CSP and NU(4)

Libor Barto

joint work with Marcin Kozik

Department of Algebra, Charles University in Prague, Czech Republic

76th Workshop on General Algebra, Linz 2008

Libor Barto, Marcin Kozik

Department of Algebra, Charles University in Prague, Czech Republic

(日) (同) (日) (日)

Everything is finite

Everything is finite

Libor Barto, Marcin Kozik

Department of Algebra, Charles University in Prague, Czech Republic

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- INPUT: Digraph \mathbb{G}

CSP and NU(4)

Department of Algebra, Charles University in Prague, Czech Republic

ヘロト 人間 ト 人 ヨ ト 一

CSP for digraphs

DEFINITION Fix a directed graph (digraph) \mathbb{H} - *template*. $CSP(\mathbb{H})$ is the following decision problem:

- INPUT: Digraph \mathbb{G}
- QUESTION What is the complexity of $CSP(\mathbb{H})$?

Department of Algebra, Charles University in Prague, Czech Republic

Libor Barto, Marcin Kozik

- INPUT: Digraph \mathbb{G}
- QUESTION What is the complexity of $CSP(\mathbb{H})$?

CONJECTURE Feder, Vardi 98 For every \mathbb{H} , $CSP(\mathbb{H})$ is in P or NP-complete

(日) (同) (三) (三)

- QUESTION What is the complexity of $CSP(\mathbb{H})$?

CONJECTURE Feder, Vardi 98 For every \mathbb{H} , $CSP(\mathbb{H})$ is in P or NP-complete

The conjecture is more general (for relational structure \mathbb{H} of any signature) But it is equally strong

イロト イヨト イヨト イヨト

- QUESTION What is the complexity of $CSP(\mathbb{H})$?

CONJECTURE Feder, Vardi 98 For every \mathbb{H} , $CSP(\mathbb{H})$ is in P or NP-complete

The conjecture is more general (for relational structure $\mathbb H$ of any signature) But it is equally strong

```
EXAMPLES k-Colorability, k-Sat, SysLinEq
```

Bulatov, Cohen, Gyssens, Jeavons, Krokhin 97, 05

◆□▶ ◆鄙▶ ◆臣▶ ◆臣▶ 三臣 → ��(

Libor Barto, Marcin Kozik

CSP and NU(4)

Department of Algebra, Charles University in Prague, Czech Republic

Bulatov, Cohen, Gyssens, Jeavons, Krokhin 97, 05 ASSUMPTION (WLOG) The fixed digraf \mathbb{H} is a *core* (endomorphism = automorphism)

Libor Barto, Marcin Kozik

Department of Algebra, Charles University in Prague, Czech Republic

(日) (同) (三) (三)

Bulatov, Cohen, Gyssens, Jeavons, Krokhin 97, 05 ASSUMPTION (WLOG) The fixed digraf \mathbb{H} is a *core* (endomorphism = automorphism)

```
\mathsf{GRAPH} \to \mathsf{ALGEBRA}
```

```
template digraph \mathbb{H} = (H, E)

\downarrow

algebra \mathbf{H} = (H, \text{compatible idempotent operations})
```

Libor Barto, Marcin Kozik

Department of Algebra, Charles University in Prague, Czech Republic

イロト イポト イヨト イヨト

Bulatov, Cohen, Gyssens, Jeavons, Krokhin 97, 05 ASSUMPTION (WLOG) The fixed digraf \mathbb{H} is a *core* (endomorphism = automorphism)

```
\mathsf{GRAPH} \to \mathsf{ALGEBRA}
```

template digraph $\mathbb{H} = (H, E)$ \downarrow algebra $\mathbf{H} = (H, \text{compatible idempotent operations})$

FACT The complexity of $CSP(\mathbb{H})$ depends only on **H** SUSPISION The complexity of $CSP(\mathbb{H})$ depends only on $HSP(\mathbf{H})$

(日) (同) (日) (日) (日)

THEOREM If $HSP(\mathbf{H})$ contains a trivial algebra (every operation is a projection), then $CSP(\mathbb{H})$ is NP-complete.

