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The distance from CD to NU

CD . . . Algebras in a congruence distributive variety
NU . . . Algebras with a near unanimity term operation

Fact: NU ⊆ CD
Question: What precisely is the difference?

Cube . . . Algebras with a cube term operation

Theorem (Berman, Idziak, Marković, McKenzie, Valeriote,
Willard’10; Marković, McKenzie’08; Kearnes, Szendrei’12)

NU = CD ∩ Cube

FinRel . . . Finite, finitely related algebras

Theorem (B’13, Zhuk)

NU = CD ∩ FinRel
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Willard’10; Marković, McKenzie’08; Kearnes, Szendrei’12)

NU = CD ∩ Cube

FinRel . . . Finite, finitely related algebras

Theorem (B’13, Zhuk)

NU = CD ∩ FinRel

[picture]



The distance from CD to NU

CD . . . Algebras in a congruence distributive variety
NU . . . Algebras with a near unanimity term operation

Fact: NU ⊆ CD
Question: What precisely is the difference?

Cube . . . Algebras with a cube term operation

Theorem (Berman, Idziak, Marković, McKenzie, Valeriote,
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Not THE RIGHT results

Mentioned results: Talk about specific classes of algebras

This talk: For finite algebras, we give more general results which
are

I talking about all algebras and

I using more fundamental concepts (than NU or CD)

Other examples of “wrong” results:

I The problem “given A decide whether A ∈ NU” is decidable
Maróti’09 (compare: A ∈ CD is obviously decidable)

I The problem “given A decide whether Pol(A) ∈ NU” is
decidable B (compare: Pol(A) ∈ CD is obviously decidable)

I Relational characterization of NU Baker-Pixley’75

I Relational characterization of CD Freese, Valeriote’09

I Directed Jónsson terms Kozik
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Maróti’09 (compare: A ∈ CD is obviously decidable)

I The problem “given A decide whether Pol(A) ∈ NU” is
decidable B (compare: Pol(A) ∈ CD is obviously decidable)

I Relational characterization of NU Baker-Pixley’75

I Relational characterization of CD Freese, Valeriote’09

I Directed Jónsson terms Kozik



Not THE RIGHT results

Mentioned results: Talk about specific classes of algebras

This talk: For finite algebras, we give more general results which
are

I talking about all algebras and

I using more fundamental concepts (than NU or CD)

Other examples of “wrong” results:

I The problem “given A decide whether A ∈ NU” is decidable
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Outline

I FinRel, CD, NU, Cube

I Absorption and (directed) Jónsson absorption

I Better versions of some results



FinRel, CD, NU, Cube



FinRel - Finitely related algebras

A ... finite algebra A ... finite relational structure

Inv(A) = SP(A) ... subpowers = invariant relations
always a relational clone

Pol(A) ... polymorphisms = compatible operations
always a clone

Theorem (Geiger’68; Bodnarčuk, Kalužnin, Kotov, Romov’69)

Pol(Inv(A)) = Clo(A), Inv(Pol(A)) = RelClo(A)

⇒ For every A there exists A such that Clo(A) = Pol(A)

Definition

A is finitely related, if ∃A with finitely many relations such that
Clo A = Pol(A).
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CD – Congruence distributivity

A ∈ CD if ∀X ∈ HSP(A) ∀β, γ, δ ∈ Con(X)
β ∧ (γ ∨ δ) ⊆ (β ∧ γ) ∨ (β ∧ δ)

I CD = “fixing an element preserves connectivity”

I Assume X ≤ B× C×D and β, γ, δ are kernels of projections
I This is not a restrictive assumption
I Consider R = {(c , d) : (∃b) (b, c, d) ∈ X}
I and Sb = {(c , d) : (b, c , d) ∈ X}
I The condition β ∧ (γ ∨ δ) ⊆ (β ∧ γ) ∨ (β ∧ δ) means:

whenever two elements of Sb are connected in R
then they are connected in Sb. [picture]

I CD = Jónsson terms Jónsson’68

I Take B = C = D = F(x , y)
I and X = 〈xxx , xyy , yxy〉, b = x .
I We get ternary terms p0, . . . , pn such that

x ≈ p0(x , y , z), z ≈ pn(x , y , z)
p2i (x , y , y) ≈ p2i+1(x , y , y), p2i+1(x , x , y) ≈ p2i+2(x , x , y)
pi (x , y , x) ≈ x
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CD cntd.

