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Abstract
We present a direct proof showing that every finite algebra generating
a congruence join semidistributive variety has a cyclic term.

1 Introduction

Authors in [1] provide motivation for investigating cyclic terms and an overview
of their applicability to the questions connected with the Constraint Satisfaction
Problem. It is mentioned there that combining the results of [2], [5] and using
theorems from [1] one can show that if a finite algebra generates a congruence
join semidistributive variety then it has cyclic terms. In this paper we present a
new and direct proof of this fact. The proof links properties of relational struc-
tures with an existence of cyclic terms and shows that the connection between
relational structures and the structure of algebras associated with them needs
further investigation.

2 Preliminaries

Recall that a lattice L is join semidistributive, or SD(V) for short, if eV = aVy
implies a V (B Av) = aV g for every a, 3,y € L. A variety V is congruence
join semidistributive (SD(V)), if all the algebras in V have join semidistributive
congruence lattices. Equivalently, using results of [3, Theorem 9.11] and [4], a
locally finite variety is SD(V) iff it omits types 1,2 and 5.

A relational structure is a core, if every its endomorphism is a bijection. An
endomorphism f of a relational structure is a retraction if f is identical on its
image; and if a relational structure is not a core then it has a retraction onto
its proper substructure.

In this paper we use basic results and definitions connected with cyclic terms
which can be found in [1]; all relational structures and algebras are finite and
we use the convention p = {0,1,...,p — 1}.

3 Cyclic subalgebras

We recall a definition of a cyclic relation.

Definition 1. A relation R C A™ is cyclic, if (ag,...,an—1) € R implies
(at,...,an—1,a0) € R for every ag,...,a,_1 € A. A subalgebra of A™ is cyclic
if its underlying set is a cyclic relation.



The remaining part of this section is devoted to a proof of the following theorem:

Theorem 2. Let A be a finite simple algebra from an SD(V) variety, let p be a
prime number greater than |A| and let R < AP be a cyclic subalgebra of AP. If
R has more than one element then the relational structure (A, R) is not a core.

Striving for a contradiction, let us assume that the algebras A and R constitute
a minimal (with respect to |A|) counterexample to the theorem. Then |R| > 1
and (A, R) is a core. Moreover it is readily seen that R is a subdirect subalgebra
of AP and that R doesn’t contain a constant tuple.

We will consider a certain subalgebra of a power of A, which we introduce
in the following definition.

Definition 3. By an unfolding of a p-ary relation R over A we mean the p-ary
relation R’ on the set A X p defined by

R ={((ao,0),...,(ap-1,p — 1)) € (A x p)*| (ao,...,ap-1) € R}.

By an unfolding power of R we mean the subset of AA*P consisting of all the
homomorphisms from the relational structure (A x p, R') to (A, R).

It is easy to see that the set of homomorphisms from (A x p, R’) to (A, R) is
a subuniverse of A4*P, We will denote by C the algebra with the underlying
set equal to the unfolding of R and the operations inherited from A4*P. Tt is
helpful to write an element g € C as a p-tuple (fo,..., fp—1) of mappings from
A to A, namely f;(a) = g((a,i)) for all i < p, a € A. The condition that g is a
homomorphism from (A x p, R") to (4, R) translates into the condition

(folao), fi(a1),..., fp—1(ap—1)) € R whenever (ao,...,ap-1) € R.
We summarize trivial consequences of the definitions in a single fact:
Fact 4.
o (ida,ida,...,ida) € C;

e const(a) = (const(ap),...,const(ay—1)) € C iff a = (ao,...,ap—1) € R,
where const(a) denotes the constant mapping with image {a};

o if (f,f,...,f) € C then f is an endomorphism of the relational structure
(A, R);

4 ch = (f(]7 v 7fp71)7 d= (g()v e 791771) S C7 then cod = (fOOgOa v 7fp710
gp—1) € C, where o denotes the composition of functions;

b Zf (f07 .o 7fp*1) eC then, fO’f’ any j7 (fj?fj+17 .o 7fj+p71) € C; where
the indices are computed modulo p (since R is a cyclic relation).

In the algebra R we denote by m; the kernel of the i-th projection of R < AP.
Moreover for any a € A and any ¢ < p we define a congruence ~(, ;) on C by

putting (fo, .-, fp—1) ~@,i) (fo---» fp—1) iff fi(a) = fi(a) (it is the kernel of
the projection of C < A4*P to the (a,4)-th coordinate).

Claim 1. Leti < j <p. Then' m; V ;= 1g.

IThe full congruence of an algebra X is denoted by 1x and the smallest one by 0x.



Proof. We'll first prove that m; # m; for any ¢ < j < p. Suppose, for the contrary,
that m; = m; for some ¢ < j. Then, for any a,b € R, we have a;, = b; iff a; = b;
and, by cyclicity of R, ar = by, iff a;_;x = bj_;1x for any k (where the indices
are computed modulo p). Further aj = by implies a(j_;)i+r = b(j—iy4x for any
k,l and the choice of p provides 7y = m = --- = m,_1. Since i<pTi = Or
we obtain m; = Og for all &. Take any tuple a € R. Since p > |A|, two
coordinates of a must be equal, say a; = a; for some ¢ < j, and therefore
(@i @ig1s - Qigp—1) To (@j,a541,...,a54p—1) . This implies that a;4r = ajqr
for all k& < p, thus, by the primality of p, a is a constant tuple — this contradiction
proves that m; # 7.

