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Abstract

We present a direct proof showing that every finite algebra generating

a congruence join semidistributive variety has a cyclic term.

1 Introduction

Authors in [1] provide motivation for investigating cyclic terms and an overview
of their applicability to the questions connected with the Constraint Satisfaction
Problem. It is mentioned there that combining the results of [2], [5] and using
theorems from [1] one can show that if a finite algebra generates a congruence
join semidistributive variety then it has cyclic terms. In this paper we present a
new and direct proof of this fact. The proof links properties of relational struc-
tures with an existence of cyclic terms and shows that the connection between
relational structures and the structure of algebras associated with them needs
further investigation.

2 Preliminaries

Recall that a lattice L is join semidistributive, or SD(∨) for short, if α∨β = α∨γ
implies α ∨ (β ∧ γ) = α ∨ β for every α, β, γ ∈ L. A variety V is congruence
join semidistributive (SD(∨)), if all the algebras in V have join semidistributive
congruence lattices. Equivalently, using results of [3, Theorem 9.11] and [4], a
locally finite variety is SD(∨) iff it omits types 1,2 and 5.

A relational structure is a core, if every its endomorphism is a bijection. An
endomorphism f of a relational structure is a retraction if f is identical on its
image; and if a relational structure is not a core then it has a retraction onto
its proper substructure.

In this paper we use basic results and definitions connected with cyclic terms
which can be found in [1]; all relational structures and algebras are finite and
we use the convention p = {0, 1, . . . , p − 1}.

3 Cyclic subalgebras

We recall a definition of a cyclic relation.

Definition 1. A relation R ⊆ An is cyclic, if (a0, . . . , an−1) ∈ R implies
(a1, . . . , an−1, a0) ∈ R for every a0, . . . , an−1 ∈ A. A subalgebra of An is cyclic
if its underlying set is a cyclic relation.
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The remaining part of this section is devoted to a proof of the following theorem:

Theorem 2. Let A be a finite simple algebra from an SD(∨) variety, let p be a
prime number greater than |A| and let R ≤ Ap be a cyclic subalgebra of Ap. If
R has more than one element then the relational structure (A,R) is not a core.

Striving for a contradiction, let us assume that the algebras A and R constitute
a minimal (with respect to |A|) counterexample to the theorem. Then |R| > 1
and (A,R) is a core. Moreover it is readily seen that R is a subdirect subalgebra
of Ap and that R doesn’t contain a constant tuple.

We will consider a certain subalgebra of a power of A, which we introduce
in the following definition.

Definition 3. By an unfolding of a p-ary relation R over A we mean the p-ary
relation R′ on the set A × p defined by

R′ =
{(

(a0, 0), . . . , (ap−1, p − 1)
)

∈ (A × p)
p
| (a0, . . . , ap−1) ∈ R

}

.

By an unfolding power of R we mean the subset of AA×p consisting of all the
homomorphisms from the relational structure (A × p,R′) to (A,R).

It is easy to see that the set of homomorphisms from (A× p,R′) to (A,R) is
a subuniverse of AA×p. We will denote by C the algebra with the underlying
set equal to the unfolding of R and the operations inherited from AA×p. It is
helpful to write an element g ∈ C as a p-tuple (f0, . . . , fp−1) of mappings from
A to A, namely fi(a) = g((a, i)) for all i < p, a ∈ A. The condition that g is a
homomorphism from (A × p,R′) to (A,R) translates into the condition

(f0(a0), f1(a1), . . . , fp−1(ap−1)) ∈ R whenever (a0, . . . , ap−1) ∈ R.

We summarize trivial consequences of the definitions in a single fact:

Fact 4.

• (idA, idA, . . . , idA) ∈ C;

• const(a) = (const(a0), . . . , const(ap−1)) ∈ C iff a = (a0, . . . , ap−1) ∈ R,
where const(a) denotes the constant mapping with image {a};

• if (f, f, . . . , f) ∈ C then f is an endomorphism of the relational structure
(A,R);

• if c = (f0, . . . , fp−1), d = (g0, . . . , gp−1) ∈ C, then c◦d = (f0◦g0, . . . , fp−1◦
gp−1) ∈ C, where ◦ denotes the composition of functions;

• if (f0, . . . , fp−1) ∈ C then, for any j, (fj , fj+1, . . . , fj+p−1) ∈ C, where
the indices are computed modulo p (since R is a cyclic relation).

In the algebra R we denote by πi the kernel of the i-th projection of R ≤ Ap.
Moreover for any a ∈ A and any i < p we define a congruence ∼(a,i) on C by
putting (f0, . . . , fp−1) ∼(a,i) (f ′

0, . . . , f
′
p−1) iff fi(a) = f ′

i(a) (it is the kernel of

the projection of C ≤ AA×p to the (a, i)-th coordinate).

Claim 1. Let i < j < p. Then1 πi ∨ πj = 1R.

1The full congruence of an algebra X is denoted by 1X and the smallest one by 0X.
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Proof. We’ll first prove that πi 6= πj for any i < j < p. Suppose, for the contrary,
that πi = πj for some i < j. Then, for any a,b ∈ R, we have ai = bi iff aj = bj

and, by cyclicity of R, ak = bk iff aj−i+k = bj−i+k for any k (where the indices
are computed modulo p). Further ak = bk implies a(j−i)l+k = b(j−i)l+k for any
k, l and the choice of p provides π0 = π1 = · · · = πp−1. Since

∧

i<p πi = 0R

we obtain πi = 0R for all i. Take any tuple a ∈ R. Since p > |A|, two
coordinates of a must be equal, say ai = aj for some i < j, and therefore
(ai, ai+1, . . . , ai+p−1) π0 (aj , aj+1, . . . , aj+p−1) . This implies that ai+k = aj+k

for all k < p, thus, by the primality of p, a is a constant tuple – this contradiction
proves that πi 6= πj .

