CSP and NU(4)

Libor Barto

joint work with Marcin Kozik

Department of Algebra, Charles University in Prague, Czech Republic

76th Workshop on General Algebra, Linz 2008
Everything is finite
CSP for digraphs

DEFINITION Fix a directed graph (digraph) $H - \textit{template}$. $CSP(H)$ is the following decision problem:

INPUT: Digraph G

OUTPUT: Is there a homomorphism $G \rightarrow H$?
DEFINITION Fix a directed graph (digraph) H - \textit{template}.
$\text{CSP}(H)$ is the following decision problem:

INPUT: Digraph G

OUTPUT: Is there a homomorphism $G \rightarrow H$?

QUESTION What is the complexity of $\text{CSP}(H)$?
CSP for digraphs

DEFINITION Fix a directed graph (digraph) \mathbb{H} - template. $CSP(\mathbb{H})$ is the following decision problem:

INPUT: Digraph \mathbb{G}

OUTPUT: Is there a homomorphism $\mathbb{G} \rightarrow \mathbb{H}$?

QUESTION What is the complexity of $CSP(\mathbb{H})$?

CONJECTURE Feder, Vardi 98 For every \mathbb{H}, $CSP(\mathbb{H})$ is in P or NP-complete
CSP for digraphs

DEFINITION Fix a directed graph (digraph) \mathbb{H} - *template*. $CSP(\mathbb{H})$ is the following decision problem:

INPUT: Digraph G
OUTPUT: Is there a homomorphism $G \rightarrow \mathbb{H}$?

QUESTION What is the complexity of $CSP(\mathbb{H})$?

CONJECTURE Feder, Vardi 98 For every \mathbb{H}, $CSP(\mathbb{H})$ is in P or NP-complete

The conjecture is more general (for relational structure \mathbb{H} of any signature)
But it is equally strong
CSP for digraphs

DEFINITION Fix a directed graph (digraph) \mathbb{H} - *template*. $CSP(\mathbb{H})$ is the following decision problem:

INPUT: Digraph G

OUTPUT: Is there a homomorphism $G \rightarrow \mathbb{H}$?

QUESTION What is the complexity of $CSP(\mathbb{H})$?

CONJECTURE Feder, Vardi 98 For every \mathbb{H}, $CSP(\mathbb{H})$ is in P or NP-complete

The conjecture is more general (for relational structure \mathbb{H} of any signature)
But it is equally strong

EXAMPLES k-Colorability, k-Sat, SysLinEq
Universal algebra in CSP

Bulatov, Cohen, Gyssens, Jeavons, Krokhin 97, 05
Universal algebra in CSP

Bulatov, Cohen, Gyssens, Jeavons, Krokhin 97, 05

ASSUMPTION (WLOG) The fixed digraf \mathbb{H} is a core (endomorphism = automorphism)
ASSUMPTION (WLOG) The fixed digraf \mathbb{H} is a core (endomorphism = automorphism)

$\text{GRAPH} \rightarrow \text{ALGEBRA}$

template digraph $\mathbb{H} = (H, E)$

algebra $\mathbf{H} = (H, \text{compatible idempotent operations})$
Universal algebra in CSP

Bulatov, Cohen, Gyssens, Jeavons, Krokhin 97, 05

ASSUMPTION (WLOG) The fixed digraph H is a core (endomorphism = automorphism)

GRAPH \rightarrow ALGEBRA

\[
\begin{align*}
\text{template digraph } H &= (H, E) \\
\downarrow \\
\text{algebra } H &= (H, \text{compatible idempotent operations})
\end{align*}
\]

FACT The complexity of $\text{CSP}(H)$ depends only on H

SUSPISION The complexity of $\text{CSP}(H)$ depends only on $\text{HSP}(H)$
THEOREM If $\text{HSP}(H)$ contains a trivial algebra (every operation is a projection), then $\text{CSP}(H)$ is NP-complete.
THEOREM If \(\text{HSP}(H) \) contains a trivial algebra (every operation is a projection), then \(\text{CSP}(H) \) is NP-complete.

CONJECTURE Otherwise \(\text{CSP}(H) \) is in \(P \).
Algebraic dichotomy conjecture

THEOREM If $\text{HSP}(H)$ contains a trivial algebra (every operation is a projection), then $\text{CSP}(H)$ is NP-complete.

CONJECTURE Otherwise $\text{CSP}(H)$ is in P.

