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Cyclic terms

DEFINITION n-ary cyclic term = term t(x1, . . . , xn) satisfying

◮ t is idempotent . . . t(x , x , . . . , x) ≈ x

◮ t(x1, x2, . . . , xn) ≈ t(x2, x3, . . . , xn, x1)
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◮ t is idempotent . . . t(x , x , . . . , x) ≈ x

◮ t(x1, x2, . . . , xn) ≈ t(x2, x3, . . . , xn, x1)

FACT ”Only primes matter”
Let A be an algebra.
C (A) = {n ∈ ω |A has an n-ary cyclic term op.}.
Then m, n ∈ C (A) iff mn ∈ C (A).
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Cyclic terms

DEFINITION n-ary cyclic term = term t(x1, . . . , xn) satisfying

◮ t is idempotent . . . t(x , x , . . . , x) ≈ x

◮ t(x1, x2, . . . , xn) ≈ t(x2, x3, . . . , xn, x1)

FACT ”Only primes matter”
Let A be an algebra.
C (A) = {n ∈ ω |A has an n-ary cyclic term op.}.
Then m, n ∈ C (A) iff mn ∈ C (A).

PROPOSITION ”Semantic meaning”
Let V be an idempotent variety. V has n-ary cyclic term iff for all
A ∈ V and α ∈ Aut(A), if αn = id , then α has a fixed point.
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Question: Does majority imply cyclic?

RECALL Majority term
. . .m(x , x , y) ≈ m(x , y , x) ≈ m(y , x , x) ≈ x
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Question: Does majority imply cyclic?

RECALL Majority term
. . .m(x , x , y) ≈ m(x , y , x) ≈ m(y , x , x) ≈ x

QUESTION McKenzie 07? Does every finite algebra with a
majority term have a cyclic term?
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Question: Does majority imply cyclic?

RECALL Majority term
. . .m(x , x , y) ≈ m(x , y , x) ≈ m(y , x , x) ≈ x

QUESTION McKenzie 07? Does every finite algebra with a
majority term have a cyclic term?

MOTIVATION Constraint satisfaction problem
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RECALL Majority term
. . .m(x , x , y) ≈ m(x , y , x) ≈ m(y , x , x) ≈ x

QUESTION McKenzie 07? Does every finite algebra with a
majority term have a cyclic term?

MOTIVATION Constraint satisfaction problem
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Question: Does majority imply cyclic?

RECALL Majority term
. . .m(x , x , y) ≈ m(x , y , x) ≈ m(y , x , x) ≈ x

QUESTION McKenzie 07? Does every finite algebra with a
majority term have a cyclic term?

MOTIVATION Constraint satisfaction problem

ANSWER Kozik, Marković, Computer 07 Yes, for atmost 3-element
algebras!
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Question: Does majority imply cyclic?

RECALL Majority term
. . .m(x , x , y) ≈ m(x , y , x) ≈ m(y , x , x) ≈ x

QUESTION McKenzie 07? Does every finite algebra with a
majority term have a cyclic term?

MOTIVATION Constraint satisfaction problem

ANSWER Barto, Kozik, Niven 07 Yes!
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Question: Does majority imply cyclic?

RECALL Majority term
. . .m(x , x , y) ≈ m(x , y , x) ≈ m(y , x , x) ≈ x

QUESTION McKenzie 07? Does every finite algebra with a
majority term have a cyclic term?

MOTIVATION Constraint satisfaction problem

THEOREM Barto, Kozik, Niven ”Majority ⇒ many cyclic terms”
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Question: Does majority imply cyclic?

RECALL Majority term
. . .m(x , x , y) ≈ m(x , y , x) ≈ m(y , x , x) ≈ x

QUESTION McKenzie 07? Does every finite algebra with a
majority term have a cyclic term?

MOTIVATION Constraint satisfaction problem

THEOREM Barto, Kozik, Niven ”Majority ⇒ many cyclic terms”

Let A be a finite algebra with a majority term. Then A has a p-ary
cyclic term for every prime p > |A|.
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Question: Does majority imply cyclic?

RECALL Majority term
. . .m(x , x , y) ≈ m(x , y , x) ≈ m(y , x , x) ≈ x

QUESTION McKenzie 07? Does every finite algebra with a
majority term have a cyclic term?

