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Constraint Satisfaction Problem

Definition (A homomorphism of relational structures)

For two similar relational structures R = {R; R1, . . . , Rn} and
S = {S ; S1, . . . Sn} a function h : R → S is a homomorphism iff

(a1, . . . , ani ) ∈ Ri implies
(
h(a1), . . . , h(ani )

)
∈ Si for any i ≤ n.

A finite relational structure R is a core if all the homomorphisms from R
to R are bijective.

Definition (The combinatorial CSP)

For a fixed, finite relational structure S by CSP(S) we understand a
computational problem:

INPUT: a relational structure R similar to S
QUESTION: does there exist a homomorphism from R to S?
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Example I: Solving systems of linear equations over Z2

System of equations:

x + y = z

x + z = 0

z + y = 1

Such a system has a solution if there
is a function from {x , y , z , a, b} to
{0, 1} such that

I a 7→ 0 and b 7→ 1

I each triple (x , y , z), (x , z , a),
(z , y , b) is mapped into the set{

(0, 0, 0), (0, 1, 1)
(1, 0, 1), (1, 1, 0)

}

Solving systems of linear equations over Z2 can be viewed as
CSP({{0, 1}, R0, R1, R2}) where

R0 = {0}
R1 = {1} and R2 =

{
(0, 0, 0), (0, 1, 1)
(1, 0, 1), (1, 1, 0)

}
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Example II: Coloring of undirected graphs

Fact (Two-coloring of undirected graphs)

Two-coloring of undirected graphs can be viewed as CSP(R) where R is a
relational structure over {0, 1} with one relation {(0, 1), (1, 0)}.

Fact (Three-coloring of undirected graphs)

Three-coloring of undirected graphs can be viewed as CSP(S) where where
S is a relational structure over {0, 1, 2} with one relation {(i , j) | i 6= j}.

Two coloring of undirected graphs is solvable in polynomial time, while
three coloring of undirected graphs is NP-complete.
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Computational complexity of CSPs

Some CSPs are NP-complete and some are solvable in polynomial time. . .

The conjecture of Feder and Vardi 98

For every finite relational structure S the problem CSP(S) is NP-complete
or solvable in a polynomial time.

It suffices to verify the conjecture for cores.

The most important algorithms solving some CSPs in polynomial time are:

I generalizations of Gaussian elimination: Dalmau’s algorithm,
algorithm for CSPs with few subpowers

I local consistency checking algorithms
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Two colorability of five-cycle by local consistency checking

We construct a set of“mutually compatible” partial homomorphisms:

Bab = {

(0, 0),

(0, 1), (1, 0)

, (1, 1)

}
Bac = {(0, 0), (0, 1), (1, 0), (1, 1)}
Bad = {(0, 0), (0, 1), (1, 0), (1, 1)}
Bae = {(0, 0),

(0, 1), (1, 0),

(1, 1)}

Consider vertices a,

For each x 6= y ∈ {a, b, c , d , e} by
Bxy we denote the set of pairs on 0,
1 such that:

I if (i , j) ∈ Bxy then the function
x 7→ i , y 7→ j is a partial
homomorphism

I if (i , j) ∈ Bxy then for any
z ∈ {a, b, c , d , e} there is a k
such that (i , k) ∈ Bxz and
(k , j) ∈ Bzy .
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Local consistency checking and strategies

Definition (A (k , l)-strategy)

A (k, l)-strategy for relational structures R and S is a set H consisting of
partial homomorphisms from R to S and such that

I if h ∈ H and A ⊆ dom(h) then h|A ∈ H;

I if h ∈ H and | dom(h)| ≤ k

and A is subset of R such that |A| ≤ l
and dom(h) ⊆ A then there exists h′ ∈ H which extends h onto
A (i.e. dom(h′) = A and h′| dom h = h).

For fixed k , l and S a maximal (k , l)-strategy for R and S can be found
by local consistency checking in a time polynomial with respect to the size
of R.
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Local consistency checking and CSPs of bounded width

Note that if h is a homomorphism from R to S then the set

{h|A | A ⊆ R and |A| ≤ l}

is a (k, l)-strategy for R and S (for any k ≤ l).