I CD = directed Jónsson terms Kozik

x ≈ p0(x , y , z), z ≈ pn(x , y , z)
pi (x , y , y) ≈ pi+1(x , x , y)
pi (x , y , x) ≈ x

I ¬CD = bad relation

I We have X = 〈xxx , xyy , yxy〉 ≤ F(x , y)3 with bad connectivity
properties

I F(x , y) ≤ AA2

I We have X ≤ Ak × Ak × Ak with bad connectivity properties
I If A idempotent we can find bad relation for k = 1

Freese, Valeriote’09; B, Kazda
I This can be used for effectively deciding CD
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NU – Near unanimity

A ∈ NU if it has a term operation t such that

t(x , x , . . . , x , y , x , x , . . . , x) ≈ x

I NU = relational determined by small projections
Baker, Pixley’75

I ⇒ NU ⊆ FinRel
I NU ⊆ CD

I pi (x , y , z) = t(x , . . . , x , y , z , . . . , z) are directed Jónsson terms
I different proof later

I ¬NU = bad relations Baker, Pixley’75

I Theorem: CD ∩ FinRel = NU B’13, Zhuk



NU – Near unanimity

A ∈ NU if it has a term operation t such that

t(x , x , . . . , x , y , x , x , . . . , x) ≈ x

I NU = relational determined by small projections
Baker, Pixley’75

I ⇒ NU ⊆ FinRel

I NU ⊆ CD

I pi (x , y , z) = t(x , . . . , x , y , z , . . . , z) are directed Jónsson terms
I different proof later

I ¬NU = bad relations Baker, Pixley’75

I Theorem: CD ∩ FinRel = NU B’13, Zhuk



NU – Near unanimity

A ∈ NU if it has a term operation t such that

t(x , x , . . . , x , y , x , x , . . . , x) ≈ x

I NU = relational determined by small projections
Baker, Pixley’75

I ⇒ NU ⊆ FinRel
I NU ⊆ CD

I pi (x , y , z) = t(x , . . . , x , y , z , . . . , z) are directed Jónsson terms
I different proof later

I ¬NU = bad relations Baker, Pixley’75

I Theorem: CD ∩ FinRel = NU B’13, Zhuk



NU – Near unanimity

A ∈ NU if it has a term operation t such that

t(x , x , . . . , x , y , x , x , . . . , x) ≈ x

I NU = relational determined by small projections
Baker, Pixley’75

I ⇒ NU ⊆ FinRel
I NU ⊆ CD

I pi (x , y , z) = t(x , . . . , x , y , z , . . . , z) are directed Jónsson terms
I different proof later

I ¬NU = bad relations Baker, Pixley’75

I Theorem: CD ∩ FinRel = NU B’13, Zhuk



NU – Near unanimity

A ∈ NU if it has a term operation t such that

t(x , x , . . . , x , y , x , x , . . . , x) ≈ x

I NU = relational determined by small projections
Baker, Pixley’75

I ⇒ NU ⊆ FinRel
I NU ⊆ CD

I pi (x , y , z) = t(x , . . . , x , y , z , . . . , z) are directed Jónsson terms
I different proof later

I ¬NU = bad relations Baker, Pixley’75

I Theorem: CD ∩ FinRel = NU B’13, Zhuk



Cube – Cube term

A ∈ Cube if A has a term operation t satisfying some identities of
the form

t(x , ?, ? . . . , ?) = y , . . . , t(?, ?, . . . , ?, x) = y

I (for finite A) Cube ⇔ few subpowers

I NU ⊆ Cube

I Theorem: Cube ⊆ CM BIMMVW’10, KS’12

I Theorem: Cube ⊆ FinRel Aichinger, Mayr, McKenzie

I Theorem: Cube = CM ∩ FinRel B

I Theorem: CD + Cube ⇔ NU BIMMVW’10, MM’08, KS’12

I A ∈ Cube iff its full idempotent reduct is in Cube

I For idempotent A: ¬Cube = bad relations
Marković, Maróti, McKenzie’12; B, Kozik, Stanovský
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Cube – Cube term

A ∈ Cube if A has a term operation t satisfying some identities of
the form

t(x , ?, ? . . . , ?) = y , . . . , t(?, ?, . . . , ?, x) = y

I (for finite A) Cube ⇔ few subpowers

I NU ⊆ Cube

I Theorem: Cube ⊆ CM BIMMVW’10, KS’12

I Theorem: Cube ⊆ FinRel Aichinger, Mayr, McKenzie

I Theorem: Cube = CM ∩ FinRel B

I Theorem: CD + Cube ⇔ NU BIMMVW’10, MM’08, KS’12

I A ∈ Cube iff its full idempotent reduct is in Cube

I For idempotent A: ¬Cube = bad relations
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Cube cntd.