MOTIVATION Constraint satisfaction problem

THEOREM Barto, Kozik, Niven ”Majority ⇒ many cyclic terms”

Let A be a finite algebra with a majority term. Then A has a p-ary
cyclic term for every prime p > |A|. And we can’t want more.
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Several kinds of terms

◮ majority (3-NU) m(y , x , x) ≈ m(x , y , x) ≈ m(x , x , y) ≈ x
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Several kinds of terms

◮ majority (3-NU) m(y , x , x) ≈ m(x , y , x) ≈ m(x , x , y) ≈ x

◮ n-near unanimity (n-NU) u(y , x , x , . . . , x) ≈
u(x , y , x , x , . . . , x) ≈ · · · ≈ u(x , . . . , x , y) ≈ x
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Several kinds of terms

◮ majority (3-NU) m(y , x , x) ≈ m(x , y , x) ≈ m(x , x , y) ≈ x

◮ n-near unanimity (n-NU) u(y , x , x , . . . , x) ≈
u(x , y , x , x , . . . , x) ≈ · · · ≈ u(x , . . . , x , y) ≈ x

◮ n-weak near unanimity (n-WNU) u(y , x , x , . . . , x) ≈
u(x , y , x , x , . . . , x) ≈ · · · ≈ u(x , . . . , x , y), u(x , . . . , x) ≈ x
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Several kinds of terms

◮ majority (3-NU) m(y , x , x) ≈ m(x , y , x) ≈ m(x , x , y) ≈ x

◮ n-near unanimity (n-NU) u(y , x , x , . . . , x) ≈
u(x , y , x , x , . . . , x) ≈ · · · ≈ u(x , . . . , x , y) ≈ x

◮ n-weak near unanimity (n-WNU) u(y , x , x , . . . , x) ≈
u(x , y , x , x , . . . , x) ≈ · · · ≈ u(x , . . . , x , y), u(x , . . . , x) ≈ x

◮ Malcev (CP) p(x , x , y) ≈ p(y , x , x) ≈ y
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Several kinds of terms

◮ majority (3-NU) m(y , x , x) ≈ m(x , y , x) ≈ m(x , x , y) ≈ x

◮ n-near unanimity (n-NU) u(y , x , x , . . . , x) ≈
u(x , y , x , x , . . . , x) ≈ · · · ≈ u(x , . . . , x , y) ≈ x

◮ n-weak near unanimity (n-WNU) u(y , x , x , . . . , x) ≈
u(x , y , x , x , . . . , x) ≈ · · · ≈ u(x , . . . , x , y), u(x , . . . , x) ≈ x

◮ Malcev (CP) p(x , x , y) ≈ p(y , x , x) ≈ y

◮ Jónsson (CD)
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Several kinds of terms

◮ majority (3-NU) m(y , x , x) ≈ m(x , y , x) ≈ m(x , x , y) ≈ x

◮ n-near unanimity (n-NU) u(y , x , x , . . . , x) ≈
u(x , y , x , x , . . . , x) ≈ · · · ≈ u(x , . . . , x , y) ≈ x

◮ n-weak near unanimity (n-WNU) u(y , x , x , . . . , x) ≈
u(x , y , x , x , . . . , x) ≈ · · · ≈ u(x , . . . , x , y), u(x , . . . , x) ≈ x

◮ Malcev (CP) p(x , x , y) ≈ p(y , x , x) ≈ y

◮ Jónsson (CD)

◮ Gumm (CM)
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Several kinds of terms

◮ majority (3-NU) m(y , x , x) ≈ m(x , y , x) ≈ m(x , x , y) ≈ x

◮ n-near unanimity (n-NU) u(y , x , x , . . . , x) ≈
u(x , y , x , x , . . . , x) ≈ · · · ≈ u(x , . . . , x , y) ≈ x

◮ n-weak near unanimity (n-WNU) u(y , x , x , . . . , x) ≈
u(x , y , x , x , . . . , x) ≈ · · · ≈ u(x , . . . , x , y), u(x , . . . , x) ≈ x

◮ Malcev (CP) p(x , x , y) ≈ p(y , x , x) ≈ y

◮ Jónsson (CD)

◮ Gumm (CM)

◮ Taylors
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Look at the blackboard!

FACT 3-NU ⇒ 4-NU ⇒ 5-NU ⇒ . . .⇒ Jónsson ⇒ Gumm ⇒
Taylor (the weakest nontrivial), Malcev ⇒ Gumm

THEOREM Maróti, McKenzie 06 For a finite algebra, Taylor ⇒
WNU.

