Promise Constraint Satisfaction Problem

Libor Barto

Department of Algebra, Charles University, Prague

TbiLLC 2019, Tsikhisdziri, 19 September

CoCoSym: Symmetry in Computational Complexity

This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 771005)

3-coloring problem for graphs

Input: graph **Output:** yes if it's 3-colorable; no otherwise

3SAT

Input: eg. $(x \lor y \lor \neg z) \land (\neg y \lor \neg w \lor u) \land \dots$ **Output:** yes if it's satisfiable

Linear equations

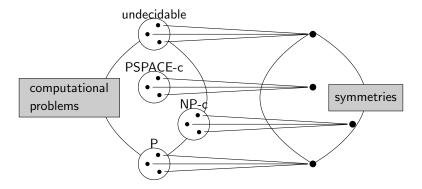
Input: eg. 2x + 3y + z = 2, 3y + 2w + 37z = 1, ...**Output:** yes if it has a solution

What is the computational complexity?

ie. How fast does the best algorithm run?

eg. Can 3SAT or 3-coloring be solved in polynomial time? answer = \$1,000,000

Ideal world vs reality



(P)CSPs over fixed finite templates

- tiny portion of problems on the left
- CoolF'(X) = CoolF'(Y) \Rightarrow X, Y have the same complexity

Outline

Constraint Satisfaction Problems (CSPs) over finite templates

- class of computational problems
- goal: determine the computational complexity
- symmetry determines the complexity + improvements
- goal scored (two complexity classes: P, NP-complete)

Promise Constraint Satisfaction Problems (PCSPs)

- larger class of computational problems, goal not scored
- richer on both algorithmic and hardness side
 - algorithms need to be infinitary
 - hardness requires heavy tools
- further improvement to the basics

Barto, Bulín, Krokhin, Opršal: Algebraic approach to promise constraint satisfaction

$\mathsf{CSP}-\mathsf{definition}$ and examples

Fix $\mathbb{A} = (A; R, S, ...)$ relational structure, A finite

Definition $(CSP(\mathbb{A}))$

Input: pp-sentence ϕ , eg. $(\exists x_1 \exists x_2 \dots) R(x_1, x_3) \land S(x_5, x_2) \land \dots$ **Answer Yes:** ϕ satisfied in \mathbb{A} **Answer No:** ϕ not satisfied in \mathbb{A}

Search version: Find a satisfying assignment. Search looks harder, but it's not [Bulatov, Jeavons, Krokhin'05]

Fact: Always in NP.

 $\mathbb{K}_3 = (A; R)$ where

- ► A = {lilac, mauve, cyclamen}
- R = (binary) inequality relation on A

Input of $CSP(\mathbb{K}_3)$ is, e.g. $(\exists x_1 \exists x_2 \dots \exists x_4) R(x_1, x_2) \land R(x_1, x_3) \land R(x_1, x_4) \land R(x_2, x_3) \land R(x_2, x_4)$

Viewpoint

- variables = vertices
- clauses (constraints) = edges

 $\mathrm{CSP}(\mathbb{K}_3)$ is the 3-coloring problem for graphs

Fact: It is NP-hard (7-coloring NP-hard, 2-coloring in P)

SNAE₄ = ({0,1,2,3}; SNAE₄), where SNAE₄ still ternary CSP(3NAE₄) = 4-coloring problem for 3-uniform hypergraphs

Fact: All NP-hard

$$\begin{aligned} 3\mathbb{LIN}_5 &= (\mathbb{Z}_5; L_{0000}, L_{0001}, \dots, L_{4444}) \text{ where e.g.} \\ L_{1234} &= \{(x, y, z) \in \mathbb{Z}_5^3 : 1x + 2y + 3z = 4\} \\ \text{ (note: relations are affine subspaces of } \mathbb{Z}_5^3 \text{)} \\ CSP(3\mathbb{LIN}_5) &= \text{ solving systems of linear equations in } \mathbb{Z}_5 \end{aligned}$$