Definition

Let A be idempotent. Then R ≤ An is a cube term blocker if
R = Dn \ (D \ C )n for some C � D ≤ A.

I Blocker of arity n ⇒ blocker of arity n − 1

I Easy fact: Dn \ (D \ C )n ≤ An iff ∀t ∈ Clon(A) ∃i
t(D,D, . . . ,D, C︸︷︷︸

i

,D, . . . ,D) ⊆ C

I it can be easily decided if ∀n a cube term blocker exists

I Easy fact: ∀n ∃ blocker ⇒ A 6∈ Cube

I Theorem: ∀n ∃ blocker ⇔ A 6∈ Cube (MMM’12, BKS)
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Short summary

For CD/NU/Cube:

I Characterized by terms

I Properties of the full idempotent reduct

I For idempotent finite algebras, negation is equivalent to the
existence of a bad relation

I For Cube the bad relations are cube term blockers (of every
arity)



Absorption and Jónsson absorption

“Give up your selfishness, and you shall find peace;
like water mingling with water, you shall merge in
absorption.”

Sri Guru Granth Sahib



Absorption (generalizes NU)

Definition

Let A be idempotent. Then B absorbs A, written B / A, if B ≤ A
and ∃ idempotent term t (arity ≥ 2) such that
t(B,B, . . . ,B,A,B,B . . . ,B) ⊆ B (for any position of A)

I if A is non-idempotent, we define B / A if B absorbs the
idempotent reduct of A

I Fact: A ∈ NU iff ∀a ∈ A {a} / A
I A ∈ NU is a strong condition,

having a proper absorbing subuniverse is quite weak:
For a finite idempotent A in a variety omitting type 1:

I Theorem: If β, γ is a pair of non-permuting congruences,
β ∨ γ = 1, then A has a proper absorbing subuniverse
B, Kozik’12

I Theorem: If no subalgebra of A has a proper absorbing
subuniverse then A has a Maltsev term B, Kozik, Stanovský

I Corollary (Hobby, McKenzie’88): A Abelian ⇒ A affine
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Absorption cntd.

I Absorption absorbs connectivity

I Example: If B / C ≤ A2 and two pairs in B are connected in
C then they are connected in B

I Proof of NU ⊆ CD:
I Assume X ≤ B× C×D and β, γ, δ are kernels of projections
I Consider R = {(c , d) : (∃b) (b, c , d) ∈ X}
I and Sb = {(c , d) : (b, c , d) ∈ X}
I Easy: Sb / R since {b} / A
I We want: whenever two elements of Sb are connected in R

then they are connected in Sb.
I Follows from the example above

I For idempotent algebras ¬(B / A) ⇔ bad relations
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Absorption cntd. – bad relations

Definition

Let B ≤ A, A idempotent. Then R ≤ An is a B-absorption blocker
if R ∩ Bn = ∅ and each projection to (n− 1)-coordinates intersects
Bn−1. (n ≥ 2)

I Easy: if R is a B-absorption blocker of arity n
then B does not absorb A via a term of arity n

I Less obvious: A has a B-absorption blocker of arity n
iff B does not absorb A via a term of arity n B, Buĺın

I Consequence: B does not absorb A iff A has a
B-absorption blocker of every arity (≥ 2).
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Jónsson absorption (generalizes CD)

Definition

Let A be idempotent. B Jónsson absorbs A (or B is a Jónsson
ideal of A), written B /j A, if B ≤ A and ∃ terms p0, . . . , pn such
that

x ≈ p0(x , y , z), z ≈ pn(x , y , z)
pi (x , y , y) ≈ pi+1(x , x , y)
pi (B,A,B) ⊆ B

I Fact: A ∈ CD iff ∀a ∈ A {a} / A

I This is the directed version which generalizes directed Jónsson
terms, the other version is equivalent. Kozik

I Fact: B / A ⇒ B /j A

I Jónsson absorption absorbs connectivity

I Relational characterization of ¬(B /j A) similar to CD (by
Freese, Valeriote) B, Kazda
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Original question: How far is NU from CD?

Better question: How far is absorption from Jónsson
absorption?

Both absorptions absorb connectivity
(absorption sometimes in a nicer way).

No other property was ever used.

