Constraint Satisfaction Problems of Bounded Width I

Marcin Kozik

joint work with Libor Barto

TCS @ Jagiellonian Kraków Poland

CanaDAM 2009

L. Barto, M. Kozik (Kraków)

Bounded Width CSPs I

CanaDAM 2009 1 / 12

Constraint Satisfaction Problem

Definition (A homomorphism of relational structures)

For two similar relational structures $\mathcal{R} = \{R; R_1, ..., R_n\}$ and $\mathcal{S} = \{S; S_1, ..., S_n\}$ a function $h : R \to S$ is a homomorphism iff

 $(a_1, \ldots, a_{n_i}) \in R_i \text{ implies } (h(a_1), \ldots, h(a_{n_i})) \in S_i \text{ for any } i \leq n.$

Constraint Satisfaction Problem

Definition (A homomorphism of relational structures)

For two similar relational structures $\mathcal{R} = \{R; R_1, ..., R_n\}$ and $\mathcal{S} = \{S; S_1, ..., S_n\}$ a function $h : R \to S$ is a homomorphism iff

 $(a_1, \ldots, a_{n_i}) \in R_i$ implies $(h(a_1), \ldots, h(a_{n_i})) \in S_i$ for any $i \leq n$.

A finite relational structure \mathcal{R} is a core if all the homomorphisms from \mathcal{R} to \mathcal{R} are bijective.

Constraint Satisfaction Problem

Definition (A homomorphism of relational structures)

For two similar relational structures $\mathcal{R} = \{R; R_1, ..., R_n\}$ and $\mathcal{S} = \{S; S_1, ..., S_n\}$ a function $h : R \to S$ is a homomorphism iff

 $(a_1, \ldots, a_{n_i}) \in R_i \text{ implies } (h(a_1), \ldots, h(a_{n_i})) \in S_i \text{ for any } i \leq n.$

A finite relational structure \mathcal{R} is a core if all the homomorphisms from \mathcal{R} to \mathcal{R} are bijective.

Definition (The combinatorial CSP)

For a fixed, finite relational structure S by CSP(S) we understand a computational problem:

INPUT: a relational structure \mathcal{R} similar to \mathcal{S} QUESTION: does there exist a homomorphism from \mathcal{R} to \mathcal{S} ?

System of equations:

$$x + y = z$$
$$x + z = 0$$
$$z + y = 1$$

System of equations:

$$x + y = z$$
$$x + z = 0$$
$$z + y = 1$$

System of equations:

$$x + y = z$$
$$x + z = a$$
$$z + y = b$$
$$a = 0$$
$$b = 1$$

System of equations:

Such a system has a solution if there is a function from $\{x, y, z, a, b\}$ to $\{0, 1\}$ such that

$$x + y = z$$
$$x + z = a$$
$$z + y = b$$
$$a = 0$$
$$b = 1$$

System of equations:

$$x + y = z$$
$$x + z = a$$
$$z + y = b$$
$$a = 0$$
$$b = 1$$

Such a system has a solution if there is a function from $\{x, y, z, a, b\}$ to $\{0, 1\}$ such that $\blacktriangleright a \mapsto 0$ and $b \mapsto 1$

System of equations:

$$x + y = z$$
$$x + z = a$$
$$z + y = b$$
$$a = 0$$
$$b = 1$$

Such a system has a solution if there is a function from $\{x, y, z, a, b\}$ to $\{0, 1\}$ such that

- $a \mapsto 0$ and $b \mapsto 1$
- each triple (x, y, z), (x, z, a), (z, y, b) is mapped into the set

$$\left\{ \begin{array}{cc} (0,0,0), & (0,1,1) \\ (1,0,1), & (1,1,0) \end{array} \right\}$$

System of equations:

$$x + y = z$$
$$x + z = a$$
$$z + y = b$$
$$a = 0$$
$$b = 1$$

Such a system has a solution if there is a function from $\{x, y, z, a, b\}$ to $\{0, 1\}$ such that

- $a \mapsto 0$ and $b \mapsto 1$
- each triple (x, y, z), (x, z, a), (z, y, b) is mapped into the set

$$\left\{\begin{array}{cc} (0,0,0), & (0,1,1) \\ (1,0,1), & (1,1,0) \end{array}\right\}$$

Solving systems of linear equations over \mathbb{Z}_2 can be viewed as $\mathsf{CSP}(\{\{0,1\}, R_0, R_1, R_2\})$ where

$$\begin{array}{rcl} R_0 &= \{0\} \\ R_1 &= \{1\} \end{array} \text{ and } R_2 &= \left\{ \begin{array}{cc} (0,0,0), & (0,1,1) \\ (1,0,1), & (1,1,0) \end{array} \right\} \end{array}$$

Example II: Coloring of undirected graphs

Fact (Two-coloring of undirected graphs)

Two-coloring of undirected graphs can be viewed as $CSP(\mathcal{R})$ where \mathcal{R} is a relational structure over $\{0,1\}$ with one relation $\{(0,1), (1,0)\}$.