CSP and symmetry

polymorphism of A: mapping $f : A^n \to A$ compatible with every relation

compatible with R: f applied component-wise to tuples in R is a tuple in R

Example: $f(x_1, \ldots, x_4) = 2x_1 + 3x_2 + 3x_3 + 3x_4$ $f : \mathbb{Z}_5^4 \to \mathbb{Z}_5$ is compatible with each L_{abcd} because $f(\mathbf{v}_1, \ldots, \mathbf{v}_4)$ is an affine combination of these vectors (as 2 + 3 + 3 + 3 = 1) and L_{abcd} is an affine subspace

 $\mathsf{Pol}(\mathbb{A})$: the set of all polymorphisms (it is a "clone") = set of **multivariable** symmetries of \mathbb{A} Jeavons'98: On the algebraic structure of combinatorial problems

Theorem

Complexity of $CSP(\mathbb{A})$ is determined by $Pol(\mathbb{A})$: If $Pol(\mathbb{A}) \subseteq Pol(\mathbb{B})$ then $CSP(\mathbb{B})$ reduces to $CSP(\mathbb{A})$.

So: $CSP(3LIN_5)$ is in P because $3LIN_5$ has a lot of polymorphs CSP(1IN3) is NP-complete because 1IN3 has few

System of functional equations is, e.g.

$$f(g(x, y), z) = g(x, h(y, z))$$
$$m(y, x, x) = m(y, y, y)$$
$$m(x, x, y) = m(y, y, y)$$

Satisfied in \mathcal{M} , where \mathcal{M} is a set of functions: symbols can be interpreted in \mathcal{M} so that each equality is (universally) satisfied

Example: The above system is satisfied in $Pol(3LIN_5)$:

• take
$$m(x, y, z) = x - y + z$$

Bulatov, Jeavons, Krokhin'05: Classifying the complexity of constraints using finite algebras + Bodirsky'08: PhD thesis

Theorem

Complexity of CSP(A) is determined by systems of functional equations satisfied in Pol(A):

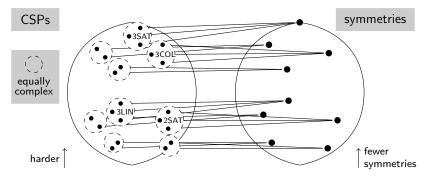
So: $CSP(3LIN_5)$ is in P because Pol($3LIN_5$) satisfies strong systems of functional equations. Barto, Opršal, Pinsker'18: The wonderland of reflections

minor condition = system of functional equations, each of the form symbol(variables) = symbol(variables),e.g. m(y, x, x) = m(y, y, y), m(x, x, y) = m(y, y, y)

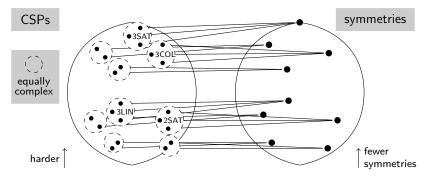
Theorem

Complexity of CSP(A) determined by minor conditions satisfied in Pol(A):

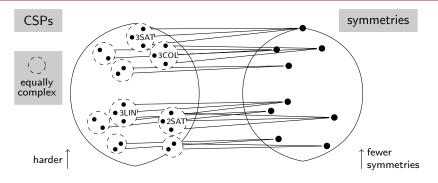
So: $\operatorname{CSP}(\mathbb{EQ}_5)$ is in P because it satisfies strong minor conditions.



- (1) polymorphisms
- (2) systems of functional equations satisfied by polymorphisms
- (3) minor conditions satisfied by polymorphisms

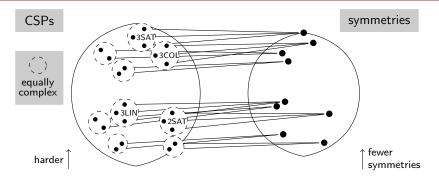


- (1) polymorphisms
- (2) systems of functional equations satisfied by polymorphisms
- (3) minor conditions satisfied by polymorphisms

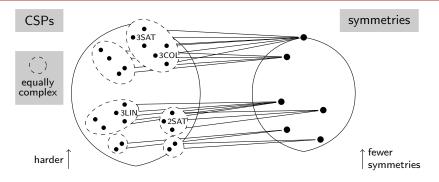


(1) polymorphisms

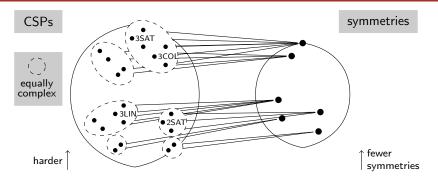
- (2) systems of functional equations satisfied by polymorphisms
- (3) minor conditions satisfied by polymorphisms