Definition (CSPs of bounded width)

A CSP(S) (or simply S) is of bounded width if there exists (k, l) such that
for any R similar to S TFAE:

I there exists a non-empty (k , l)-strategy for R and S;

I there exists a homomorphism from R to S.

The structures of bounded width are those with CSP solvable by local
consistency checking.
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The algebraic approach

An m-ary operation t is compatible with an n-ary relation R if:

t ( a11 a12 . . . a1m ) = a′1
t ( a21 a22 . . . a2m ) = a′2

...
...

. . .
...

...
t ( an1 an2 . . . anm ) = a′n

∈ ∈ . . . ∈

∈

R R . . . R

R

Definition (A polymorphism of a relational structure)

An operation t is a polymorphism of S = {S ; S1, . . . Sl} if it is compatible
with all the relations in S.

The set of all polymorphisms of S is denoted
by Pol(S). With such an S we associate an algebra S = (S , Pol(S)).
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The conjecture of Larose and Zádori

Theorem (from work of Cohen, Jeavons, Pearson, Bulatov, Krokhin)

For any relational structure S the complexity of CSP(S) is fully
determined by the associated algebra S.

The conjecture of Larose and Zádori

A finite core S is of bounded width if and only if the associated algebra S
belongs to a congruence meet semi-distributive variety (is an SD(∧)
algebra),

or equivalently (by work of Maróti and McKenzie) S has
polymorphisms satisfying

w(x , . . . , x) = x and

w(y , x , . . . , x) = w(x , y , x , . . . , x) = . . . = w(x , . . . , x , y)

of all but finitely many arities.
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How to start a proof of the LZ-conjecture

The set of polymorphisms of a relational structure S is “inherited” by any
(k, l)-strategy for R and S.

Let S be a relational structure with a maximal arity of relation n and H be
a (k , l)-strategy for R and S. Any function h from R to S satisfying

h|A ∈ H for any n-element subset of the domain A

is a homomorphism from R to S.
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Systems from strategies

For a (2k , 3k)-strategy H

compatible with an SD(∧) algebra

one can form
a graph where

I vertices are partial homomorphism from H with exactly k-element
domains

and vertices are of the same sort if their domains coincide;
I edges are pairs of vertices (f , g) such that f ∪ g ∈ H

and obtain

an SD(∧) algebra A together with

I Bi , i < n: consisting of vertices of the same sort
I Bij , i , j < n consisting of edges between vertices of two, fixed sorts

I Bij = B−1
ji

I Bii is the diagonal
I (1, 2)-system Every point extends to an edge

I i.e. for all i , j < n, f ∈ Bi there exists g ∈ Bj s.t. f − g (that is
(f , g) ∈ Bij)

I (2, 3)-system Every edge extends to a triangle
I i.e. for all i , j , k < n, f ∈ Bi , g ∈ Bj , f − g there exists h ∈ Bk s.t.

f − h, g − h

L. Barto, M. Kozik (Kraków) Bounded Width CSPs I CanaDAM 2009 12 / 12



Systems from strategies

For a (2k , 3k)-strategy H

compatible with an SD(∧) algebra

one can form
a graph where

I vertices are partial homomorphism from H with exactly k-element
domains

and vertices are of the same sort if their domains coincide;

I edges are pairs of vertices (f , g) such that f ∪ g ∈ H

and obtain

an SD(∧) algebra A together with

I Bi , i < n: consisting of vertices of the same sort
I Bij , i , j < n consisting of edges between vertices of two, fixed sorts

I Bij = B−1
ji

I Bii is the diagonal
I (1, 2)-system Every point extends to an edge

I i.e. for all i , j < n, f ∈ Bi there exists g ∈ Bj s.t. f − g (that is
(f , g) ∈ Bij)

I (2, 3)-system Every edge extends to a triangle
I i.e. for all i , j , k < n, f ∈ Bi , g ∈ Bj , f − g there exists h ∈ Bk s.t.

f − h, g − h

L. Barto, M. Kozik (Kraków) Bounded Width CSPs I CanaDAM 2009 12 / 12



Systems from strategies

For a (2k , 3k)-strategy H

compatible with an SD(∧) algebra

one can form
a graph where

I vertices are partial homomorphism from H with exactly k-element
domains and vertices are of the same sort if their domains coincide;