Libor Barto, Marcin Kozik

Department of Algebra, Charles University in Prague, Czech Republic

(日) (同) (三) (三)

THEOREM If $HSP(\mathbf{H})$ contains a trivial algebra (every operation is a projection), then $CSP(\mathbb{H})$ is NP-complete.

CONJECTURE Otherwise $CSP(\mathbb{H})$ is in *P*.

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Department of Algebra, Charles University in Prague, Czech Republic

Libor Barto, Marcin Kozik

THEOREM If $HSP(\mathbf{H})$ contains a trivial algebra (every operation is a projection), then $CSP(\mathbb{H})$ is NP-complete.

CONJECTURE Otherwise $CSP(\mathbb{H})$ is in P.

FACT TFAE

- HSP(H) doesn't contain a trivial algebra
- ► HSP(**H**) omits type 1 (Hobby, McKenzie)
- ▶ HSP(**H**) satisfies some nontrivial idempotent Malcev condition

Libor Barto, Marcin Kozik

Department of Algebra, Charles University in Prague, Czech Republic

▲ □ ► ▲ □ ► ▲

We want to find a homo
$$f:\mathbb{G}=(G,\dots)
ightarrow\mathbb{H}=(H,\dots)$$

-2

Libor Barto, Marcin Kozik

CSP and NU(4)

Department of Algebra, Charles University in Prague, Czech Republic

We want to find a homo
$$f : \mathbb{G} = (G, \dots) \to \mathbb{H} = (H, \dots)$$

For any pair of vertices $A \neq B$ of \mathbb{G} – we will have set $M_{AB} \subseteq H^2$ of "possible" (f(A), f(B))

Libor Barto, Marcin Kozik

Department of Algebra, Charles University in Prague, Czech Republic

イロト イポト イヨト イヨト

We want to find a homo $f:\mathbb{G}=(G,\dots)
ightarrow\mathbb{H}=(H,\dots)$

For any pair of vertices $A \neq B$ of \mathbb{G} – we will have set $M_{AB} \subseteq H^2$ of "possible" (f(A), f(B))

Initialization

- ▶ For an edge $A \to B$ in \mathbb{G} , put M_{AB} = edges of \mathbb{H}
- For the remaining pairs $A \neq B$, put $M_{AB} = H^2$

(日) (同) (三) (三)

We want to find a homo $f:\mathbb{G}=(G,\dots)
ightarrow\mathbb{H}=(H,\dots)$

For any pair of vertices $A \neq B$ of \mathbb{G} – we will have set $M_{AB} \subseteq H^2$ of "possible" (f(A), f(B))

Initialization

- ▶ For an edge $A \rightarrow B$ in \mathbb{G} , put M_{AB} = edges of \mathbb{H}
- For the remaining pairs $A \neq B$, put $M_{AB} = H^2$

Repeat the following until nothing can be deleted

For all pairs
$$A \neq B \in G$$
, $(x, y) \in M_{AB}$ and $C \in G$:
If there is no $z \in H$ such that $(x, z) \in M_{AC}$ and
 $(y, z) \in M_{BC}$, then delete (x, y) from M_{AB}

<ロト < 回 > < 回 > < 回 > < 回 >

Definition of bounded width

OBSERVATION This can be done in polynomial time

 < □ > < □ > < ⊇ > < ⊇ > ○ <</td>

 Department of Algebra, Charles University in Prague, Czech Republic

Libor Barto, Marcin Kozik

After the procedure stops, either

Libor Barto, Marcin Kozik

After the procedure stops, either

▶ some (equivalently every) M_{AB} is empty. Then $\mathbb{G}
ightarrow \mathbb{H}$

Libor Barto, Marcin Kozik

Department of Algebra, Charles University in Prague, Czech Republic

< ロ > < 同 > < 回 > < 回 > < 回 >

After the procedure stops, either

- \blacktriangleright some (equivalently every) M_{AB} is empty. Then $\mathbb{G}
 e \mathbb{H}$
- or each M_{AB} is non-empty. Then ???.