Example II: Coloring of undirected graphs

Fact (Two-coloring of undirected graphs)

Two-coloring of undirected graphs can be viewed as $CSP(\mathcal{R})$ where \mathcal{R} is a relational structure over $\{0,1\}$ with one relation $\{(0,1), (1,0)\}$.

Fact (Three-coloring of undirected graphs)

Three-coloring of undirected graphs can be viewed as CSP(S) where where S is a relational structure over $\{0, 1, 2\}$ with one relation $\{(i, j) \mid i \neq j\}$.

Example II: Coloring of undirected graphs

Fact (Two-coloring of undirected graphs)

Two-coloring of undirected graphs can be viewed as $CSP(\mathcal{R})$ where \mathcal{R} is a relational structure over $\{0,1\}$ with one relation $\{(0,1),(1,0)\}$.

Fact (Three-coloring of undirected graphs)

Three-coloring of undirected graphs can be viewed as CSP(S) where where S is a relational structure over $\{0, 1, 2\}$ with one relation $\{(i, j) \mid i \neq j\}$.

Two coloring of undirected graphs is solvable in polynomial time, while three coloring of undirected graphs is NP-complete.

Some CSPs are NP-complete and some are solvable in polynomial time...

Some CSPs are NP-complete and some are solvable in polynomial time...

The conjecture of Feder and Vardi 98

For every finite relational structure S the problem CSP(S) is NP-complete or solvable in a polynomial time.

Some CSPs are NP-complete and some are solvable in polynomial time...

The conjecture of Feder and Vardi 98

For every finite relational structure S the problem CSP(S) is NP-complete or solvable in a polynomial time.

It suffices to verify the conjecture for cores.

Some CSPs are NP-complete and some are solvable in polynomial time...

The conjecture of Feder and Vardi 98

For every finite relational structure S the problem CSP(S) is NP-complete or solvable in a polynomial time.

It suffices to verify the conjecture for cores.

The most important algorithms solving some CSPs in polynomial time are:

Some CSPs are NP-complete and some are solvable in polynomial time...

The conjecture of Feder and Vardi 98

For every finite relational structure S the problem CSP(S) is NP-complete or solvable in a polynomial time.

It suffices to verify the conjecture for cores.

The most important algorithms solving some CSPs in polynomial time are:

 generalizations of Gaussian elimination: Dalmau's algorithm, algorithm for CSPs with few subpowers

Some CSPs are NP-complete and some are solvable in polynomial time...

The conjecture of Feder and Vardi 98

For every finite relational structure S the problem CSP(S) is NP-complete or solvable in a polynomial time.

It suffices to verify the conjecture for cores.

The most important algorithms solving some CSPs in polynomial time are:

- generalizations of Gaussian elimination: Dalmau's algorithm, algorithm for CSPs with few subpowers
- Iocal consistency checking algorithms

We construct a set of "mutually compatible" partial homomorphisms:

We construct a set of "mutually compatible" partial homomorphisms:

We construct a set of "mutually compatible" partial homomorphisms:

For each $x \neq y \in \{a, b, c, d, e\}$ by B_{xy} we denote the set of pairs on 0, 1 such that:

• if $(i,j) \in B_{xy}$ then the function $x \mapsto i, y \mapsto j$ is a partial homomorphism

We construct a set of "mutually compatible" partial homomorphisms:

- ▶ if $(i,j) \in B_{xy}$ then the function $x \mapsto i, y \mapsto j$ is a partial homomorphism
- ▶ if $(i, j) \in B_{xy}$ then for any $z \in \{a, b, c, d, e\}$ there is a ksuch that $(i, k) \in B_{xz}$ and $(k, j) \in B_{zy}$.

