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Set functors

DEFINITION Set functor = a functor Set → Set.

EXAMPLE Let V be a variety.

◮ FV – Free functor: FV(X ) is the (underlying set of the) free
algebra = terms over X modulo identities in V.
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Set functors

DEFINITION Set functor = a functor Set → Set.

EXAMPLE Let V be a variety.

◮ FV – Free functor: FV(X ) is the (underlying set of the) free
algebra = terms over X modulo identities in V.

◮ F 1
V

– Subfunctor of FV : F 1
V

is the set of all terms over X of
height at most 1 modulo identities in V.
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DVO functors

DEFINITION A set functor F is DVO (Determined by Values on
Objects), if F ∼= G for every set functor G with |F (X )| = |G (X )|
for all X .
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DVO functors

DEFINITION A set functor F is DVO (Determined by Values on
Objects), if F ∼= G for every set functor G with |F (X )| = |G (X )|
for all X .

OPEN PROBLEM Find all DVO functors!
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DVO functors

DEFINITION A set functor F is DVO (Determined by Values on
Objects), if F ∼= G for every set functor G with |F (X )| = |G (X )|
for all X .

OPEN PROBLEM Find all DVO functors!

EXAMPLES OF DVO FUNCTORS

◮ Subfunctors of FV, where V = semilattices. (i.e. FV = power
set functor)
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DVO functors

DEFINITION A set functor F is DVO (Determined by Values on
Objects), if F ∼= G for every set functor G with |F (X )| = |G (X )|
for all X .

OPEN PROBLEM Find all DVO functors!

EXAMPLES OF DVO FUNCTORS

◮ Subfunctors of FV, where V = semilattices. (i.e. FV = power
set functor)

◮ Subfunctors of idempotent reduct of FV, where V = boolean
groups. (”power set functor avoiding even numbers”)
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Known results

Known results ⇒ suffices to study finitary faithful connected
functors = functors F 1

V
for (finitary) idempotent varieties V
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Known results

Known results ⇒ suffices to study finitary faithful connected
functors = functors F 1

V
for (finitary) idempotent varieties V

◮ Every DVO functor is finitary. A. Barkhudaryan, R. El Bashir,
V.Koubek, V. Trnková 03, 07
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Known results

Known results ⇒ suffices to study finitary faithful connected
functors = functors F 1

V
for (finitary) idempotent varieties V

◮ Every DVO functor is finitary. A. Barkhudaryan, R. El Bashir,
V.Koubek, V. Trnková 03, 07

◮ nonfaithful DVO functors are characterized. The same authors
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Known results

Known results ⇒ suffices to study finitary faithful connected
functors = functors F 1

V
for (finitary) idempotent varieties V

◮ Every DVO functor is finitary. A. Barkhudaryan, R. El Bashir,
V.Koubek, V. Trnková 03, 07

◮ nonfaithful DVO functors are characterized. The same authors

◮ result for nonconnected functors can be obtained from the
connected case
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Increases

DEFINITION Let F be a set functor (connected finitary faithful),
Xn = {x1, . . . , xn} be a set. Increase of F on Xn (notation F ′(Xn))
is the set of all essentially n-ary elements of F (Xn).
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Increases

DEFINITION Let F be a set functor (connected finitary faithful),
Xn = {x1, . . . , xn} be a set. Increase of F on Xn (notation F ′(Xn))
is the set of all essentially n-ary elements of F (Xn).

PROPOSITION |F (Xn)| =
∑n

i=1

(

n
i

)

|F ′(Xi )|
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Increases

DEFINITION Let F be a set functor (connected finitary faithful),
Xn = {x1, . . . , xn} be a set. Increase of F on Xn (notation F ′(Xn))
is the set of all essentially n-ary elements of F (Xn).

PROPOSITION |F (Xn)| =
∑n

i=1

(

n
i

)

|F ′(Xi )|

The sequence

〈
∣

∣F ′(X2)
∣

∣ ,

∣

∣F ′(X3)
∣

∣ ,

∣

∣F ′(X4)
∣

∣ , . . . 〉

is called increase sequence of F .

It follows that, for all n, |F (Xn)| is determined by the increase
sequence.
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Increase sequences of some set functors I

〈0, 0, 0, 0, 0, 0, 0, . . . 〉 is the increase sequence of a DVO functor
〈1, 0, 0, 0, 0, 0, 0, . . . 〉 DVO
〈1, 1, 0, 0, 0, 0, 0, . . . 〉 not DVO
〈1, 1, 1, 0, 0, 0, 0, . . . 〉 DVO
〈1, 1, 1, 1, 0, 0, 0, . . . 〉 DVO
. . .
〈1, 1, 1, 1, . . . , 〉 not DVO
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Increase sequences of some set functors I

〈0, 0, 0, 0, 0, 0, 0, . . . 〉 is the increase sequence of a DVO functor
〈1, 0, 0, 0, 0, 0, 0, . . . 〉 DVO
〈1, 1, 0, 0, 0, 0, 0, . . . 〉 not DVO
〈1, 1, 1, 0, 0, 0, 0, . . . 〉 DVO
〈1, 1, 1, 1, 0, 0, 0, . . . 〉 DVO
. . .
〈1, 1, 1, 1, . . . , 〉 not DVO

〈0, 1, 0, 0, 0, 0, 0, . . . 〉 not DVO
〈0, 1, 0, 1, 0, 0, 0, . . . 〉 DVO
〈0, 1, 0, 1, 0, 1, 0, . . . 〉 DVO
. . .
〈0, 1, 0, 1, 0, 1, . . . 〉 not DVO
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Increase sequences of some set functors II