Since m; # m; we can assume, without loss of generality, that there exist
tuples a, b in R such that a; = b; and a; # b;. Therefore the congruence p on
A defined as

!

y =a and amb

apad iff Ja,a’ € R such that a; = a,a
is greater than 0a and, since A is simple, p = 14 and therefore m;Vm; = 1g. O
Claim 2. Let a,b€ A and let i # j. Then ~( ;) V ~@u )= lc.

Proof. Let h,g be arbitrary elements of C. As R is subdirect, there exist ele-
ments c,d € R such that h ~, ;) const(c) and g ~ (4 const(d). Since m; V 7,
is the full congruence on R (by the last claim) there is a chain of elements

c = Cp,...,Cy = d such that for any [ we have ¢; m; ¢;41 or ¢; m; ¢41.
Then const(cy), .. ., const(c,,) is the chain connecting const(c) to const(d) in
~(a,i) V ~ (v, and the claim is proved. O

We introduce an auxiliary notation: for ¢ < p we put

and proceed to the next claim.
Claim 3. \/i<p 7 = lc.

Proof. Let b € A,i < p be arbitrary. Fro every a € A and j < p such that
i # j we have ~( ;) V ~(4.j)= lc. Congruence lattice of C is SD(V), therefore
~,i) V i = 1c. It follows that for every b € A, k # 0 we have

~(bk) V \/ n = lc.

0<i<p

Using the SD(V) property again we obtain

/\ ~bk) V \/ ni = lc,

k#£0,bEA 0<i<p
and we are done. O

Take any a € R. The last claim implies that

(ida,...,ida) \/ n; const(a),

i<p



therefore there exist a natural number n, numbers m; < p, i < n and elements
£' = (f5,---, fp—1), i <nin C such that

(ida,...,ida) = £ Nimeo ! Ny £2 Dmy « -+ Nm,_, £° = const(a).

Let j be the first index such that f,ZH is not a bijection for some k < p. Since
£ = (fg,-- s Fy_1) my ( T s f;:%) = fi*1 we know that fl] = ff“ for all
l # mj. Thus, putting k = m;, f,g“ is not a bijection, while fl]+1 is a bijection
for all | # k.

By composing f7*! enough many times with itself, we obtain a tuple

(ida, ..., ida, g ida, ..., id4)

in C', where g is on the k-th position and g is not a bijection. From Fact 4 it
follows that all the tuples

(g,idA,...,idA), (idA,g,idA,...,idA), ey (idA,...,idA,g)

are in C, therefore their composition — the tuple (g,9,...,9) —is in C as well.
Then, again from Fact 4, ¢ is an endomorphism of the relational structure (4, B)
which is not a bijection. This contradiction concludes the proof of Theorem 2.

4 Cyclic terms exist

We begin with a definition:

Definition 5. A wvariety of algebras V is linear if it is axiomatized by linear
identities 7.e. identities with no nested terms.

It is known [3, Theorem 9.11] and [4] that there exists a sequence of linear
varieties, which we denote by J,, such that an algebra A is in a congruence join
semidistributive variety iff A has a reduct in J,.

Definition 6. A relational structure is V-compatible (for a variety V) if the
algebra of all compatible operations has a reduct in V.

An easy proposition follows.

Proposition 7. Let V be a linear variety and let R be a V-compatible relational
structure. Then all retracts of R are also V-compatible.

Proof. Let V and R be as in the statement of the theorem and let h be a
retraction of R onto a relational structure S. For any compatible operation
f(zo,...,xn_1) of R, the function f'(zg,...,2n—1) = h(f(zo,...,2n-1)) is
compatible with S (and with R as well). Moreover a linear identity remains
true when we substitute all the terms with their primed versions. This proves
that S is V-compatible. O

The last ingredients for the main result are the following facts from [1]
(Lemma 2.4 and Lemma 2.5).

Fact 8. Let A be an idempotent algebra and let n > 2 be a natural number.



e A has a cyclic term of arity n iff every cyclic subalgebra of A™ contains
a constant tuple.

o If there exists a congruence o of A such that A/ as well as all « classes
have a cyclic term of arity n, then A has a cyclic term of arity n.

Now we are ready to prove the main theorem:

Theorem 9. Let A be a finite algebra in a congruence join semidistributive
variety. Then for any prime p greater than |A| the algebra A has a cyclic term

of arity p.

Striving for a contradiction, we take a minimal counterexample with respect
to A. We can assume that A is idempotent, otherwise we can replace A by its
idempotent reduct. From Fact 8 we know that A is simple and there exists a
cyclic subuniverse R of AP with no constant tuple. Clearly R can’t have just
one element, therefore, by Theorem 2, there is a retraction of the relational
structure (A4, R) onto a substructure (A’, R"), where |A’| < |A|. Since, for some
n, (A, R) is Jy-compatible, then, by Proposition 7, (A’, R') is J,-compatible
as well. As (A, R') is a retraction of (A, R) and R is cyclic, R is cyclic too.
Using Fact 8 and minimality of A we get that R’ contains a constant tuple. But
R’ C R, which implies that R contains a constant tuple, a contradiction.
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