THEOREMS For a finite algebra

◮ Jónsson ⇒ many cyclic terms BKN

◮ Malcev ⇒ many cyclic terms Maróti, McKenzie

◮ Gumm ⇒ many cyclic terms Maróti, McKenzie

QUESTION WNU ⇒ (many) cyclic term(s)? (For finite algebras,
of course)
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I’ll sketch the proof of

THEOREM Let A be a finite algebra with Jónsson term
operations. Then A has a p-ary cyclic term operation for every
prime p > |A|.
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Proof - the beginning

NOTATION For a tuple ā = 〈a1, . . . , an〉, let
σ(ā) = 〈a2, . . . , an, a1〉.
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Proof - the beginning

NOTATION For a tuple ā = 〈a1, . . . , an〉, let
σ(ā) = 〈a2, . . . , an, a1〉.

FACT Let A be a finite idempotent algebra, n ≥ 2 be a natural
number. TFAE
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Proof - the beginning

NOTATION For a tuple ā = 〈a1, . . . , an〉, let
σ(ā) = 〈a2, . . . , an, a1〉.

FACT Let A be a finite idempotent algebra, n ≥ 2 be a natural
number. TFAE

◮ A has n-ary cyclic term.
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Proof - the beginning

NOTATION For a tuple ā = 〈a1, . . . , an〉, let
σ(ā) = 〈a2, . . . , an, a1〉.

FACT Let A be a finite idempotent algebra, n ≥ 2 be a natural
number. TFAE

◮ A has n-ary cyclic term.

◮ (∃t n-ary term ) (∀ā ∈ An)
t(ā, σ(ā), σ2(ā), . . . , σn−1(ā)) = 〈c , c , . . . , c〉 for some c ∈ A.
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Proof - the beginning

NOTATION For a tuple ā = 〈a1, . . . , an〉, let
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Proof - the beginning

NOTATION For a tuple ā = 〈a1, . . . , an〉, let
σ(ā) = 〈a2, . . . , an, a1〉.

FACT Let A be a finite idempotent algebra, n ≥ 2 be a natural
number. TFAE

◮ A has n-ary cyclic term.

◮ (∃t n-ary term ) (∀ā ∈ An)
t(ā, σ(ā), σ2(ā), . . . , σn−1(ā)) = 〈c , c , . . . , c〉 for some c ∈ A.

◮ (∀ā ∈ An) (∃t n-ary term )
t(ā, σ(ā), σ2(ā), . . . , σn−1(ā)) = 〈c , c , . . . , c〉 for some c ∈ A.

◮ (∀ā ∈ An) Sg(ā, σ(ā), . . . ) ∋ 〈c , c . . . , c〉.
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Proof - the beginning

NOTATION For a tuple ā = 〈a1, . . . , an〉, let
σ(ā) = 〈a2, . . . , an, a1〉.

FACT Let A be a finite idempotent algebra, n ≥ 2 be a natural
number. TFAE

◮ A has n-ary cyclic term.

◮ (∃t n-ary term ) (∀ā ∈ An)
t(ā, σ(ā), σ2(ā), . . . , σn−1(ā)) = 〈c , c , . . . , c〉 for some c ∈ A.

◮ (∀ā ∈ An) (∃t n-ary term )
t(ā, σ(ā), σ2(ā), . . . , σn−1(ā)) = 〈c , c , . . . , c〉 for some c ∈ A.

◮ (∀ā ∈ An) Sg(ā, σ(ā), . . . ) ∋ 〈c , c . . . , c〉.

◮ Every S ≤ An, σ(S) = S contains a constant n-tuple.
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First part of the proof - loops in graphs

LEMMA Let G ≤ B2, where B has a majority term. Let G

(viewed as a graph) be strongly connected and the greatest
common divisor of the lengths of cycles in G is 1.
Then G cotains a loop.
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First part of the proof - loops in graphs

LEMMA Let G ≤ B2, where B has a majority term. Let G

(viewed as a graph) be strongly connected and the greatest
common divisor of the lengths of cycles in G is 1.
Then G cotains a loop.

Crucial idea of the proof:
Consider the following system of sets

CG = {R ⊆ A | (∀r , s ∈ R, a ∈ A) m(r , s, a) ∈ R

m(r , a, s) ∈ R

m(a, r , s) ∈ R}
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First part of the proof - loops in graphs

LEMMA Let G ≤ B2, where B has a majority term. Let G

(viewed as a graph) be strongly connected and the greatest
common divisor of the lengths of cycles in G is 1.
Then G cotains a loop.

