Constraint Satisfaction Problems of Bounded Width

Libor Barto

joint work with Marcin Kozik

Department of Algebra Charles University in Prague Czech Republic

Theoretical Computer Science Department Jagiellonian University, Krakow Poland

FOCS 2009

CSP

Definition (CSP)

A: set (of values)

INPUT X: set (of variables)

 \mathcal{C} : set of constraints

Constraint is a pair $C = (\vec{s}, R)$, where

 $ightharpoonup ec{s} = (x_1, \dots, x_k)$: k-tuple of vars constraint scope

▶ R: k-ary relation on A, i.e. $R \subseteq A^k$ constraint relation

QUESTION Is there a solution?

Solution is a mapping $f: X \to A$ satisfying all the constraints

f satisfies $C = ((x_1, \ldots, x_k), R)$, if $(f(x_1), \ldots, f(x_k)) \in R$

CSP over a constraint language

Definition

Constraint language = (A, Γ) , where Γ is a family of relations on A (sometimes Γ is assumed to be finite).

Definition ($CSP(A, \Gamma)$)

INPUT X: set (of variables)

C: set of constraints over (A, Γ)

Constraint over (A, Γ) is a pair $C = (\vec{s}, R)$, where

- $ightharpoonup \vec{s} = (x_1, \dots, x_k)$: k-tuple of vars
- ightharpoonup R: k-ary relation on A, $R \in \Gamma$

QUESTION Is there a solution?

Examples of $CSP(A, \Gamma)$

- ► SAT, 3-SAT, 2-SAT, HORN-SAT, ...
- Solving system of equations (for example linear equations over finite fields)
- ▶ 2-coloring, 3-coloring, ...
- homomorphism problems with fixed target structure
- ► ST-connectivity, . . .
- practical problems (scheduling, . . .)

The Holy Grail

Conjecture (Feder, Vardi 98)

For every finite constraint language (A, Γ) , $CSP(A, \Gamma)$ is tractable or NP-complete.

Some evidence:

- ▶ Schaefer 78 True, if |A| = 2
- ▶ Bulatov 02 True, if |A| = 3
- Bulatov 03 True, if Γ contains all unary relations on A

The algebraic approach

Definition

n-ary operation on $A = mapping A^n \rightarrow A$ Algebra = pair (A, F), where F is a family of operations on A

To every constraint language (A, Γ) we assign algebra $Pol(A, \Gamma) = (A, F)$, where F are all operations compatible with all relations in Γ .

Theorem (Bulatov, Cohen, Gyssens, Jeavons, Krokhin 98-05)

The complexity of (A, Γ) depends only on $Pol(A, \Gamma)$. (And much more. . .)

The algebraic dichotomy conjecture

Theorem (BJK 00-05)

If "there is a trivial algebra inside $Pol(A,\Gamma)$ ", then $CSP(A,\Gamma)$ is NP-complete.

Conjecture (BJK 05)

Otherwise, $CSP(A, \Gamma)$ is in P.

Theorem (Maróti, McKenzie 06)

Let (A, Γ) be a core constraint language. TFAE

- "there is no trivial algebra inside $Pol(A, \Gamma)$ "
- ▶ $Pol(A, \Gamma)$ contains a WNU operation f of some arity $k \ge 2$:

$$f(a, a, \ldots, a) = a$$

$$f(b, a, a, ..., a) = f(a, b, a, a, ..., a) = \cdots = f(a, a, ..., a, b)$$

Poly-time algorithms for CSPs

- Generalization of Gaussian elimination
 - Already well understood
 - Bulatov, Dalmau 06 Dalmau 06 Berman, Idziak, Marković, McKenzie, Valeriote, Willard 07
- Local Consistency Checking
 - The most natural family of algorithms for CSP
 - ▶ When can it be applied? ... Larose and Zádori 07 conjecture
 - Crucial before attacking the dichotomy conjecture
 - Some partial results Feder, Vardi 98, Dalmau, Pearson 99, Bulatov 06, Kiss, Valeriote 07, Carvalho, Dalmau, Marković, Maróti 09
 - Our theorem gives an affirmative answer

Minimal instance

Definition

Let $k \le l$ be natural numbers.

An instance of CSP is called (k, l)-minimal, if

- Every I-element set of vars is within a scope of some constraint
- ▶ For every set K of at most k variables and every pair of constraints $C_i = (\vec{s}_i, R_i)$ and $C_j = (\vec{s}_j, R_j)$ whose scopes contain K, the projections of R_i and R_j onto K are equal.
- ▶ Every instance of CSP can be converted to a (k, l)-minimal instance with the same set of solutions in poly-time.
- ▶ If some (equivalently every) constraint relation is empty, then the original *CSP* has no solution.
- Otherwise, we don't know

Relational width

Definition

A constraint language (A, Γ) has width (k, I), if every instance of $CSP(A, \Gamma)$, such that the corresponding (k, I)-minimal instance has nonempty constraint relations, has a solution.

A constraint language (A, Γ) has bounded width, if it has width (k, l) for some k, l.

Many equivalent definitions (Datalog, bounded tree width duality, pebble games, . . .).

Theorem (Larose, Zádori 07)

If a core constraint language (A, Γ) has bounded width, then "there is no module inside $Pol(A, \Gamma)$ ".

Conjecture (Larose, Zádori)

The other implication is also true.

The theorem

Theorem (Maróti, McKenzie 06)

Let (A, Γ) be a core constraint language. TFAE

- "there is no module inside Pol(A, Γ)"
- Pol(A, Γ) contains WNU operations of all but finitely many arities

Theorem (Barto, Kozik 09)

- ► (A, Γ) has bounded width
- new (A, Γ) has width (2,3) (optimal Dalmau)

Moreover, these conditions can be checked in poly-time.

Recently, a different proof announced by Bulatov!

Coffee!

ThANK you fOR your atTENTion?