Department of Algebra, Charles University in Prague, Czech Republic

< ロ > < 同 > < 回 > < 回 > < 回 >

After the procedure stops, either

- ▶ some (equivalently every) M_{AB} is empty. Then $\mathbb{G}
 ightarrow \mathbb{H}$
- or each M_{AB} is non-empty. Then ???.

DEFINITION \mathbb{H} has width (2,3). If for every \mathbb{G}

After the (2,3)-consistency checking all M_{AB} non-empty $\Rightarrow \mathbb{G} \rightarrow \mathbb{H}.$

・ロト ・聞ト ・ヨト ・ヨト

After the procedure stops, either

- ▶ some (equivalently every) M_{AB} is empty. Then $\mathbb{G}
 ightarrow \mathbb{H}$
- or each M_{AB} is non-empty. Then ???.

DEFINITION \mathbb{H} has width (2,3). If for every \mathbb{G}

After the (2,3)-consistency checking all M_{AB} non-empty $\Leftrightarrow \mathbb{G} \to \mathbb{H}.$

・ロン ・四 ・ ・ ヨン

After the procedure stops, either

- ▶ some (equivalently every) M_{AB} is empty. Then $\mathbb{G}
 ightarrow \mathbb{H}$
- or each M_{AB} is non-empty. Then ???.

DEFINITION \mathbb{H} has width (2,3). If for every \mathbb{G}

After the (2,3)-consistency checking all M_{AB} non-empty $\Leftrightarrow \mathbb{G} \to \mathbb{H}.$

Similarly width (k, l), bounded width.

After the procedure stops, either

- ▶ some (equivalently every) M_{AB} is empty. Then $\mathbb{G}
 ightarrow \mathbb{H}$
- or each M_{AB} is non-empty. Then ???.

DEFINITION \mathbb{H} has width (2,3). If for every \mathbb{G}

After the (2,3)-consistency checking all M_{AB} non-empty $\Leftrightarrow \mathbb{G} \to \mathbb{H}.$

Similarly width (k, l), bounded width.

Bounded width \Rightarrow Polynomially solvable

イロト イポト イヨト イヨト

Bounded width conjecture

THEOREM Larose, Zádori lf \mathbb{H} has bounded width, then HSP(H) doens't contain a reduct of a module (over finite ring)

Libor Barto, Marcin Kozik

Department of Algebra, Charles University in Prague, Czech Republic

< ロ > < 同 > < 回 > < 回 > < 回

THEOREM Larose, Zádori lf \mathbb{H} has bounded width, then HSP(H) doens't contain a reduct of a module (over finite ring)

CONJECTURE The converse is also true.

Libor Barto, Marcin Kozik

Department of Algebra, Charles University in Prague, Czech Republic

THEOREM Larose, Zádori lf \mathbb{H} has bounded width, then HSP(H) doens't contain a reduct of a module (over finite ring)

CONJECTURE The converse is also true.

FACT TFAE

- HSP(H) doesn't contain a reduct of a module
- ▶ HSP(**H**) omits types 1,2
- ► All algebras in HSP(H) are SD(∧) (meet semidistributive cong. lat.).
- Malcev conditions...

