Jónsson Terms Imply Cyclic Terms For Finite Algebras

Libor Barto, Marcin Kozik, Todd Niven

Charles University in Prague, Czech Republic

Algorithmic Complexity and Universal Algebra, Szeged 2007

Charles University in Prague, Czech Republic

BKN

Cyclic terms

DEFINITION *n*-ary cyclic term = term $t(x_1, ..., x_n)$ satisfying

- t is idempotent ... $t(x, x, ..., x) \approx x$
- $t(x_1, x_2, \ldots, x_n) \approx t(x_2, x_3, \ldots, x_n, x_1)$

(日) (同) (三) (

BKN

Cyclic terms

DEFINITION *n*-ary cyclic term = term $t(x_1, ..., x_n)$ satisfying

- *t* is idempotent ... $t(x, x, ..., x) \approx x$
- $t(x_1, x_2, \ldots, x_n) \approx t(x_2, x_3, \ldots, x_n, x_1)$

FACT "Only primes matter" Let **A** be an algebra. $C(\mathbf{A}) = \{n \in \omega \mid \mathbf{A} \text{ has an } n\text{-ary cyclic term op.}\}.$ Then $m, n \in C(\mathbf{A})$ iff $mn \in C(\mathbf{A})$.

Cyclic terms

DEFINITION *n*-ary cyclic term = term $t(x_1, ..., x_n)$ satisfying

- *t* is idempotent ... $t(x, x, ..., x) \approx x$
- $t(x_1, x_2, \ldots, x_n) \approx t(x_2, x_3, \ldots, x_n, x_1)$

FACT "Only primes matter" Let **A** be an algebra. $C(\mathbf{A}) = \{n \in \omega \mid \mathbf{A} \text{ has an } n\text{-ary cyclic term op.}\}.$ Then $m, n \in C(\mathbf{A})$ iff $mn \in C(\mathbf{A})$.

PROPOSITION "Semantic meaning" Let \mathbb{V} be an idempotent variety. \mathbb{V} has *n*-ary cyclic term iff for all $\mathbf{A} \in \mathbb{V}$ and $\alpha \in \operatorname{Aut}(\mathbf{A})$, if $\alpha^n = id$, then α has a fixed point.

RECALL Majority term ... $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$

Charles University in Prague, Czech Republic

3

イロト イポト イヨト イヨト

BKN

RECALL Majority term ... $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$

QUESTION McKenzie 07? Does every finite algebra with a majority term have a cyclic term?

Charles University in Prague, Czech Republic

▲ @ ▶ ▲ @ ▶ ▲

Jónsson implies cyclic

RECALL Majority term ... $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$

QUESTION McKenzie 07? Does every finite algebra with a majority term have a cyclic term?

MOTIVATION Constraint satisfaction problem

Charles University in Prague, Czech Republic

BKN

RECALL Majority term ... $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$

QUESTION McKenzie 07? Does every finite algebra with a majority term have a cyclic term?

MOTIVATION Constraint satisfaction problem

ANSWER Everyone 07 No!

Charles University in Prague, Czech Republic

BKN

RECALL Majority term ... $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$

QUESTION McKenzie 07? Does every finite algebra with a majority term have a cyclic term?

MOTIVATION Constraint satisfaction problem

ANSWER Kozik, Marković, Computer 07 Yes, for atmost 3-element algebras!

Charles University in Prague, Czech Republic

RECALL Majority term ... $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$

QUESTION McKenzie 07? Does every finite algebra with a majority term have a cyclic term?

MOTIVATION Constraint satisfaction problem

ANSWER Barto, Kozik, Niven 07 Yes!

Charles University in Prague, Czech Republic

BKN

RECALL Majority term ... $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$

QUESTION McKenzie 07? Does every finite algebra with a majority term have a cyclic term?

MOTIVATION Constraint satisfaction problem

THEOREM Barto, Kozik, Niven "Majority \Rightarrow many cyclic terms"

BKN

RECALL Majority term ... $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$

QUESTION McKenzie 07? Does every finite algebra with a majority term have a cyclic term?

MOTIVATION Constraint satisfaction problem

THEOREM Barto, Kozik, Niven "Majority \Rightarrow many cyclic terms" Let **A** be a finite algebra with a majority term. Then **A** has a *p*-ary cyclic term for every prime $p > |\mathbf{A}|$.

RECALL Majority term ... $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$

QUESTION McKenzie 07? Does every finite algebra with a majority term have a cyclic term?

MOTIVATION Constraint satisfaction problem

THEOREM Barto, Kozik, Niven "Majority \Rightarrow many cyclic terms" Let **A** be a finite algebra with a majority term. Then **A** has a *p*-ary cyclic term for every prime $p > |\mathbf{A}|$. And we can't want more.