FACT TFAE

- $\text{HSP}(H)$ doesn’t contain a trivial algebra
- $\text{HSP}(H)$ omits type 1 (Hobby, McKenzie)
- $\text{HSP}(H)$ satisfies some nontrivial idempotent Malcev condition
(2,3)-Consistency checking

We want to find a homo $f : G = (G, \ldots) \rightarrow H = (H, \ldots)$
(2,3)-Consistency checking

We want to find a homo $f : G = (G, \ldots) \rightarrow H = (H, \ldots)$

For any pair of vertices $A \neq B$ of G – we will have set $M_{AB} \subseteq H^2$ of ”possible” $(f(A), f(B))$
We want to find a homo $f : G = (G, \ldots) \rightarrow H = (H, \ldots)$

For any pair of vertices $A \neq B$ of G – we will have set $M_{AB} \subseteq H^2$ of "possible" $(f(A), f(B))$

Initialization

- For an edge $A \rightarrow B$ in G, put $M_{AB} =$ edges of H
- For the remaining pairs $A \neq B$, put $M_{AB} = H^2$
We want to find a homo $f : G = (G, \ldots) \rightarrow H = (H, \ldots)$.

For any pair of vertices $A \neq B$ of G – we will have set $M_{AB} \subseteq H^2$ of ”possible” $(f(A), f(B))$.

Initialization

- For an edge $A \rightarrow B$ in G, put $M_{AB} = $ edges of H
- For the remaining pairs $A \neq B$, put $M_{AB} = H^2$

Repeat the following until nothing can be deleted

- For all pairs $A \neq B \in G$, $(x, y) \in M_{AB}$ and $C \in G$:
 - If there is no $z \in H$ such that $(x, z) \in M_{AC}$ and $(y, z) \in M_{BC}$, then delete (x, y) from M_{AB}
OBSERVATION This can be done in polynomial time
Definition of bounded width

Observation This can be done in polynomial time

After the procedure stops, either
Definition of bounded width

OBSERVATION This can be done in polynomial time

After the procedure stops, either

- some (equivalently every) M_{AB} is empty. Then $\not\preceq$
Definition of bounded width

Observation This can be done in polynomial time

After the procedure stops, either

- some (equivalently every) M_{AB} is empty. Then $G \not\rightarrow H$
- or each M_{AB} is non-empty. Then ???.
Definition of bounded width

OBSERVATION This can be done in polynomial time

After the procedure stops, either

- some (equivalently every) M_{AB} is empty. Then $G \not\rightarrow H$
- or each M_{AB} is non-empty. Then ???.

DEFINITION H has width $(2, 3)$. If for every G

After the $(2, 3)$-consistency checking all M_{AB} non-empty

$\Rightarrow G \rightarrow H$.
OBSERVATION This can be done in polynomial time

After the procedure stops, either

▶ some (equivalently every) M_{AB} is empty. Then $G \not\rightarrow H$

▶ or each M_{AB} is non-empty. Then ???.

DEFINITION \mathcal{H} has width $(2, 3)$. If for every G

After the $(2, 3)$-consistency checking all M_{AB} non-empty

$\iff G \rightarrow \mathcal{H}$.
Definition of bounded width

OBSERVATION This can be done in polynomial time

After the procedure stops, either

- some (equivalently every) M_{AB} is empty. Then $G \not \rightarrow H$
- or each M_{AB} is non-empty. Then ???.

DEFINITION H has width $(2, 3)$. If for every G

After the $(2, 3)$-consistency checking all M_{AB} non-empty

$\iff G \rightarrow H$.

Similarly width (k, l), bounded width.
Definition of bounded width

OBSERVATION This can be done in polynomial time

After the procedure stops, either
- some (equivalently every) M_{AB} is empty. Then $G \nrightarrow \mathcal{H}$
- or each M_{AB} is non-empty. Then ???.

DEFINITION \mathcal{H} has width $(2, 3)$. If for every G

After the $(2, 3)$-consistency checking all M_{AB} non-empty

$\iff G \rightarrow \mathcal{H}$.

Similarly width (k, l), bounded width.

Bounded width \Rightarrow Polynomially solvable

Libor Barto, Marcin Kozik
Department of Algebra, Charles University in Prague, Czech Republic

CSP and NU(4)
Bounded width conjecture

THEOREM Larose, Zádori If H has bounded width, then $\text{HSP}(H)$ doesn’t contain a reduct of a module (over finite ring)
Bounded width conjecture

THEOREM Larose, Zádori If H has bounded width, then $\text{HSP}(H)$ doesn’t contain a reduct of a module (over finite ring)

CONJECTURE The converse is also true.
Theorem Larose, Zádori If H has bounded width, then $HSP(H)$ doesn’t contain a reduct of a module (over finite ring).