〈1, 1, 1, 1, 1, 0, 0, . . . 〉 DVO
〈2, 1, 1, 1, 1, 0, 0, . . . 〉 DVO
〈1, 2, 1, 1, 1, 0, 0, . . . 〉 not DVO
〈1, 1, 2, 1, 1, 0, 0, . . . 〉 DVO
〈1, 1, 1, 2, 1, 0, 0, . . . 〉 DVO
〈1, 1, 1, 1, 2, 0, 0, . . . 〉 not DVO
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Increase sequences of some set functors II

〈1, 1, 1, 1, 1, 0, 0, . . . 〉 DVO
〈2, 1, 1, 1, 1, 0, 0, . . . 〉 DVO
〈1, 2, 1, 1, 1, 0, 0, . . . 〉 not DVO
〈1, 1, 2, 1, 1, 0, 0, . . . 〉 DVO
〈1, 1, 1, 2, 1, 0, 0, . . . 〉 DVO
〈1, 1, 1, 1, 2, 0, 0, . . . 〉 not DVO

〈3, 1, 1, 1, 1, 0, 0, . . . 〉 not DVO
〈1, 3, 1, 1, 1, 0, 0, . . . 〉 not DVO
〈1, 1, 3, 1, 1, 0, 0, . . . 〉 not DVO
〈1, 1, 1, 3, 1, 0, 0, . . . 〉 not DVO
〈1, 1, 1, 1, 3, 0, 0, . . . 〉 not DVO
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Increase sequences of some set functors III

〈1, 1, 1, 0, 0, 0,

(

8
1

)

, 0, 0, . . . 〉 DVO

〈1, 1, 1, 0, 0, 0,

(

8
2

)

, 0, 0, . . . 〉 DVO

〈1, 1, 1, 0, 0, 0,

(

8
1

)

+
(

8
2

)

, 0, 0, . . . 〉 DVO

〈1, 1, 1, 0, 0, 0,

(

8
3

)

, 0, 0, . . . 〉 not DVO

〈1, 1, 1, 0, 0,

(

7
1

)

, 0, 0, . . . 〉 DVO

〈1, 1, 1, 0, 0,

(

7
2

)

, 0, 0, . . . 〉 not DVO
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Increase sequences of some functors IV - 2ω

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
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Is the list complete?

QUESTION Let V be an idempotent nontrivial variety. Let

◮ t(x1, . . . , xn) be a term in V,

◮ G be the stabilizer of t in V:

G = {g ∈ Sn | t(x1, x2, . . . , xn) ≈V t(xg(1), xg(2), . . . , xg(n))}

◮ 2 ≤ k be an odd integer ≤ the size of the smallest orbit of G .

Must there be a mapping r : {1, 2, . . . , n} → {1, 2, . . . , k} such
that the term t(xr(1), xr(2), . . . , xr(n)) depends on all of the
variables x1, . . . xk?
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Is the list complete?

QUESTION Let V be an idempotent nontrivial variety. Let

◮ t(x1, . . . , xn) be a term in V,

◮ G be the stabilizer of t in V:

G = {g ∈ Sn | t(x1, x2, . . . , xn) ≈V t(xg(1), xg(2), . . . , xg(n))}

◮ 2 ≤ k be an odd integer ≤ the size of the smallest orbit of G .

Must there be a mapping r : {1, 2, . . . , n} → {1, 2, . . . , k} such
that the term t(xr(1), xr(2), . . . , xr(n)) depends on all of the
variables x1, . . . xk?

PROPOSITION Yes for k = 3.
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In particular

QUESTION Let V be an idempotent nontrivial variety, let

◮ t(x1, . . . , xn) be a term in V,

◮ G be the stabilizer of t in V:

G = {g ∈ Sn | t(x1, x2, . . . , xn) ≈V t(xg(1), xg(2), . . . , xg(n))}

◮ 2 ≤ k ≤ n be an odd integer

Assume that G is transitive.
Must there be a mapping r : {1, 2, . . . , n} → {1, 2, . . . , k} such
that the term t(xr(1), xr(2), . . . , xr(n)) depends on all of the
variables x1, . . . xk?
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In particular

QUESTION Let V be an idempotent nontrivial variety, let

◮ t(x1, . . . , xn) be a term in V,

◮ G be the stabilizer of t in V:

G = {g ∈ Sn | t(x1, x2, . . . , xn) ≈V t(xg(1), xg(2), . . . , xg(n))}

◮ 2 ≤ k ≤ n be an odd integer

Assume that G is transitive.
Must there be a mapping r : {1, 2, . . . , n} → {1, 2, . . . , k} such
that the term t(xr(1), xr(2), . . . , xr(n)) depends on all of the
variables x1, . . . xk?

PROPOSITION Yes, if G contains n-cycle.
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What can be said about even ks

QUESTION Let V be an idempotent nontrivial variety. Let

◮ t(x1, . . . , xn) be a term in V,

◮ G be the stabilizer of t in V,

◮ 2 ≤ k be an odd integer ≤ the size of the smallest orbit of G .

Must there be a mapping r : {1, . . . , n} → {1, 2, . . . , k} such that
the term t(xr(1), xr(2), . . . , xr(n)) depends on all of the variables
x1, . . . xk?

The main step in ”Characterization of pn-Sequences for
Nonidempotent Algebras” is

THEOREM Kisielewicz 87 For even n and k = 2, if the answer is

negative, then
∣

∣

∣
F

′

V
(Xn)

∣

∣

∣
is a linear combination of

(

n
1

)

,

(

n
3

)

, . . . with

nonnegative integer coefficients.
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web: http://www.karlin.mff.cuni.cz/∼barto

Thank you for your attention!
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