⇒ shouldn’t be too far...
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Better versions of some results



Absorptions in finitely related algebras

I Old version: A finitely related and in CD ⇒ A in NU.
B’13; Zhuk

I Old version reformulated: A finitely related and every
singleton Jónsson absorbs A ⇒ every singleton absorbs A.

I Proved using techniques we developed with Kozik

I Alternative approach by Zhuk

I A better version:

Theorem (B, Buĺın; Kozik)

Let A be finitely related, B ≤ A. Then B /j A implies B / A.

I Proved using Zhuk’s technique

I Alternative approach: see Kozik’s talk
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Let A be finitely related, B ≤ A. Then B /j A implies B / A.

I Proved using Zhuk’s technique

I Alternative approach: see Kozik’s talk



Absorptions in finitely related algebras

I Old version: A finitely related and in CD ⇒ A in NU.
B’13; Zhuk

I Old version reformulated: A finitely related and every
singleton Jónsson absorbs A ⇒ every singleton absorbs A.

I Proved using techniques we developed with Kozik

I Alternative approach by Zhuk

I A better version:

Theorem (B, Buĺın; Kozik)
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Better version:
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Let B ≤ A. Then B /j A and ∃n such that there are no
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⇔ B / A.

Different formulation: If B /j A but B 6 /A then there is a very
special B-absorption blocker (namely a cube term blocker) of every
arity.
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Absorptions in general cntd.

Proof strategy

I Assume B /j A and B 6 /A.
I There is a B-absorption blocker of every arity.
I Want: For each k find a B-absorption blocker of arity k which

is a cube term blocker.
I How? Use a B-absorption blocker of arity l >> k ,

connectivity and pp-defintions

Proof for a very special case: A = {0, 1},B = {0}, k = 2

I l = 3 will be enough.
I We have X ≤ A3 which contains 100, 010, 001 + maybe some

other, does not contain 000
I We want to show that {01, 10, 11} ≤ A2.
I Put R = {(a, b) : (∃c) (a, b, c) ∈ R}
I and S = {(a, b) : (a, b, 0) ∈ R}
I 00 6∈ S , 01, 10 ∈ S
I S /j R, R connected ⇒ S connected ⇒ 11 ∈ S .
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Deciding absorption in algebras

Old problem: Given A decide whether A ∈ NU

I Decidable Maróti’09 (huge upper bound for the arity)

I We have NU = CD ∩ Cube. For A idempotent, fixed |A|
deciding CD is in P Freese, Valeriote’09 and
deciding Cube is in P Marković, Maróti, McKenzie’12,
so the problem is in P

I If A is non-idempotent, then
CD still can be decided (EXPTIME-c Freese, Valeriote) and
deciding Cube is a bit more complicated, but doable Zhuk
+ gives a reasonable upper bound

I lower bound? complexity?

Better problem: Given A and B ⊆ A decide whether B / A

I Decidable, for similar reasons

I if A idempotent, |A| fixed, then in P

I lower bound? complexity?
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I Decidable Maróti’09 (huge upper bound for the arity)

I We have NU = CD ∩ Cube. For A idempotent, fixed |A|
deciding CD is in P Freese, Valeriote’09 and
deciding Cube is in P Marković, Maróti, McKenzie’12,
so the problem is in P

I If A is non-idempotent, then
CD still can be decided (EXPTIME-c Freese, Valeriote) and
deciding Cube is a bit more complicated, but doable Zhuk
+ gives a reasonable upper bound

I lower bound? complexity?

Better problem: Given A and B ⊆ A decide whether B / A

I Decidable, for similar reasons

I if A idempotent, |A| fixed, then in P

I lower bound? complexity?



Deciding absorption in algebras

Old problem: Given A decide whether A ∈ NU
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so the problem is in P

I If A is non-idempotent, then
CD still can be decided (EXPTIME-c Freese, Valeriote) and
deciding Cube is a bit more complicated, but doable Zhuk
+ gives a reasonable upper bound

I lower bound? complexity?

Better problem: Given A and B ⊆ A decide whether B / A

I Decidable, for similar reasons

I if A idempotent, |A| fixed, then in P

I lower bound? complexity?



Deciding absorption in algebras

Old problem: Given A decide whether A ∈ NU
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Conclusion

I Some important properties of algebras can be understood as
connectivity properties

I Absorption absorbs connectivity

I NU (CD) algebras are nice because every singleton (Jónsson)
absorbs

I NU (CD) algebras are rare, absorption is almost everywhere

I There are other absorption-like notions I did not mention...

I Infinite algebras?

I Thank you!
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