I edges are pairs of vertices (f , g) such that f ∪ g ∈ H
and obtain

an SD(∧) algebra A together with

I Bi , i < n: consisting of vertices of the same sort
I Bij , i , j < n consisting of edges between vertices of two, fixed sorts

I Bij = B−1
ji

I Bii is the diagonal
I (1, 2)-system Every point extends to an edge

I i.e. for all i , j < n, f ∈ Bi there exists g ∈ Bj s.t. f − g (that is
(f , g) ∈ Bij)

I (2, 3)-system Every edge extends to a triangle
I i.e. for all i , j , k < n, f ∈ Bi , g ∈ Bj , f − g there exists h ∈ Bk s.t.

f − h, g − h

L. Barto, M. Kozik (Kraków) Bounded Width CSPs I CanaDAM 2009 12 / 12



Systems from strategies

For a (2k , 3k)-strategy H

compatible with an SD(∧) algebra

one can form
a graph where

I vertices are partial homomorphism from H with exactly k-element
domains and vertices are of the same sort if their domains coincide;

I edges are pairs of vertices (f , g) such that f ∪ g ∈ H

and obtain

an SD(∧) algebra A together with

I Bi , i < n: consisting of vertices of the same sort
I Bij , i , j < n consisting of edges between vertices of two, fixed sorts

I Bij = B−1
ji

I Bii is the diagonal
I (1, 2)-system Every point extends to an edge

I i.e. for all i , j < n, f ∈ Bi there exists g ∈ Bj s.t. f − g (that is
(f , g) ∈ Bij)

I (2, 3)-system Every edge extends to a triangle
I i.e. for all i , j , k < n, f ∈ Bi , g ∈ Bj , f − g there exists h ∈ Bk s.t.

f − h, g − h

L. Barto, M. Kozik (Kraków) Bounded Width CSPs I CanaDAM 2009 12 / 12



Systems from strategies

For a (2k , 3k)-strategy H

compatible with an SD(∧) algebra

one can form
a graph where

I vertices are partial homomorphism from H with exactly k-element
domains and vertices are of the same sort if their domains coincide;

I edges are pairs of vertices (f , g) such that f ∪ g ∈ H
and obtain

an SD(∧) algebra A together with

I Bi , i < n: consisting of vertices of the same sort
I Bij , i , j < n consisting of edges between vertices of two, fixed sorts

I Bij = B−1
ji

I Bii is the diagonal
I (1, 2)-system Every point extends to an edge

I i.e. for all i , j < n, f ∈ Bi there exists g ∈ Bj s.t. f − g (that is
(f , g) ∈ Bij)

I (2, 3)-system Every edge extends to a triangle
I i.e. for all i , j , k < n, f ∈ Bi , g ∈ Bj , f − g there exists h ∈ Bk s.t.

f − h, g − h

L. Barto, M. Kozik (Kraków) Bounded Width CSPs I CanaDAM 2009 12 / 12



Systems from strategies

For a (2k , 3k)-strategy H

compatible with an SD(∧) algebra

one can form
a graph where

I vertices are partial homomorphism from H with exactly k-element
domains and vertices are of the same sort if their domains coincide;

I edges are pairs of vertices (f , g) such that f ∪ g ∈ H
and obtain

an SD(∧) algebra A together with

I Bi , i < n: consisting of vertices of the same sort

I Bij , i , j < n consisting of edges between vertices of two, fixed sorts
I Bij = B−1

ji
I Bii is the diagonal

I (1, 2)-system Every point extends to an edge
I i.e. for all i , j < n, f ∈ Bi there exists g ∈ Bj s.t. f − g (that is

(f , g) ∈ Bij)
I (2, 3)-system Every edge extends to a triangle

I i.e. for all i , j , k < n, f ∈ Bi , g ∈ Bj , f − g there exists h ∈ Bk s.t.
f − h, g − h

