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Main result and outline

Main result as a dichotomy theorem:
For any countable ω-categorical A, its core

I either has a huge expressive power,

I or has nontrivial symmetries

Other formulation: Topology is irrelevant

Outline:

I 1st formulation

I 2nd formulation

I motivation – infinite domain CSP

I proof via a pseudo-loop lemma

Note: All structures at most countable



1st formulation: the dichotomy



Huge expressive power

“huge expressive power”
= pp-interprets all finite structures (with parameters)
= pp-interprets K3 (with parameters)

Def: primitive positive (pp-) formula over A = (A;R1,R2, . . . )
uses ∃,∧,=
eg. (∃x1)(∃x2)R3(x1, x3) ∧ R2(x1, x1, x4)

Def: pp-formula with parameters can use elements of A

Def: A pp-interprets B if ∃ map from S ⊆ Ak to B such that
S , preimage of =, and preimages of relations in B are pp-definable
from A

ie. B is obtained:

I take An and some relations pp-definable from A
I take an induced substructure on a pp-def set

I take a quotient modulo a pp-def equivalence



Unary symmetries = endomorphisms

End(A) = {f | f : A→ A homo} the set of endomorphisms
Aut(A) = {f ′, | f , f −1 ∈ End(A)} the set of automorphisms

Equipped with the topology of pointwise convergence:

(fi ) converges to f iff f (a) = fi (a) eventually, for all a ∈ A
or A discrete top., AA product top., End(A) subspace top.

Thm: [Engeler, Ryll-Nardzewski, Svenonius’59] A is ω-categorical
iff ∀n Aut(A) y An has finitely many orbits

(Aut(A) is oligomorphic)

Def: A is a core if Aut(A) dense in End(A)

Thm: [Bodirsky’07] Each ω-categorical A is homomorphically
equivalent to a unique ω-categorical core.



Symmetries = polymorphisms

Pol(A) = {f | f : An → A homo} the set of polymorphisms

equipped with the topology of pointwise convergence
(will appear later)

it is a clone: contains projections, closed under composition
= closed under forming term operations

Def: Homomorphism between clones A → B is a
mapping from operations in A to operations in B that

preserves projections and composition

equivalently, preserves (universally quantified) equations
eg. an associative/commutative operation is mapped to
an associative/commutative operation



Nontrivial symmetries

A has ”nontrivial symmetries”
= there is no homomorphism from Pol(A) to the trivial clone P

trivial clone P: clone of projections on (say) 2-element set

Note: There exists no homo from Pol(A) to P (the trivial clone)

iff the set of equations satisfied by polymorphisms of A is not
satisfiable by projections



The dichotomy result

Theorem (Barto, Pinsker’06)

Let A be the core of a countable ω-categorical structure. Then

(1) either A pp-interprets, with parameters, every finite structure

(2) or there is no homo Pol(A, a1, . . . , an)→ P for any
a1, . . . , an ∈ A

Moreover, (2) is equivalent to

(2’) Pol(A) contains unary α, β and 6-ary s (a pseudo–Siggers)
such that

α(s(x , y , x , z , y , z)) = β(s(y , x , z , x , z , y))

The constants in (2) because of parameters in (1).

The version without constants is open.



An equivalent formulation

Theorem

Let A be a core ω-categorical structure. TFAE

(1) A does not pp-interpret K3 (with parameters).

(2) A has polymorphisms α, β, s satisfying
α(s(x , y , x , z , y , z)) = β(s(y , x , z , x , z , y)).



2nd formulation: topology is irrelevant



pp-interpretations and clone homomorphisms; finite case

Thm: Finite A pp-interprets finite B
iff ∃ homo Pol(A)→ Pol(B)

Why:

I pp-definitions ↔ polymorphisms [Geiger’68, Bodnarčuk,
Kalužnin, Kotov, Romov’69]

I pp-interpretations ↔ standard algebraic constructions
(powers, subalgebras, quotients) [Bodirsky ???]

I standard constructions ↔ equations (clone homomorphisms)
[Birkhoff’35]

Cor: Finite A pp-interprets all finite
iff ∃ homo Pol(A)→ P



pp-interpretations and clone homomorphisms; infinite

Thm: ω-categorical A pp-interprets finite B
iff ∃ continuous homo Pol(A)→ Pol(B)

Why:

I pp-definitions ↔ polymorphisms [Bodirsky, Nešeťril’06]

I pp-interpretations ↔ finite powers, subalgebras, quotients

I these constructions ↔ continuous clone homomorphisms
[Bodirsky, Pinsker’15]

Cor: ω-categorical A pp-interprets all finite
iff ∃ homo Pol(A)→ P

Cor: ω-categorical A pp-interprets, with parameters, all finite
iff ∃ homo Pol(A, a1, . . . , an)→ P for some a1, . . . , an ∈ A



The dichotomy theorem rephrased

Theorem (B,P’06)

Let A be a core countable ω-categorical structure.