▶ majority (3-NU) $m(y, x, x) \approx m(x, y, x) \approx m(x, x, y) \approx x$

<ロ> <同> <同> <目> <同> <目> <同> <同> <同> <同> <同</p>

Charles University in Prague, Czech Republic

BKN

- ▶ majority (3-NU) $m(y, x, x) \approx m(x, y, x) \approx m(x, x, y) \approx x$
- ▶ *n*-near unanimity (*n*-NU) $u(y, x, x, ..., x) \approx u(x, y, x, x, ..., x) \approx \cdots \approx u(x, ..., x, y) \approx x$

Jónsson implies cyclic

- majority (3-NU) $m(y, x, x) \approx m(x, y, x) \approx m(x, x, y) \approx x$
- ▶ *n*-near unanimity (*n*-NU) $u(y, x, x, ..., x) \approx u(x, y, x, x, ..., x) \approx \cdots \approx u(x, ..., x, y) \approx x$
- ▶ *n*-weak near unanimity (*n*-WNU) $u(y, x, x, ..., x) \approx u(x, y, x, x, ..., x) \approx \cdots \approx u(x, ..., x, y), u(x, ..., x) \approx x$

BKN

- majority (3-NU) $m(y, x, x) \approx m(x, y, x) \approx m(x, x, y) \approx x$
- ▶ *n*-near unanimity (*n*-NU) $u(y, x, x, ..., x) \approx u(x, y, x, x, ..., x) \approx \cdots \approx u(x, ..., x, y) \approx x$
- ▶ *n*-weak near unanimity (*n*-WNU) $u(y, x, x, ..., x) \approx u(x, y, x, x, ..., x) \approx \cdots \approx u(x, ..., x, y), u(x, ..., x) \approx x$
- Malcev (CP) $p(x, x, y) \approx p(y, x, x) \approx y$

- majority (3-NU) $m(y, x, x) \approx m(x, y, x) \approx m(x, x, y) \approx x$
- ▶ *n*-near unanimity (*n*-NU) $u(y, x, x, ..., x) \approx u(x, y, x, x, ..., x) \approx \cdots \approx u(x, ..., x, y) \approx x$
- ▶ *n*-weak near unanimity (*n*-WNU) $u(y, x, x, ..., x) \approx u(x, y, x, x, ..., x) \approx \cdots \approx u(x, ..., x, y), u(x, ..., x) \approx x$
- Malcev (CP) $p(x, x, y) \approx p(y, x, x) \approx y$
- Jónsson (CD)

- majority (3-NU) $m(y, x, x) \approx m(x, y, x) \approx m(x, x, y) \approx x$
- ▶ *n*-near unanimity (*n*-NU) $u(y, x, x, ..., x) \approx u(x, y, x, x, ..., x) \approx \cdots \approx u(x, ..., x, y) \approx x$
- ▶ *n*-weak near unanimity (*n*-WNU) $u(y, x, x, ..., x) \approx u(x, y, x, x, ..., x) \approx \cdots \approx u(x, ..., x, y), u(x, ..., x) \approx x$
- Malcev (CP) $p(x, x, y) \approx p(y, x, x) \approx y$
- Jónsson (CD)
- Gumm (CM)

- majority (3-NU) $m(y, x, x) \approx m(x, y, x) \approx m(x, x, y) \approx x$
- ▶ *n*-near unanimity (*n*-NU) $u(y, x, x, ..., x) \approx u(x, y, x, x, ..., x) \approx \cdots \approx u(x, ..., x, y) \approx x$
- ▶ *n*-weak near unanimity (*n*-WNU) $u(y, x, x, ..., x) \approx u(x, y, x, x, ..., x) \approx \cdots \approx u(x, ..., x, y), u(x, ..., x) \approx x$
- Malcev (CP) $p(x, x, y) \approx p(y, x, x) \approx y$
- Jónsson (CD)
- Gumm (CM)
- Taylors

 $\begin{array}{l} \mathsf{FACT} \ 3\text{-}\mathsf{NU} \Rightarrow 4\text{-}\mathsf{NU} \Rightarrow 5\text{-}\mathsf{NU} \Rightarrow \ldots \Rightarrow \mathsf{Jonsson} \Rightarrow \mathsf{Gumm} \Rightarrow \\ \mathsf{Taylor} \ (\mathsf{the weakest nontrivial}), \quad \mathsf{Malcev} \Rightarrow \mathsf{Gumm} \end{array}$

THEOREM Maróti, McKenzie 06 For a finite algebra, Taylor \Rightarrow WNU.

THEOREMS For a finite algebra

- ► Jónsson ⇒ many cyclic terms BKN
- ► Malcev ⇒ many cyclic terms Maróti, McKenzie
- ► Gumm ⇒ many cyclic terms Maróti, McKenzie

QUESTION WNU \Rightarrow (many) cyclic term(s)? (For finite algebras, of course)

THEOREM Let **A** be a finite algebra with Jónsson term operations. Then **A** has a *p*-ary cyclic term operation for every prime $p > |\mathbf{A}|$.

