Fact (Bodirsky-Grohe)

There are examples of homogeneous templates with undecidable and
coNP-intermediate complexity.
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Topology is relevant Interlude: amalgamation

Definition

A class K of finite relational structures has (AP) if ∀X,Y1,Y2 ∈ K and fi : X→ Yi ,
there exists Z ∈ K and gi : Yi → Z s.t.

g1 ◦ f1 = g2 ◦ f2.

Theorem (Fräıssé)

Every countable class K with (AP) and closed under substructures has a Fräıssé limit
A: a homogeneous structure such that K = {X finite | X ↪→ A}.

Definition

K is m-bounded if X ∈ K ⇔ all small substructures of X (≤ m elements) are in K.

Bodirsky-Pinsker: consider A Fräıssé limit of a bounded amalgamation class, and any
structure definable within A.

I This class contains all finite structures,

I all such CSPs are in NP,

I all such templates are ω-categorical, in particular polymorphisms still capture
complexity.
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Topology is relevant Step 1: the dividing line

I Complexity still captured by polymorphisms:
Pol(A) = Pol(B)⇒ ptime equivalent CSPs

I If ∃ξ : Pol(A)→P uniformly continuous, then CSP(A) is NP-hard.

Conjecture (Barto, Opřsal, Pinsker)

A definable over a finitely bounded homogeneous structure.

I Pol(A)→P and CSP(A) is NP-complete,

I Pol(A) 6 u.c.−−→P and CSP(A) is in P.

Ways to make the conjecture easier to work with:

I Is there a weakest system of nontrivial height 1 identities for such structures?

I Can topology be dropped in the statement?
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Topology is relevant No weakest strong Mal’cev condition

I Finite undirected graph G system ΣG of equations

f1(x , y , z) = g1,2(x , y , x , z, y , z)

f2(x , y , z) = g1,2(y , x , z, x , z, y)

f1(x , y , z) = g1,3(x , y , x , z, y , z)

f3(x , y , z) = g1,3(y , x , z, x , z, y)

I G not 3-colourable ⇒ ΣG is nontrivial
I Every system Σ implies some ΣG

Fact

If A contains a triangle and Pol(A) satisfies ΣG, then A contains G.
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Topology is relevant The Cherlin-Shelah-Shi Theorem

Theorem (Cherlin-Shelah-Shi, Hubička-Nešeťril)

Let G be a finite connected graph. There exists an ω-categorical CSS(G) such that
for all X, X→ CSS(G) iff G 6→ X.

Proof:

1. Suppose K = {X finite | G 6→ X} has the amalgamation property (AP),

2. Take its Fräıssé limit CSS(G).

3. In case K does not have (AP), add relation symbols for the cuts of G.

Moreover:

I A is definable in a finitely bounded homogeneous structure

I If G is not 3-colourable, Pol(A) does not satisfy ΣG (A contains a triangle, does
not contain G)

I Pol(A) satisfies some nontrivial global height 1 equations

I CSP(A) is in FO!

Theorem (BMOOPW)

There is no weakest non-trivial system of global height 1 identities. In particular, one

cannot replace Pol(A) 6 u.c.−−→P by some global identities in the statement of the
dichotomy conjecture.
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3. In case K does not have (AP), add relation symbols for the cuts of G.

Moreover:

I A is definable in a finitely bounded homogeneous structure

I If G is not 3-colourable, Pol(A) does not satisfy ΣG (A contains a triangle, does
not contain G)

I Pol(A) satisfies some nontrivial global height 1 equations

I CSP(A) is in FO!

Theorem (BMOOPW)

There is no weakest non-trivial system of global height 1 identities. In particular, one

cannot replace Pol(A) 6 u.c.−−→P by some global identities in the statement of the
dichotomy conjecture.

Antoine Mottet Topology ! 10/13



Topology is relevant The Cherlin-Shelah-Shi Theorem

Theorem (Cherlin-Shelah-Shi, Hubička-Nešeťril)
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Topology is relevant Local 6= Global

Conjecture (Barto, Opřsal, Pinsker)

A definable over a finitely bounded homogeneous structure. One of the following
holds:

I Pol(A)→ Pol(SAT ) uniformly continuously and CSP(A) is NP-complete,

I Pol(A) 6 u.c.−−→P and CSP(A) is in P.

Theorem (BMOOPW)

There exists an ω-categorical structure such that Pol(A) 6 u.c.−−→P and Pol(A) −→P.

Proof:

I For each G not 3-colorable, A(G) that does not satisfy ΣG,

I Superpose all these structures A := A(G1)⊕ A(G2)⊕ . . . ,
 A that does not satisfy any ΣG so Pol(A)→ Pol(SAT ),

I A has local Barto-Pham terms (Gillibert, Jonušas, Kompatscher, M, Pinsker)

⇒ Pol(A) 6 u.c.−−→P

More recently:

Theorem

There exists an ω-categorical structure with finite signature with the same properties.
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Topology is relevant Generic superposition

Combine several ω-categorical structures (oligomorphic groups) and get another
ω-categorical structure (oligomorphic group) in a generic way.

I G1,G2 7→ A(G1)⊕ A(G2)

I K1 = {X finite | G1 6→ X}
I K2 = {X finite | G2 6→ X},
I K = all (V ,E1,E2) s.t. (V ,E1) ∈ K1 and (V ,E2) ∈ K2

I A(G1)⊕ A(G2) is the Fräıssé limit of K.

Fact

# orbits of pairs in A(G1)⊕ A(G2) = (# ... in A(G1)) × (#... in A(G2))

Final trick: first encode A(Gn) as a graph on n-tuples.
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Topology is relevant Conclusion

Theorem (BMOOPW)

There is no weakest non-trivial system of global height 1 identities. In particular, one

cannot replace Pol(A) 6 u.c.−−→P by some global identities in the statement of the
dichotomy conjecture.

Theorem (BMOOPW)

There exists a closed oligomorphic clone C such that C 6 u.c.−−→P and C −→P.
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