If ∃ homo Pol(A, a1, . . . , an)→ P for some ai ∈ A

Then ∃continuous homo Pol(A, a1, . . . , an)→ P for some ai ∈ A

Moreover, in the opposite case, Pol(A) contains a pseudo-Siggers
operation.

I Is the implication true without the constants?

I There are discontinuous homomorphisms to P
[Bodirsky, Pinsker, Pongrácz’?]



Motivation: Infinite domain CSP



CSP over a structure

Def: Constraint Satisfaction Problem over A, CSP(A),
INPUT: pp-sentence over A
QUESTION: is it true in A?

I A pp-interprets B ⇒ CSP(B) easier than CSP(A)
I A finite: CSP(A) in NP

I core of A pp-interprets (w/params) K3 ⇒ CSP(A)
NP-complete

I conjecture: otherwise CSP(A) in P
[Bulatov,Jeavons,Krokhin’00]

I in any case, the complexity of CSP(A)
depends only on equations true in Pol(A)

I For infinite A (important problems!)
I CSP(A) can be anything [Bodirsky, Grohe’08]
I For ω-categorical A: still bad [Bodirsky, Grohe’08]
I ...but the complexity of CSP(A)

depends only on equations and topology of Pol(A)
I For nicer infinite A: CSP(A) in NP, the dichotomy

NP-complete/P plausible



The dichotomy conjectyre for infinite template CSPs

Conjecture (Bodirsky, Pinsker’11)

Let A be the core of B– a reduct of a finitely bounded
homogeneous structure in finite language (such structures are
ω-categorical)

If there is no continuous homo Pol(A, a1, . . . , an)→ P for any
ai ∈ A, then CSP(B) is in P. (Otherwise it is NP-complete.)

I Our theorem removes the topology
I It gives a positive alternative (perhaps useful for attacking the

conjecture)
I ... there are many such alternatives in the finite case
I It gives a tool for proving NP-completeness
I There is a better conjecture

[Barto, Opřsal, Pinsker: Wonderland of reflections’??]
I The two conjectures are equivalent [Oľsák]



Proof via a pseudo-loop lemma



Loop lemmata

Loop lemma: Let R ⊆ B2, B finite.
Then R contains a loop (a, a) provided

I certain structural assumption is satisfied, like

(1) R is symmetric and contains a triangle
(2) R is symmetric and contains an odd cycle
(3) R is strongly connected, GCD of cycles lengths = 1
(4) R has no sources or sinks and has algebraic length 1

I and (B,R) does not pp-interpret, with parameters, K3

Each loop lemma gives equations [Siggers’10] using a standard
universal algebraic argument [Kearnes,Marković,McKenzie’14]

Loop lemma proved by

I ∼[Hell, Nešeťril’90] assuming (2): purely relational proof

I [Bulatov’05] assuming (2): relations + operations

I [Barto, Kozik, Niven’09] assuming (4): purely algebraic proof



Equations from loop lemma

Theorem (Siggers’10)

TFAE for finite core A
(1) A does not pp-interpret K3 (with parameters).

(2) A has a polymorphism s satisfying
s(x , y , x , z , y , z) = s(y , x , z , x , z , y).

Only (1) ⇒ (2) interesting.

I Define B = AA3
(element is a 3-ary operation on A)

I Define

R =

{(
(x , y , z) 7→ s(x , y , x , z , y , z)
(x , y , z) 7→ s(y , x , z , x , z , y)

)
| s a 6-ary polymorphism

}
I Observe

I R is symmetric
I R contains a triangle (x , y , z form a triangle)
I A pp-interprets (B;R), thus (B;R) does not interpret K3

I Loop in R gives the Siggers operation



To the infinity

Two issues with generalization to ω-categorical:

I AA3
is not a finite power

I Use AX for X finite subsets of A3

I This gives “locally nice operations”
I Compactness argument using ω-categoricity → globally nice

operations

I loop lemma does not hold (eg. (N; 6=))
I loop lemma → pseudo–loop lemma
I pseudo–loop lemma: the technical core

We get:

Theorem

Let A be a core ω-categorical structure. TFAE

(1) A does not pp-interpret K3 (with parameters).

(2) A has polymorphisms α, β, s satisfying
αs(x , y , x , z , y , z) = βs(y , x , z , x , z , y).



Pseudo–loop lemma

Theorem

Let R ⊆ B2, B countable.
Let a group G acts on B oligomorphically, let R be G -invariant.
Then R contains a pseudo–loop (a, b), a, b in the same G -orbit
provided

I R is symmetric and contains a triangle

I and (B;R,G−orbits of pairs) does not pp-interpret, with
parameters, K3

I First attempt: use B,K,N algebraic approach. Not successful
yet, but very interesting “side product” – Oľsák’s equations

I Second attempt: use Bulatov’s relational/algebraic approach.
Success, proof requires generalizations and extra work



Thank you!