Charles University in Prague, Czech Republic

BKN

Proof - the beginning

NOTATION For a tuple $\bar{a} = \langle a_1, \dots, a_n \rangle$, let $\sigma(\bar{a}) = \langle a_2, \dots, a_n, a_1 \rangle$.

Charles University in Prague, Czech Republic

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

BKN

FACT Let **A** be a finite idempotent algebra, $n \ge 2$ be a natural number. TFAE

Charles University in Prague, Czech Republic

(日) (同) (三) (三)

BKN

FACT Let **A** be a finite idempotent algebra, $n \ge 2$ be a natural number. TFAE

• A has *n*-ary cyclic term.

Charles University in Prague, Czech Republic

BKN

FACT Let **A** be a finite idempotent algebra, $n \ge 2$ be a natural number. TFAE

- ► A has *n*-ary cyclic term.
- ► ($\exists t \ n$ -ary term) ($\forall \bar{a} \in \mathbf{A}^n$) $t(\bar{a}, \sigma(\bar{a}), \sigma^2(\bar{a}), \dots, \sigma^{n-1}(\bar{a})) = \langle c, c, \dots, c \rangle$ for some $c \in \mathbf{A}$.

FACT Let **A** be a finite idempotent algebra, $n \ge 2$ be a natural number. TFAE

► A has *n*-ary cyclic term.

FACT Let **A** be a finite idempotent algebra, $n \ge 2$ be a natural number. TFAE

► A has *n*-ary cyclic term.

FACT Let **A** be a finite idempotent algebra, $n \ge 2$ be a natural number. TFAE

► A has *n*-ary cyclic term.

• Every $S \leq \mathbf{A}^n$, $\sigma(S) = S$ contains a constant *n*-tuple.

First part of the proof - loops in graphs

LEMMA Let $G \leq \mathbf{B}^2$, where **B** has a majority term. Let G (viewed as a graph) be strongly connected and the greatest common divisor of the lengths of cycles in G is 1. Then G cotains a loop.

Jónsson implies cyclic

First part of the proof - loops in graphs

LEMMA Let $G \leq \mathbf{B}^2$, where **B** has a majority term. Let *G* (viewed as a graph) be strongly connected and the greatest common divisor of the lengths of cycles in *G* is 1. Then *G* cotains a loop.

Crucial idea of the proof:

Consider the following system of sets

$$\mathcal{C}_G = \{R \subseteq A \mid (\forall r, s \in R, a \in A) \mid m(r, s, a) \in R \ m(r, a, s) \in R \ m(a, r, s) \in R\}$$

BKN

First part of the proof - loops in graphs

LEMMA Let $G \leq \mathbf{B}^2$, where **B** has a majority term. Let G (viewed as a graph) be strongly connected and the greatest common divisor of the lengths of cycles in G is 1. Then G cotains a loop.

Crucial idea of the proof:

Consider the following system of sets

$$\mathcal{C}_{G} = \{R \subseteq A \mid (\forall r, s \in R, a \in A) \mid m(r, s, a) \in R \ m(r, a, s) \in R \ m(a, r, s) \in R \}$$

Jónsson implies cyclic

Let **A** be a minimal counterexample to the theorem wrt |A|.

Charles University in Prague, Czech Republic

BKN

Let **A** be a minimal counterexample to the theorem wrt |A|. \Rightarrow **A** is simple.

Charles University in Prague, Czech Republic

BKN

Let **A** be a minimal counterexample to the theorem wrt |A|. \Rightarrow **A** is simple.

Take $S \leq \mathbf{A}^{p}$, $\sigma(S) = S$ and some $1 \leq k < n$.

Charles University in Prague, Czech Republic

▲□▶ ▲圖▶ ▲圖▶ ▲

Jónsson implies cyclic

Let **A** be a minimal counterexample to the theorem wrt |A|. \Rightarrow **A** is simple.

Take $S \leq \mathbf{A}^p$, $\sigma(S) = S$ and some $1 \leq k < n$.

Let $\mathbf{B} = \{ \langle a_1, \dots, a_k \rangle \, | \, \langle a_1, \dots, a_p \rangle \in S \} \leq \mathbf{A}^k$

Charles University in Prague, Czech Republic

▲ □ ► ▲ □ ► ▲

BKN

Let **A** be a minimal counterexample to the theorem wrt |A|. \Rightarrow **A** is simple.