THEOREMS

• **H** has a semilattice term $\Rightarrow \mathbb{H}$ has width (1,2)

Department of Algebra, Charles University in Prague, Czech Republic

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

-큰

Libor Barto, Marcin Kozik

THEOREMS

- **H** has a semilattice term $\Rightarrow \mathbb{H}$ has width (1,2)
- ► H has an NU(3) term (majority) ⇒ H has width (2,3) (in a very strong sense strict width)

Department of Algebra, Charles University in Prague, Czech Republic

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

THEOREMS

- **H** has a semilattice term $\Rightarrow \mathbb{H}$ has width (1,2)
- ► H has an NU(3) term (majority) ⇒ H has width (2,3) (in a very strong sense strict width)
- ▶ **H** has an NU(4) term $\Rightarrow \mathbb{H}$ has width (3,4), $NU(5) \Rightarrow (4,5)$, ...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THEOREMS

- **H** has a semilattice term $\Rightarrow \mathbb{H}$ has width (1,2)
- ► H has an NU(3) term (majority) ⇒ H has width (2,3) (in a very strong sense strict width)
- ▶ **H** has an NU(4) term $\Rightarrow \mathbb{H}$ has width (3,4), $NU(5) \Rightarrow (4,5)$, ...
- ▶ Kiss, Valeriote **H** has CD(3) terms $\Rightarrow \mathbb{H}$ has bounded width

Department of Algebra, Charles University in Prague, Czech Republic

(日) (同) (三) (三)

THEOREMS

- **H** has a semilattice term $\Rightarrow \mathbb{H}$ has width (1,2)
- ► H has an NU(3) term (majority) ⇒ III has width (2,3) (in a very strong sense strict width)
- ▶ **H** has an NU(4) term $\Rightarrow \mathbb{H}$ has width (3,4), $NU(5) \Rightarrow (4,5)$, ...
- ▶ Kiss, Valeriote **H** has CD(3) terms $\Rightarrow \mathbb{H}$ has bounded width

・ロト ・聞ト ・ヨト ・ヨト

THEOREMS

- **H** has a semilattice term $\Rightarrow \mathbb{H}$ has width (1,2)
- ► H has an NU(3) term (majority) ⇒ III has width (2,3) (in a very strong sense strict width)
- ▶ **H** has an NU(4) term \Rightarrow \mathbb{H} has width (3,4), $NU(5) \Rightarrow (4,5)$, ...
- ▶ Kiss, Valeriote **H** has CD(3) terms $\Rightarrow \mathbb{H}$ has bounded width
- ▶ Bulatov **H** has 2-semilattices term \Rightarrow \mathbb{H} has bounded width
- ▶ Bulatov HSP(H) omits $1, 2, 3 \Rightarrow \mathbb{H}$ has bounded width

(日) (同) (日) (日) (日)

OPEN PROBLEM Is there a graph $\mathbb H,$ which has width (3,4), but not (2,3)?

Libor Barto, Marcin Kozik

Department of Algebra, Charles University in Prague, Czech Republic

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

3

OPEN PROBLEM Is there a graph \mathbb{H} , which has width (3,4), but not (2,3)?

THEOREM Barto, Kozik If **H** has NU(4) term, then \mathbb{H} has width (2,3) in a stronger sense:

Libor Barto, Marcin Kozik CSP and NU(4) Department of Algebra, Charles University in Prague, Czech Republic

(日) (同) (三) (三)

OPEN PROBLEM Is there a graph \mathbb{H} , which has width (3,4), but not (2,3)?

THEOREM Barto, Kozik If **H** has NU(4) term, then \mathbb{H} has width (2,3) in a stronger sense:

Let \mathbb{G} be a graph, M_{\dots} the sets of possible values for pairs as before. For all A, B vertices of \mathbb{G} and $(x, y) \in M_{AB}$ there is a homomorphism $f : \mathbb{G} \to \mathbb{H}$ such that f(A) = x, f(B) = y.

Libor Barto, Marcin Kozik CSP and NU(4) Department of Algebra, Charles University in Prague, Czech Republic

< □ > < 同 > < 回 > < 3

web: http://www.karlin.mff.cuni.cz/~barto

Thank you for your attention!

Department of Algebra, Charles University in Prague, Czech Republic

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

-2

Libor Barto, Marcin Kozik