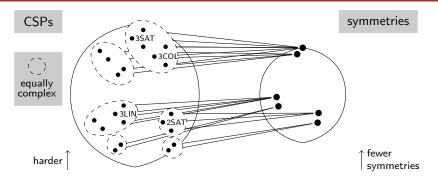
- (1) polymorphisms
- (2) systems of functional equations satisfied by polymorphisms
- (3) minor conditions satisfied by polymorphisms



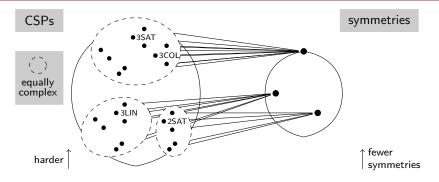
- (1) polymorphisms
- (2) systems of functional equations satisfied by polymorphisms
- (3) minor conditions satisfied by polymorphisms



- (1) polymorphisms
- (2) systems of functional equations satisfied by polymorphisms
- (3) minor conditions satisfied by polymorphisms



- (1) polymorphisms
- (2) systems of functional equations satisfied by polymorphisms
- (3) minor conditions satisfied by polymorphisms



- (1) polymorphisms
- (2) systems of functional equations satisfied by polymorphisms
- (3) minor conditions satisfied by polymorphisms

Minor condition is trivial: satisfied in every Pol(A) = satisfied by some projections

Corollary

If $Pol(\mathbb{A})$ satisfies only trivial minor conditions, then $CSP(\mathbb{A})$ is NP-hard.

Conjecture ([Bulatov, Jeavons, Krokhin'05])

If $Pol(\mathbb{A})$ satisfies some non-trivial minor condition, then $CSP(\mathbb{A})$ is in P.

Theorem

▶ ...

. . .

Let $\mathcal{M} = \mathsf{Pol}(\mathbb{A})$. The following are equivalent.

- *M* satisfies some nontrivial minor condition
- There is no mapping $\xi : \mathcal{M} \to \mathbb{N}$
 - if f is of arity n, then ξ(f) ∈ {1,2,...,n}
 (think: an important coordinate of f)
 - ξ behaves nicely with minors
- \mathcal{M} satisfies, for some $n \geq 2$, the minor condition

$$c(x_1, x_2, \ldots, x_n) = c(x_2, \ldots, x_n, x_1)$$

[Barto, Kozik'12]

.... zillion other characterizations

Results

Characterizations of the conjectured borderline

- classic Universal Algebra [Taylor'77], [Hobby, McKenzie'88]
- numerous new [Maróti, McKenzie'08], [Siggers'10], [BK'12], ...

Applicability of algorithms

describing all solutions

[Idziak, Marković, McKenzie, Valeriote, Willard'07]

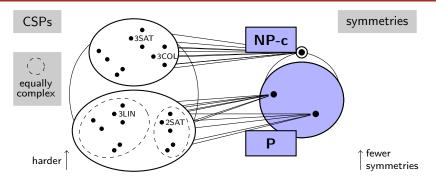
constraint propagation algorithms [Barto, Kozik'09], [Bulatov]

Conjecture for special classes

- 2-element domain [Schaefer'78]
- graphs [Hell, Nešetřil'90]
- ► 3-element domain [Bulatov'06]
- Conservative structures [Bulatov'03 '16], [Barto'11]
- digraphs without sources or sinks [Barto,Kozik,Niven'09]

Conjecture confirmed [Bulatov'17], [Zhuk'17]

Dichotomy



 only trivial minor conditions ⇒ NP-complete single and simple reason for hardness
 come nontrivial minor condition > D

► some nontrivial minor condition ⇒ P

+ concrete minor conditions

Classifications in variants of CSP

- Optimization [Kolmogorov, Krokhin, Rolínek'15]
- Counting [Bulatov'08], [Dyer, Richerby'10]
- robust satisfiability [Barto,Kozik'12]

What next?

- infinite domains
- approximation
- PCSP

PCSP

 $CSP(\mathbb{A})$ is often NP-complete

What can we do?