Take $S \leq \mathbf{A}^p$, $\sigma(S) = S$ and some $1 \leq k < n$. Let $\mathbf{B} = \{ \langle a_1, \dots, a_k \rangle \mid \langle a_1, \dots, a_p \rangle \in S \} \leq \mathbf{A}^k$ and $G = \{ \langle \langle a_1, \dots, a_k \rangle, \langle a_2, \dots, a_{k+1} \rangle \rangle \mid \langle a_1, \dots, a_p \rangle \in S \} \leq \mathbf{B}^2$

< ロト < 同ト < ヨト < ヨト

BKN

Let **A** be a minimal counterexample to the theorem wrt |A|. \Rightarrow **A** is simple.

Take $S \leq \mathbf{A}^{p}$, $\sigma(S) = S$ and some $1 \leq k < n$. Let $\mathbf{B} = \{ \langle a_{1}, \dots, a_{k} \rangle \mid \langle a_{1}, \dots, a_{p} \rangle \in S \} \leq \mathbf{A}^{k}$ and $G = \{ \langle \langle a_{1}, \dots, a_{k} \rangle, \langle a_{2}, \dots, a_{k+1} \rangle \rangle \mid \langle a_{1}, \dots, a_{p} \rangle \in S \} \leq \mathbf{B}^{2}$

This graph is strongly connected

- 4 同 6 4 日 6 4 日 6

BKN

Let **A** be a minimal counterexample to the theorem wrt |A|. \Rightarrow **A** is simple.

Take $S \leq \mathbf{A}^{p}$, $\sigma(S) = S$ and some $1 \leq k < n$. Let $\mathbf{B} = \{ \langle a_{1}, \dots, a_{k} \rangle \mid \langle a_{1}, \dots, a_{p} \rangle \in S \} \leq \mathbf{A}^{k}$ and $G = \{ \langle \langle a_{1}, \dots, a_{k} \rangle, \langle a_{2}, \dots, a_{k+1} \rangle \rangle \mid \langle a_{1}, \dots, a_{p} \rangle \in S \} \leq \mathbf{B}^{2}$

- This graph is strongly connected
- Every vertex is in a p-cycle

Let **A** be a minimal counterexample to the theorem wrt |A|. \Rightarrow **A** is simple.

Take $S \leq \mathbf{A}^p$, $\sigma(S) = S$ and some $1 \leq k < n$. Let $\mathbf{B} = \{ \langle a_1, \dots, a_k \rangle \mid \langle a_1, \dots, a_p \rangle \in S \} \leq \mathbf{A}^k$ and $G = \{ \langle \langle a_1, \dots, a_k \rangle, \langle a_2, \dots, a_{k+1} \rangle \rangle \mid \langle a_1, \dots, a_p \rangle \in S \} \leq \mathbf{B}^2$

- This graph is strongly connected
- Every vertex is in a p-cycle
- Using simplicity and congruence properties (join semidistributivity suffices) one can find (*lp* + 1)-cycle

Let **A** be a minimal counterexample to the theorem wrt |A|. \Rightarrow **A** is simple.

Take $S \leq \mathbf{A}^{p}$, $\sigma(S) = S$ and some $1 \leq k < n$. Let $\mathbf{B} = \{ \langle a_{1}, \dots, a_{k} \rangle \mid \langle a_{1}, \dots, a_{p} \rangle \in S \} \leq \mathbf{A}^{k}$ and $G = \{ \langle \langle a_{1}, \dots, a_{k} \rangle, \langle a_{2}, \dots, a_{k+1} \rangle \rangle \mid \langle a_{1}, \dots, a_{p} \rangle \in S \} \leq \mathbf{B}^{2}$

- This graph is strongly connected
- Every vertex is in a p-cycle
- Using simplicity and congruence properties (join semidistributivity suffices) one can find (*lp* + 1)-cycle
- From Lemma we get that it contains loop

< □ > < 同 > < 回 > < 3

Let **A** be a minimal counterexample to the theorem wrt |A|. \Rightarrow **A** is simple.

Take $S \leq \mathbf{A}^{p}$, $\sigma(S) = S$ and some $1 \leq k < n$. Let $\mathbf{B} = \{ \langle a_{1}, \dots, a_{k} \rangle \mid \langle a_{1}, \dots, a_{p} \rangle \in S \} \leq \mathbf{A}^{k}$ and $G = \{ \langle \langle a_{1}, \dots, a_{k} \rangle, \langle a_{2}, \dots, a_{k+1} \rangle \rangle \mid \langle a_{1}, \dots, a_{p} \rangle \in S \} \leq \mathbf{B}^{2}$

- This graph is strongly connected
- Every vertex is in a p-cycle
- Using simplicity and congruence properties (join semidistributivity suffices) one can find (*lp* + 1)-cycle
- From Lemma we get that it contains loop
- If k = n 1 we get a constant tuple

(日)

web: http://www.karlin.mff.cuni.cz/~barto

Thank you for your attention!

Charles University in Prague, Czech Republic

<ロ> (日) (日) (日) (日) (日)

BKN