Since πi 6= πj we can assume, without loss of generality, that there exist
tuples a,b in R such that ai = bi and aj 6= bj . Therefore the congruence ρ on
A defined as

a ρ a′ iff ∃a,a′ ∈ R such that aj = a, a′
j = a′ and aπi b

is greater than 0A and, since A is simple, ρ = 1A and therefore πi∨πj = 1R.

Claim 2. Let a, b ∈ A and let i 6= j. Then ∼(a,i) ∨ ∼(b,j)= 1C.

Proof. Let h, g be arbitrary elements of C. As R is subdirect, there exist ele-
ments c,d ∈ R such that h ∼(a,i) const(c) and g ∼(a,i) const(d). Since πi ∨ πj

is the full congruence on R (by the last claim) there is a chain of elements
c = c0, . . . , cm = d such that for any l we have cl πi cl+1 or cl πj cl+1.
Then const(c0), . . . , const(cm) is the chain connecting const(c) to const(d) in
∼(a,i) ∨ ∼(b,j) and the claim is proved.

We introduce an auxiliary notation: for i < p we put

ηi =
∧

j 6=i,a∈A

∼(a,j),

and proceed to the next claim.

Claim 3.
∨

i<p ηi = 1C.

Proof. Let b ∈ A, i < p be arbitrary. Fro every a ∈ A and j < p such that
i 6= j we have ∼(b,i) ∨ ∼(a,j)= 1C. Congruence lattice of C is SD(∨), therefore
∼(b,i) ∨ ηi = 1C. It follows that for every b ∈ A, k 6= 0 we have

∼(b,k) ∨
∨

0<i<p

ηi = 1C.

Using the SD(∨) property again we obtain

∧

k 6=0,b∈A

∼(b,k) ∨
∨

0<i<p

ηi = 1C,

and we are done.

Take any a ∈ R. The last claim implies that

(idA, . . . , idA)
∨

i<p

ηi const(a),
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therefore there exist a natural number n, numbers mi < p, i < n and elements
f i = (f i

0, . . . , f
i
p−1), i ≤ n in C such that

(idA, . . . , idA) = f0 ηm0
f1 ηm1

f2 ηm2
. . . ηmn−1

fm = const(a).

Let j be the first index such that f j+1
k is not a bijection for some k < p. Since

f j = (f j
0 , . . . , f j

p−1) ηmj
(f j+1

0 , . . . , f j+1
p−1) = f j+1, we know that f j

l = f j+1
l for all

l 6= mj . Thus, putting k = mj , f j+1
k is not a bijection, while f j+1

l is a bijection
for all l 6= k.

By composing f j+1 enough many times with itself, we obtain a tuple

(idA, . . . , idA, g, idA, . . . , idA)

in C, where g is on the k-th position and g is not a bijection. From Fact 4 it
follows that all the tuples

(g, idA, . . . , idA), (idA, g, idA, . . . , idA), . . . , (idA, . . . , idA, g)

are in C, therefore their composition – the tuple (g, g, . . . , g) – is in C as well.
Then, again from Fact 4, g is an endomorphism of the relational structure (A,B)
which is not a bijection. This contradiction concludes the proof of Theorem 2.

4 Cyclic terms exist

We begin with a definition:

Definition 5. A variety of algebras V is linear if it is axiomatized by linear
identities i.e. identities with no nested terms.

It is known [3, Theorem 9.11] and [4] that there exists a sequence of linear
varieties, which we denote by Jn, such that an algebra A is in a congruence join
semidistributive variety iff A has a reduct in Jn.

Definition 6. A relational structure is V-compatible (for a variety V) if the
algebra of all compatible operations has a reduct in V.

An easy proposition follows.

Proposition 7. Let V be a linear variety and let R be a V-compatible relational
structure. Then all retracts of R are also V-compatible.

Proof. Let V and R be as in the statement of the theorem and let h be a
retraction of R onto a relational structure S. For any compatible operation
f(x0, . . . , xn−1) of R, the function f ′(x0, . . . , xn−1) = h(f(x0, . . . , xn−1)) is
compatible with S (and with R as well). Moreover a linear identity remains
true when we substitute all the terms with their primed versions. This proves
that S is V-compatible.

The last ingredients for the main result are the following facts from [1]
(Lemma 2.4 and Lemma 2.5).

Fact 8. Let A be an idempotent algebra and let n ≥ 2 be a natural number.
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• A has a cyclic term of arity n iff every cyclic subalgebra of An contains
a constant tuple.

• If there exists a congruence α of A such that A/α as well as all α classes
have a cyclic term of arity n, then A has a cyclic term of arity n.

Now we are ready to prove the main theorem:

Theorem 9. Let A be a finite algebra in a congruence join semidistributive
variety. Then for any prime p greater than |A| the algebra A has a cyclic term
of arity p.

Striving for a contradiction, we take a minimal counterexample with respect
to A. We can assume that A is idempotent, otherwise we can replace A by its
idempotent reduct. From Fact 8 we know that A is simple and there exists a
cyclic subuniverse R of Ap with no constant tuple. Clearly R can’t have just
one element, therefore, by Theorem 2, there is a retraction of the relational
structure (A,R) onto a substructure (A′, R′), where |A′| < |A|. Since, for some
n, (A,R) is Jn-compatible, then, by Proposition 7, (A′, R′) is Jn-compatible
as well. As (A′, R′) is a retraction of (A,R) and R is cyclic, R′ is cyclic too.
Using Fact 8 and minimality of A we get that R′ contains a constant tuple. But
R′ ⊂ R, which implies that R contains a constant tuple, a contradiction.
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