Crucial idea of the proof:
Consider the following system of sets

CG = {R ⊆ A | (∀r , s ∈ R, a ∈ A) m(r , s, a) ∈ R

m(r , a, s) ∈ R

m(a, r , s) ∈ R}

It is closed under intersection, it contains singletons, . . .
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The second part of the proof

Let A be a minimal counterexample to the theorem wrt |A|.
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The second part of the proof
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⇒ A is simple.
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The second part of the proof

Let A be a minimal counterexample to the theorem wrt |A|.

⇒ A is simple.

Take S ≤ Ap, σ(S) = S and some 1 ≤ k < n.

BKN Charles University in Prague, Czech Republic

Jónsson implies cyclic



The second part of the proof

Let A be a minimal counterexample to the theorem wrt |A|.

⇒ A is simple.

Take S ≤ Ap, σ(S) = S and some 1 ≤ k < n.

Let B = {〈a1, . . . , ak〉 | 〈a1, . . . , ap〉 ∈ S} ≤ Ak
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The second part of the proof

Let A be a minimal counterexample to the theorem wrt |A|.

⇒ A is simple.

Take S ≤ Ap, σ(S) = S and some 1 ≤ k < n.

Let B = {〈a1, . . . , ak〉 | 〈a1, . . . , ap〉 ∈ S} ≤ Ak

and G = {〈 〈a1, . . . , ak〉, 〈a2, . . . ak+1〉 〉 | 〈a1, . . . , ap〉 ∈ S} ≤ B2
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The second part of the proof

Let A be a minimal counterexample to the theorem wrt |A|.

⇒ A is simple.

Take S ≤ Ap, σ(S) = S and some 1 ≤ k < n.

Let B = {〈a1, . . . , ak〉 | 〈a1, . . . , ap〉 ∈ S} ≤ Ak

and G = {〈 〈a1, . . . , ak〉, 〈a2, . . . ak+1〉 〉 | 〈a1, . . . , ap〉 ∈ S} ≤ B2

◮ This graph is strongly connected
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The second part of the proof

Let A be a minimal counterexample to the theorem wrt |A|.

⇒ A is simple.

Take S ≤ Ap, σ(S) = S and some 1 ≤ k < n.
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BKN Charles University in Prague, Czech Republic

Jónsson implies cyclic



The second part of the proof

Let A be a minimal counterexample to the theorem wrt |A|.

⇒ A is simple.

Take S ≤ Ap, σ(S) = S and some 1 ≤ k < n.

Let B = {〈a1, . . . , ak〉 | 〈a1, . . . , ap〉 ∈ S} ≤ Ak

and G = {〈 〈a1, . . . , ak〉, 〈a2, . . . ak+1〉 〉 | 〈a1, . . . , ap〉 ∈ S} ≤ B2

◮ This graph is strongly connected

◮ Every vertex is in a p-cycle

◮ Using simplicity and congruence properties (join
semidistributivity suffices) one can find (lp + 1)-cycle
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The second part of the proof

Let A be a minimal counterexample to the theorem wrt |A|.

⇒ A is simple.

Take S ≤ Ap, σ(S) = S and some 1 ≤ k < n.

Let B = {〈a1, . . . , ak〉 | 〈a1, . . . , ap〉 ∈ S} ≤ Ak

and G = {〈 〈a1, . . . , ak〉, 〈a2, . . . ak+1〉 〉 | 〈a1, . . . , ap〉 ∈ S} ≤ B2

◮ This graph is strongly connected

◮ Every vertex is in a p-cycle

◮ Using simplicity and congruence properties (join
semidistributivity suffices) one can find (lp + 1)-cycle

◮ From Lemma we get that it contains loop
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The second part of the proof

Let A be a minimal counterexample to the theorem wrt |A|.

⇒ A is simple.

Take S ≤ Ap, σ(S) = S and some 1 ≤ k < n.

Let B = {〈a1, . . . , ak〉 | 〈a1, . . . , ap〉 ∈ S} ≤ Ak

and G = {〈 〈a1, . . . , ak〉, 〈a2, . . . ak+1〉 〉 | 〈a1, . . . , ap〉 ∈ S} ≤ B2

◮ This graph is strongly connected

◮ Every vertex is in a p-cycle

◮ Using simplicity and congruence properties (join
semidistributivity suffices) one can find (lp + 1)-cycle

◮ From Lemma we get that it contains loop

◮ If k = n − 1 we get a constant tuple
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web: http://www.karlin.mff.cuni.cz/∼barto

Thank you for your attention!
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