We construct a set of "mutually compatible" partial homomorphisms:

$$B_{ab} = \{(0,0), (0,1), (1,0), (1,1)\}$$

$$B_{ac} = \{(0,0), (0,1), (1,0), (1,1)\}$$

$$B_{ad} = \{(0,0), (0,1), (1,0), (1,1)\}$$

$$B_{ae} = \{(0,0), (0,1), (1,0), (1,1)\}$$

- ▶ if $(i,j) \in B_{xy}$ then the function $x \mapsto i, y \mapsto j$ is a partial homomorphism
- ▶ if $(i,j) \in B_{xy}$ then for any $z \in \{a, b, c, d, e\}$ there is a ksuch that $(i, k) \in B_{xz}$ and $(k, j) \in B_{zy}$.

We construct a set of "mutually compatible" partial homomorphisms:

$$B_{ab} = \{(0,0), (0,1), (1,0), (1,1)\}$$

$$B_{ac} = \{(0,0), (0,1), (1,0), (1,1)\}$$

$$B_{ad} = \{(0,0), (0,1), (1,0), (1,1)\}$$

$$B_{ae} = \{(0,0), (0,1), (1,0), (1,1)\}$$

Consider vertices a,b

- if $(i,j) \in B_{xy}$ then the function $x \mapsto i, y \mapsto j$ is a partial homomorphism
- ▶ if $(i,j) \in B_{xy}$ then for any $z \in \{a, b, c, d, e\}$ there is a ksuch that $(i, k) \in B_{xz}$ and $(k, j) \in B_{zy}$.

We construct a set of "mutually compatible" partial homomorphisms:

$$B_{ab} = \{ (0,1), (1,0) \}$$

$$B_{ac} = \{ (0,0), (0,1), (1,0), (1,1) \}$$

$$B_{ad} = \{ (0,0), (0,1), (1,0), (1,1) \}$$

$$B_{ae} = \{ (0,0), (0,1), (1,0), (1,1) \}$$

- ▶ if $(i,j) \in B_{xy}$ then the function $x \mapsto i, y \mapsto j$ is a partial homomorphism
- ▶ if $(i,j) \in B_{xy}$ then for any $z \in \{a, b, c, d, e\}$ there is a ksuch that $(i, k) \in B_{xz}$ and $(k, j) \in B_{zy}$.

We construct a set of "mutually compatible" partial homomorphisms:

$$B_{ab} = \{ (0,1), (1,0) \}$$

$$B_{ac} = \{ (0,0), (0,1), (1,0), (1,1) \}$$

$$B_{ad} = \{ (0,0), (0,1), (1,0), (1,1) \}$$

$$B_{ae} = \{ (0,0), (0,1), (1,0), (1,1) \}$$

Consider vertices *a*,*c* and *b*

$$B_{bc} = \{ (0,1), (1,0) \}$$

- if $(i,j) \in B_{xy}$ then the function $x \mapsto i, y \mapsto j$ is a partial homomorphism
- ▶ if $(i,j) \in B_{xy}$ then for any $z \in \{a, b, c, d, e\}$ there is a ksuch that $(i, k) \in B_{xz}$ and $(k, j) \in B_{zy}$.

We construct a set of "mutually compatible" partial homomorphisms:

$$B_{ab} = \{ (0,1), (1,0) \}$$

$$B_{ac} = \{ (0,0), (1,1) \}$$

$$B_{ad} = \{ (0,0), (0,1), (1,0), (1,1) \}$$

$$B_{ae} = \{ (0,0), (0,1), (1,0), (1,1) \}$$

- ▶ if $(i,j) \in B_{xy}$ then the function $x \mapsto i, y \mapsto j$ is a partial homomorphism
- ▶ if $(i,j) \in B_{xy}$ then for any $z \in \{a, b, c, d, e\}$ there is a ksuch that $(i, k) \in B_{xz}$ and $(k, j) \in B_{zy}$.

We construct a set of "mutually compatible" partial homomorphisms:

$$B_{ab} = \{ (0,1), (1,0) \}$$

$$B_{ac} = \{ (0,0), (1,1) \}$$

$$B_{ad} = \{ (0,0), (0,1), (1,0), (1,1) \}$$

$$B_{ae} = \{ (0,0), (0,1), (1,0), (1,1) \}$$

Consider vertices a,d and c

$$B_{cd} = \{ (0,1), (1,0) \}$$

- if $(i,j) \in B_{xy}$ then the function $x \mapsto i, y \mapsto j$ is a partial homomorphism
- ▶ if $(i,j) \in B_{xy}$ then for any $z \in \{a, b, c, d, e\}$ there is a k such that $(i, k) \in B_{xz}$ and $(k, j) \in B_{zy}$.