L. Barto, M. Kozik (Kraków) Bounded Width CSPs I CanaDAM 2009 12 / 12



Systems from strategies

For a (2k , 3k)-strategy H

compatible with an SD(∧) algebra

one can form
a graph where

I vertices are partial homomorphism from H with exactly k-element
domains and vertices are of the same sort if their domains coincide;

I edges are pairs of vertices (f , g) such that f ∪ g ∈ H
and obtain

an SD(∧) algebra A together with

I Bi , i < n: consisting of vertices of the same sort
I Bij , i , j < n consisting of edges between vertices of two, fixed sorts

I Bij = B−1
ji

I Bii is the diagonal

I (1, 2)-system Every point extends to an edge
I i.e. for all i , j < n, f ∈ Bi there exists g ∈ Bj s.t. f − g (that is

(f , g) ∈ Bij)
I (2, 3)-system Every edge extends to a triangle

I i.e. for all i , j , k < n, f ∈ Bi , g ∈ Bj , f − g there exists h ∈ Bk s.t.
f − h, g − h

L. Barto, M. Kozik (Kraków) Bounded Width CSPs I CanaDAM 2009 12 / 12



Systems from strategies

For a (2k , 3k)-strategy H

compatible with an SD(∧) algebra

one can form
a graph where

I vertices are partial homomorphism from H with exactly k-element
domains and vertices are of the same sort if their domains coincide;

I edges are pairs of vertices (f , g) such that f ∪ g ∈ H
and obtain

an SD(∧) algebra A together with

I Bi , i < n: consisting of vertices of the same sort
I Bij , i , j < n consisting of edges between vertices of two, fixed sorts

I Bij = B−1
ji

I Bii is the diagonal
I (1, 2)-system Every point extends to an edge

I i.e. for all i , j < n, f ∈ Bi there exists g ∈ Bj s.t. f − g (that is
(f , g) ∈ Bij)

I (2, 3)-system Every edge extends to a triangle
I i.e. for all i , j , k < n, f ∈ Bi , g ∈ Bj , f − g there exists h ∈ Bk s.t.

f − h, g − h

L. Barto, M. Kozik (Kraków) Bounded Width CSPs I CanaDAM 2009 12 / 12



Systems from strategies

For a (2k , 3k)-strategy H

compatible with an SD(∧) algebra

one can form
a graph where

I vertices are partial homomorphism from H with exactly k-element
domains and vertices are of the same sort if their domains coincide;

I edges are pairs of vertices (f , g) such that f ∪ g ∈ H
and obtain

an SD(∧) algebra A together with

I Bi , i < n: consisting of vertices of the same sort
I Bij , i , j < n consisting of edges between vertices of two, fixed sorts

I Bij = B−1
ji

I Bii is the diagonal
I (1, 2)-system Every point extends to an edge

I i.e. for all i , j < n, f ∈ Bi there exists g ∈ Bj s.t. f − g (that is
(f , g) ∈ Bij)

I (2, 3)-system Every edge extends to a triangle
I i.e. for all i , j , k < n, f ∈ Bi , g ∈ Bj , f − g there exists h ∈ Bk s.t.

f − h, g − h

L. Barto, M. Kozik (Kraków) Bounded Width CSPs I CanaDAM 2009 12 / 12



Systems from strategies

For a (2k , 3k)-strategy H compatible with an SD(∧) algebra one can form
a graph where

I vertices are partial homomorphism from H with exactly k-element
domains and vertices are of the same sort if their domains coincide;

I edges are pairs of vertices (f , g) such that f ∪ g ∈ H
and obtain an SD(∧) algebra A together with

I Bi , i < n: subalgebras of A
I Bij , i , j < n: subalgebras of Bi × Bj

I Bij = B−1
ji

I Bii is the diagonal
I (1, 2)-system Every point extends to an edge

I i.e. for all i , j < n, f ∈ Bi there exists g ∈ Bj s.t. f − g (that is
(f , g) ∈ Bij)

I (2, 3)-system Every edge extends to a triangle
I i.e. for all i , j , k < n, f ∈ Bi , g ∈ Bj , f − g there exists h ∈ Bk s.t.

f − h, g − h

L. Barto, M. Kozik (Kraków) Bounded Width CSPs I CanaDAM 2009 12 / 12


