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CSP for digraphs

DEFINITION Fix a directed graph (digraph) H - template.
CSP(H) is the following decision problem:

INPUT: Digraph G

OUTPUT: Is there a homomorphism G → H?
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CSP for digraphs

DEFINITION Fix a directed graph (digraph) H - template.
CSP(H) is the following decision problem:

INPUT: Digraph G

OUTPUT: Is there a homomorphism G → H?

QUESTION What is the complexity of CSP(H)?

CONJECTURE Feder, Vardi 98 For every H, CSP(H) is in P or
NP-complete

The conjecture is more general (for relational structure H of any
signature)
But it is equally strong

EXAMPLES k-Colorability, k-Sat, SysLinEq
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Universal algebra in CSP

Bulatov, Cohen, Gyssens, Jeavons, Krokhin 97, 05
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ASSUMPTION (WLOG) The fixed digraf H is a core

(endomorphism = automorphism)
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ASSUMPTION (WLOG) The fixed digraf H is a core
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GRAPH → ALGEBRA

template digraph H = (H, E )
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algebra H = (H, compatible idempotent operations)
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Universal algebra in CSP

Bulatov, Cohen, Gyssens, Jeavons, Krokhin 97, 05

ASSUMPTION (WLOG) The fixed digraf H is a core

(endomorphism = automorphism)

GRAPH → ALGEBRA

template digraph H = (H, E )
↓

algebra H = (H, compatible idempotent operations)

FACT The complexity of CSP(H) depends only on H

SUSPISION The complexity of CSP(H) depends only on HSP(H)
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Algebraic dichotomy conjecture

THEOREM If HSP(H) contains a trivial algebra (every operation
is a projection), then CSP(H) is NP-complete.
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Algebraic dichotomy conjecture

THEOREM If HSP(H) contains a trivial algebra (every operation
is a projection), then CSP(H) is NP-complete.

CONJECTURE Otherwise CSP(H) is in P.

FACT TFAE

◮ HSP(H) doesn’t contain a trivial algebra

◮ HSP(H) omits type 1 (Hobby, McKenzie)

◮ HSP(H) satisfies some nontrivial idempotent Malcev condition
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(2,3)-Consistency checking

We want to find a homo f : G = (G , . . . ) → H = (H, . . . )
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(2,3)-Consistency checking

We want to find a homo f : G = (G , . . . ) → H = (H, . . . )

For any pair of vertices A 6= B of G – we will have set
MAB ⊆ H2 of ”possible” (f (A), f (B))

Initialization

◮ For an edge A → B in G, put MAB = edges of H

◮ For the remaining pairs A 6= B, put MAB = H2

Repeat the following until nothing can be deleted

◮ For all pairs A 6= B ∈ G , (x , y) ∈ MAB and C ∈ G :

If there is no z ∈ H such that (x , z) ∈ MAC and
(y , z) ∈ MBC , then delete (x , y) from MAB
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Definition of bounded width

OBSERVATION This can be done in polynomial time
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◮ some (equivalently every) MAB is empty. Then G 6→ H

◮ or each MAB is non-empty. Then ???.

DEFINITION H has width (2, 3). If for every G

After the (2, 3)-consistency checking all MAB non-empty
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Definition of bounded width

OBSERVATION This can be done in polynomial time

After the procedure stops, either

◮ some (equivalently every) MAB is empty. Then G 6→ H

◮ or each MAB is non-empty. Then ???.

DEFINITION H has width (2, 3). If for every G

After the (2, 3)-consistency checking all MAB non-empty
⇔ G → H.

Similarly width (k , l), bounded width.

Bounded width ⇒ Polynomially solvable
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Bounded width conjecture

THEOREM Larose, Zádori If H has bounded width, then HSP(H)
doens’t contain a reduct of a module (over finite ring)
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Bounded width conjecture

THEOREM Larose, Zádori If H has bounded width, then HSP(H)
doens’t contain a reduct of a module (over finite ring)

CONJECTURE The converse is also true.

FACT TFAE

◮ HSP(H) doesn’t contain a reduct of a module

◮ HSP(H) omits types 1, 2

◮ All algebras in HSP(H) are SD(∧) (meet semidistributive
cong. lat.).

◮ Malcev conditions. . .
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Known results

THEOREMS

◮ H has a semilattice term ⇒ H has width (1, 2)
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Known results

THEOREMS

◮ H has a semilattice term ⇒ H has width (1, 2)

◮ H has an NU(3) term (majority) ⇒ H has width (2, 3) (in a
very strong sense - strict width)

◮ H has an NU(4) term ⇒ H has width (3, 4), NU(5) ⇒ (4, 5),
. . .

◮ Kiss, Valeriote H has CD(3) terms ⇒ H has bounded width

◮ Carvalho, Dalmau, Marković, Maróti H has CD(4) terms ⇒

H has bounded width

◮ Bulatov H has 2-semilattices term ⇒ H has bounded width

◮ Bulatov HSP(H) omits 1, 2, 3 ⇒ H has bounded width
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Our result

OPEN PROBLEM Is there a graph H, which has width (3, 4), but
not (2, 3)?
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Our result

OPEN PROBLEM Is there a graph H, which has width (3, 4), but
not (2, 3)?

THEOREM Barto, Kozik If H has NU(4) term, then H has width
(2, 3) in a stronger sense:
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Our result

OPEN PROBLEM Is there a graph H, which has width (3, 4), but
not (2, 3)?

THEOREM Barto, Kozik If H has NU(4) term, then H has width
(2, 3) in a stronger sense:

Let G be a graph, M
...

the sets of possible values for pairs as
before. For all A, B vertices of G and (x , y) ∈ MAB there is a
homomorphism f : G → H such that f (A) = x , f (B) = y .
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web: http://www.karlin.mff.cuni.cz/∼barto

Thank you for your attention!
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