We construct a set of "mutually compatible" partial homomorphisms:

$$B_{ab} = \{ (0,1), (1,0) \}$$

$$B_{ac} = \{ (0,0), (1,1) \}$$

$$B_{ad} = \{ (0,1), (1,0) \}$$

$$B_{ae} = \{ (0,0), (0,1), (1,0), (1,1) \}$$

- ▶ if $(i,j) \in B_{xy}$ then the function $x \mapsto i, y \mapsto j$ is a partial homomorphism
- ▶ if $(i,j) \in B_{xy}$ then for any $z \in \{a, b, c, d, e\}$ there is a ksuch that $(i, k) \in B_{xz}$ and $(k, j) \in B_{zy}$.

We construct a set of "mutually compatible" partial homomorphisms:

$$B_{ab} = \{ (0,1), (1,0) \}$$

$$B_{ac} = \{ (0,0), (1,1) \}$$

$$B_{ad} = \{ (0,1), (1,0) \}$$

$$B_{ae} = \{ (0,0), (0,1), (1,0), (1,1) \}$$

Consider vertices *a*,*e* and *d*

$$B_{de} = \{ (0,1), (1,0) \}$$

- ▶ if $(i,j) \in B_{xy}$ then the function $x \mapsto i, y \mapsto j$ is a partial homomorphism
- ▶ if $(i,j) \in B_{xy}$ then for any $z \in \{a, b, c, d, e\}$ there is a k such that $(i, k) \in B_{xz}$ and $(k, j) \in B_{zy}$.

We construct a set of "mutually compatible" partial homomorphisms:

$$B_{ab} = \{ (0,1), (1,0) \}$$

$$B_{ac} = \{ (0,0), (1,1) \}$$

$$B_{ad} = \{ (0,1), (1,0) \}$$

$$B_{ae} = \{ (0,0), (1,1) \}$$

- ▶ if $(i,j) \in B_{xy}$ then the function $x \mapsto i, y \mapsto j$ is a partial homomorphism
- ▶ if $(i, j) \in B_{xy}$ then for any $z \in \{a, b, c, d, e\}$ there is a ksuch that $(i, k) \in B_{xz}$ and $(k, j) \in B_{zy}$.

We construct a set of "mutually compatible" partial homomorphisms:

$$B_{ab} = \{ (0,1), (1,0) \}$$

$$B_{ac} = \{ (0,0), (1,1) \}$$

$$B_{ad} = \{ (0,1), (1,0) \}$$

$$B_{ae} = \{ (0,0), (1,1) \}$$

Consider vertices a,e

- if $(i,j) \in B_{xy}$ then the function $x \mapsto i, y \mapsto j$ is a partial homomorphism
- ▶ if $(i,j) \in B_{xy}$ then for any $z \in \{a, b, c, d, e\}$ there is a ksuch that $(i, k) \in B_{xz}$ and $(k, j) \in B_{zy}$.

We construct a set of "mutually compatible" partial homomorphisms:

$$B_{ab} = \{ (0,1), (1,0) \}$$

$$B_{ac} = \{ (0,0), (1,1) \}$$

$$B_{ad} = \{ (0,1), (1,0) \}$$

$$B_{ae} = \{ \}$$

- ▶ if $(i,j) \in B_{xy}$ then the function $x \mapsto i, y \mapsto j$ is a partial homomorphism
- ▶ if $(i,j) \in B_{xy}$ then for any $z \in \{a, b, c, d, e\}$ there is a ksuch that $(i, k) \in B_{xz}$ and $(k, j) \in B_{zy}$.