Conjecture The converse is also true.

Fact TFAE

- $HSP(H)$ doesn’t contain a reduct of a module
- $HSP(H)$ omits types 1, 2
- All algebras in $HSP(H)$ are $SD(\wedge)$ (meet semidistributive congr. lat.).
- Malcev conditions...
Known results

THEOREMS

- H has a semilattice term $\Rightarrow \mathbb{H}$ has width $(1, 2)$
Known results

THEOREMS

- \(H \) has a semilattice term \(\Rightarrow \) \(H \) has width \((1, 2)\)
- \(H \) has an \(NU(3) \) term (majority) \(\Rightarrow \) \(H \) has width \((2, 3)\) (in a very strong sense - \textit{strict width})
Known results

THEOREMS

- \(H \) has a semilattice term \(\Rightarrow H \) has width \((1, 2) \)
- \(H \) has an \(NU(3) \) term (majority) \(\Rightarrow H \) has width \((2, 3) \) (in a very strong sense - strict width)
- \(H \) has an \(NU(4) \) term \(\Rightarrow H \) has width \((3, 4), NU(5) \Rightarrow (4, 5), \ldots \)
Known results

THEOREMS

- H has a semilattice term $\Rightarrow H$ has width $(1, 2)$
- H has an $NU(3)$ term (majority) $\Rightarrow H$ has width $(2, 3)$ (in a very strong sense - strict width)
- H has an $NU(4)$ term $\Rightarrow H$ has width $(3, 4)$, $NU(5) \Rightarrow (4, 5)$, ...
- Kiss, Valeriote H has $CD(3)$ terms $\Rightarrow H$ has bounded width
Known results

THEOREMS

- H has a semilattice term $\Rightarrow \overline{H}$ has width $(1, 2)$
- H has an $NU(3)$ term (majority) $\Rightarrow \overline{H}$ has width $(2, 3)$ (in a very strong sense - strict width)
- H has an $NU(4)$ term $\Rightarrow \overline{H}$ has width $(3, 4)$, $NU(5) \Rightarrow (4, 5)$, ...
- Kiss, Valeriote H has $CD(3)$ terms $\Rightarrow \overline{H}$ has bounded width
- Carvalho, Dalmau, Marković, Maróti H has $CD(4)$ terms $\Rightarrow \overline{H}$ has bounded width
Known results

THEOREMS

- H has a semilattice term $\Rightarrow \overline{H}$ has width $(1, 2)$
- H has an $NU(3)$ term (majority) $\Rightarrow \overline{H}$ has width $(2, 3)$ (in a very strong sense - strict width)
- H has an $NU(4)$ term $\Rightarrow \overline{H}$ has width $(3, 4)$, $NU(5) \Rightarrow (4, 5)$, ...
- Kiss, Valeriote H has $CD(3)$ terms $\Rightarrow \overline{H}$ has bounded width
- Carvalho, Dalmau, Marković, Maróti H has $CD(4)$ terms $\Rightarrow \overline{H}$ has bounded width
- Bulatov H has 2-semilattices term $\Rightarrow \overline{H}$ has bounded width
- Bulatov $HSP(H)$ omits 1, 2, 3 $\Rightarrow \overline{H}$ has bounded width
Our result

OPEN PROBLEM Is there a graph \mathcal{H}, which has width $(3, 4)$, but not $(2, 3)$?
OPEN PROBLEM Is there a graph H, which has width $(3, 4)$, but not $(2, 3)$?

THEOREM Barto, Kozik If H has $NU(4)$ term, then H has width $(2, 3)$ in a stronger sense:
OPEN PROBLEM Is there a graph H, which has width $(3, 4)$, but not $(2, 3)$?

THEOREM Barto, Kozik If H has NU(4) term, then H has width $(2, 3)$ in a stronger sense:

Let G be a graph, M_{AB} the sets of possible values for pairs as before. For all A, B vertices of G and $(x, y) \in M_{AB}$ there is a homomorphism $f : G \rightarrow H$ such that $f(A) = x, f(B) = y$.
web: http://www.karlin.mff.cuni.cz/~barto

Thank you for your attention!