Definition (A (k, l)-strategy)

Definition (A (k, l)-strategy)

A (k, l)-strategy for relational structures \mathcal{R} and \mathcal{S} is a set \mathbb{H} consisting of partial homomorphisms from \mathcal{R} to \mathcal{S} and such that

• if $h \in \mathbb{H}$ and $A \subseteq \text{dom}(h)$ then $h_{|A} \in \mathbb{H}$;

Definition (A (k, l)-strategy)

- if $h \in \mathbb{H}$ and $A \subseteq \operatorname{dom}(h)$ then $h_{|A} \in \mathbb{H}$;
- if $h \in \mathbb{H}$ and $|\operatorname{dom}(h)| \leq k$

Definition (A (k, l)-strategy)

- if $h \in \mathbb{H}$ and $A \subseteq \operatorname{dom}(h)$ then $h_{|A} \in \mathbb{H}$;
- if h ∈ ℍ and |dom(h)| ≤ k and A is subset of R such that |A| ≤ l and dom(h) ⊆ A

Definition (A (k, l)-strategy)

- if $h \in \mathbb{H}$ and $A \subseteq \operatorname{dom}(h)$ then $h_{|A} \in \mathbb{H}$;
- if h ∈ ℍ and | dom(h)| ≤ k and A is subset of R such that |A| ≤ l and dom(h) ⊆ A then there exists h' ∈ ℍ which extends h onto A (i.e. dom(h') = A and h'_{| dom h} = h).

Definition (A (k, l)-strategy)

A (k, l)-strategy for relational structures \mathcal{R} and \mathcal{S} is a set \mathbb{H} consisting of partial homomorphisms from \mathcal{R} to \mathcal{S} and such that

- if $h \in \mathbb{H}$ and $A \subseteq \operatorname{dom}(h)$ then $h_{|A} \in \mathbb{H}$;
- if h ∈ ℍ and | dom(h)| ≤ k and A is subset of R such that |A| ≤ l and dom(h) ⊆ A then there exists h' ∈ ℍ which extends h onto A (i.e. dom(h') = A and h'_{| dom h} = h).

For fixed k, l and S a maximal (k, l)-strategy for \mathcal{R} and S can be found by local consistency checking in a time polynomial with respect to the size of \mathcal{R} .

Note that if h is a homomorphism from \mathcal{R} to \mathcal{S} then the set

 $\{h_{|A} \mid A \subseteq R \text{ and } |A| \leq I\}$

is a (k, l)-strategy for \mathcal{R} and \mathcal{S} (for any $k \leq l$).

Note that if h is a homomorphism from \mathcal{R} to \mathcal{S} then the set

 $\{h_{|A} \mid A \subseteq R \text{ and } |A| \leq I\}$

is a (k, l)-strategy for \mathcal{R} and \mathcal{S} (for any $k \leq l$).

Definition (CSPs of bounded width)

A CSP(S) (or simply S) is of bounded width if there exists (k, l) such that for any \mathcal{R} similar to S TFAE:

Note that if h is a homomorphism from \mathcal{R} to \mathcal{S} then the set

 $\{h_{|A} \mid A \subseteq R \text{ and } |A| \leq I\}$

is a (k, l)-strategy for \mathcal{R} and \mathcal{S} (for any $k \leq l$).

Definition (CSPs of bounded width)

A CSP(S) (or simply S) is of bounded width if there exists (k, l) such that for any \mathcal{R} similar to S TFAE:

• there exists a non-empty (k, l)-strategy for \mathcal{R} and \mathcal{S} ;

Note that if h is a homomorphism from \mathcal{R} to \mathcal{S} then the set

 $\{h_{|A} \mid A \subseteq R \text{ and } |A| \leq I\}$

is a (k, l)-strategy for \mathcal{R} and \mathcal{S} (for any $k \leq l$).

Definition (CSPs of bounded width)

A CSP(S) (or simply S) is of bounded width if there exists (k, l) such that for any \mathcal{R} similar to S TFAE:

- there exists a non-empty (k, l)-strategy for \mathcal{R} and \mathcal{S} ;
- there exists a homomorphism from \mathcal{R} to \mathcal{S} .

Note that if h is a homomorphism from \mathcal{R} to \mathcal{S} then the set

 $\{h_{|A} \mid A \subseteq R \text{ and } |A| \leq I\}$

is a (k, l)-strategy for \mathcal{R} and \mathcal{S} (for any $k \leq l$).

Definition (CSPs of bounded width)

A CSP(S) (or simply S) is of bounded width if there exists (k, l) such that for any \mathcal{R} similar to S TFAE:

- there exists a non-empty (k, l)-strategy for \mathcal{R} and \mathcal{S} ;
- there exists a homomorphism from \mathcal{R} to \mathcal{S} .

The structures of bounded width are those with CSP solvable by local consistency checking.

An *m*-ary operation t is compatible with an *n*-ary relation R if:

An *m*-ary operation t is compatible with an *n*-ary relation R if:

An *m*-ary operation t is compatible with an *n*-ary relation R if:

t (a_{11}	a_{12}		a _{1m}	$) = a_1'$
t (a ₂₁	a ₂₂		a _{2m}	$) = a'_2$
	÷	÷	·	÷	÷
t (a _{n1}	a _{n2}		a _{nm}	$) = a'_n$
	Ш	Μ	• • •	Μ	Μ
	R	R		R	R

Definition (A polymorphism of a relational structure)

An operation t is a polymorphism of $S = \{S; S_1, ..., S_l\}$ if it is compatible with all the relations in S.

An *m*-ary operation t is compatible with an *n*-ary relation R if:

t (a_{11}	a_{12}		a _{1m}	$) = a_1'$
t (a ₂₁	a ₂₂	•••	a _{2m}	$) = a'_2$
	÷	÷	·	÷	÷
t (a _{n1}	a _{n2}	•••	a _{nm}	$) = a'_n$
	Ш	Μ	• • •	Μ	Μ
	R	R		R	R

Definition (A polymorphism of a relational structure)

An operation t is a polymorphism of $S = \{S; S_1, ..., S_l\}$ if it is compatible with all the relations in S. The set of all polymorphisms of S is denoted by Pol(S).

An *m*-ary operation t is compatible with an *n*-ary relation R if:

t (a_{11}	a_{12}		a _{1m}	$) = a_1'$
t (a ₂₁	a ₂₂	•••	a _{2m}	$) = a'_2$
	÷	÷	·	÷	÷
t (a _{n1}	a _{n2}	•••	a _{nm}	$) = a'_n$
	Ш	Μ	• • •	Μ	Μ
	R	R		R	R

Definition (A polymorphism of a relational structure)

An operation t is a polymorphism of $S = \{S; S_1, ..., S_l\}$ if it is compatible with all the relations in S. The set of all polymorphisms of S is denoted by Pol(S). With such an S we associate an algebra $\mathbf{S} = (S, Pol(S))$.

The conjecture of Larose and Zádori

Theorem (from work of Cohen, Jeavons, Pearson, Bulatov, Krokhin)

For any relational structure S the complexity of CSP(S) is fully determined by the associated algebra **S**.

The conjecture of Larose and Zádori

Theorem (from work of Cohen, Jeavons, Pearson, Bulatov, Krokhin)

For any relational structure S the complexity of CSP(S) is fully determined by the associated algebra **S**.

The conjecture of Larose and Zádori

A finite core S is of bounded width if and only if the associated algebra **S** belongs to a congruence meet semi-distributive variety (is an SD(\land) algebra),

The conjecture of Larose and Zádori

Theorem (from work of Cohen, Jeavons, Pearson, Bulatov, Krokhin)

For any relational structure S the complexity of CSP(S) is fully determined by the associated algebra **S**.

The conjecture of Larose and Zádori

A finite core S is of bounded width if and only if the associated algebra **S** belongs to a congruence meet semi-distributive variety (is an SD(\land) algebra), or equivalently (by work of Maróti and McKenzie) S has polymorphisms satisfying

$$w(x,\ldots,x) = x \text{ and}$$
$$w(y,x,\ldots,x) = w(x,y,x,\ldots,x) = \ldots = w(x,\ldots,x,y)$$

of all but finitely many arities.

L. Barto, M. Kozik (Kraków)

Bounded Width CSPs I

How to start a proof of the LZ-conjecture

How to start a proof of the LZ-conjecture

The set of polymorphisms of a relational structure S is "inherited" by any (k, l)-strategy for \mathcal{R} and S.

How to start a proof of the LZ-conjecture

The set of polymorphisms of a relational structure S is "inherited" by any (k, l)-strategy for R and S.

Let S be a relational structure with a maximal arity of relation n and \mathbb{H} be a (k, l)-strategy for \mathcal{R} and S. Any function h from \mathcal{R} to S satisfying

 $h_{|A} \in \mathbb{H}$ for any *n*-element subset of the domain A

is a homomorphism from \mathcal{R} to \mathcal{S} .

For a (2k, 3k)-strategy \mathbb{H} a graph where

For a (2k, 3k)-strategy \mathbb{H} a graph where

one can form

 \blacktriangleright vertices are partial homomorphism from \mathbbm{H} with exactly k-element domains

For a (2k, 3k)-strategy \mathbb{H} a graph where

one can form

▶ vertices are partial homomorphism from III with exactly k-element domains and vertices are of the same sort if their domains coincide;

For a (2k, 3k)-strategy \mathbb{H} a graph where

- ▶ vertices are partial homomorphism from III with exactly k-element domains and vertices are of the same sort if their domains coincide;
- edges are pairs of vertices (f,g) such that $f \cup g \in \mathbb{H}$

For a (2k, 3k)-strategy \mathbb{H} a graph where

one can form

- ▶ vertices are partial homomorphism from III with exactly k-element domains and vertices are of the same sort if their domains coincide;
- ▶ edges are pairs of vertices (f,g) such that $f \cup g \in \mathbb{H}$

and obtain

For a (2k, 3k)-strategy \mathbb{H} a graph where

one can form

- ▶ vertices are partial homomorphism from III with exactly k-element domains and vertices are of the same sort if their domains coincide;
- ▶ edges are pairs of vertices (f,g) such that $f \cup g \in \mathbb{H}$

and obtain

• B_i , i < n: consisting of vertices of the same sort

- For a (2k, 3k)-strategy \mathbb{H} a graph where
 - ▶ vertices are partial homomorphism from III with exactly k-element domains and vertices are of the same sort if their domains coincide;
 - ▶ edges are pairs of vertices (f,g) such that $f \cup g \in \mathbb{H}$

and obtain

- B_i , i < n: consisting of vertices of the same sort
- ▶ B_{ij} , i, j < n consisting of edges between vertices of two, fixed sorts
 - ► $B_{ij} = B_{ji}^{-1}$
 - B_{ii} is the diagonal

- For a (2k, 3k)-strategy \mathbb{H} a graph where
 - ▶ vertices are partial homomorphism from III with exactly k-element domains and vertices are of the same sort if their domains coincide;
 - ▶ edges are pairs of vertices (f,g) such that $f \cup g \in \mathbb{H}$

and obtain

- B_i , i < n: consisting of vertices of the same sort
- *B_{ij}*, *i*, *j* < *n* consisting of edges between vertices of two, fixed sorts
 B_{ii} = B⁻¹_{ii}
 - B_{ii} is the diagonal
- ▶ (1,2)-system Every point extends to an edge
 - ▶ i.e. for all i, j < n, $f \in B_i$ there exists $g \in B_j$ s.t. f g (that is $(f, g) \in B_{ij}$)

- For a (2k, 3k)-strategy \mathbb{H} a graph where
 - ▶ vertices are partial homomorphism from III with exactly k-element domains and vertices are of the same sort if their domains coincide;
 - edges are pairs of vertices (f,g) such that $f \cup g \in \mathbb{H}$

and obtain

- B_i , i < n: consisting of vertices of the same sort
- *B_{ij}*, *i*, *j* < *n* consisting of edges between vertices of two, fixed sorts
 B_{ij} = *B_{ij}⁻¹*
 - B_{ii} is the diagonal
- ▶ (1,2)-system Every point extends to an edge
 - ▶ i.e. for all i, j < n, $f \in B_i$ there exists $g \in B_j$ s.t. f g (that is $(f,g) \in B_{ij}$)
- ▶ (2,3)-system Every edge extends to a triangle
 - ▶ i.e. for all i, j, k < n, $f \in B_i, g \in B_j$, f g there exists $h \in B_k$ s.t. f h, g h

For a (2k, 3k)-strategy \mathbb{H} compatible with an SD(\wedge) algebra one can form a graph where

- ▶ vertices are partial homomorphism from III with exactly k-element domains and vertices are of the same sort if their domains coincide;
- edges are pairs of vertices (f,g) such that $f \cup g \in \mathbb{H}$
- and obtain an SD($\wedge)$ algebra A together with
 - **B**_{*i*}, *i* < *n*: subalgebras of **A**
 - $\mathbf{B}_{ij}, i, j < n$: subalgebras of $\mathbf{B}_i \times \mathbf{B}_j$
 - ► $B_{ij} = B_{ji}^{-1}$
 - B_{ii} is the diagonal
 - ▶ (1,2)-system Every point extends to an edge
 - ▶ i.e. for all i, j < n, $f \in B_i$ there exists $g \in B_j$ s.t. f g (that is $(f, g) \in B_{ij}$)
 - ▶ (2,3)-system Every edge extends to a triangle
 - ▶ i.e. for all i, j, k < n, $f \in B_i, g \in B_j$, f g there exists $h \in B_k$ s.t. f h, g h