1. **Approximation:** Try to satisfy only some fraction of the constraints, eg.

for a satisfiable 3SAT instance, find an assignment satisfying at least 90% of the clauses **Theorem:** NP-hard [Håstad'01]

 PCSP: Try to satisfy a relaxed version of all constraints, eg. for a 3-colorable graph, find a 37-coloring

Definition

Fix 2 relational structures in the same language

$$\blacktriangleright \mathbb{A} = (A; R^{\mathbb{A}}, S^{\mathbb{A}}, \dots)$$

$$\blacktriangleright \mathbb{B} = (B; R^{\mathbb{B}}, S^{\mathbb{B}}, \dots)$$

▶ there is a homomorphism $\mathbb{A} \to \mathbb{B}$ (eg. $A \subseteq B, R^{\mathbb{A}} \subseteq R^{\mathbb{B}}, \dots$)

Definition $(PCSP(\mathbb{A}, \mathbb{B}))$

Input: pp-sentence ϕ , eg. $(\exists x_1 \exists x_2 \dots) R(x_1, x_3) \land S(x_5, x_2) \land \dots$ **Answer Yes:** ϕ satisfied in \mathbb{A} **Answer No:** ϕ not satisfied in \mathbb{B}

Search version: Find a B-satisfying assignment given an A-satisfiable input. (it may be a harder problem, we don't know)

Recall:
$$\mathbb{K}_n = (\{1, 2, \dots, n\}; \text{ inequality})$$

PCSP(K₃, K₄) search version Input: a graph Promise: it is 3-colorable Task: find a 4-coloring

Fun facts:

- ► Theorem: it is NP-hard [Brakensiek, Guruswami'16] (more generally PCSP(K_n, K_{2n-2}) is NP-hard)
- $\mathrm{PCSP}(\mathbb{K}_n, \mathbb{K}_{2n-1})$ [Bulín, Krokhin, Opršal'19]
- ► $\mathrm{PCSP}(\mathbb{K}_n, \mathbb{K}_{\binom{n}{\lfloor n/2 \rfloor} 1}), n \ge 4$ [Wrochna, Živný]
- 6-coloring 3-colorable graph: complexity not known
- ► Conjecture: k-coloring l-colorable graph NP-hard (k ≥ l ≥ 3)

Recall: $3\mathbb{NAE}_k$ ternary not-all-equal relation on a *k*-element set

PCSP(3NAE₂, 3NAE₁₃₇) search version Input: a 3-uniform hypergraph Promise: it is 2-colorable Task: find a 137-coloring

Theorem: It is NP-hard [Dinur,Regev,Smyth'05] (more generally $PCSP(3NAE_l, 3NAE_k)$ NP-hard for every $k \ge l \ge 2$)

Proof uses

- ▶ the PCP theorem [Arora, Lund, Motwani, Sudan, Szegedy'98]
- + the Parallel Repetition Theorem [Raz'98]
- Lovász's theorem on Kneser's graphs [Lovász'78]

27/36

Recall: $1\mathbb{IN3} = (\{0,1\}; \{(1,0,0), (0,1,0), (0,0,1)\})$

PCSP(1IN3, 3NAE₂) search version Input: a 3-uniform hypergraph Promise: there is a 2-coloring such that exactly one vertex in each hyperedge receives 1 Task: find a 2-coloring

Fact: It is in P. Algorithm:

- for each hyperedge $\{x, y, z\}$ write x + y + z = 1
- solve the system over $\mathbb{Q} \setminus \{\frac{1}{3}\}$ (it is solvable in $\{0,1\}$)
- assign $x \mapsto 1$ iff x > 1/3

Note: algorithm uses infinite domain CSP **Theorem:** infinity is necessary

Barto'19: Promises make finite problems infinitary

PCSP and symmetry

polymorphism of (\mathbb{A}, \mathbb{B}) : mapping $f : A^n \to B$ compatible with every relation-pair

compatible with $(R^{\mathbb{A}}, R^{\mathbb{B}})$: f applied to tuples in $R^{\mathbb{A}}$ is a tuple in $R^{\mathbb{B}}$

Example: $f(x_1, \dots, x_{97}) = 1$ iff $\frac{\sum x_i}{97} > \frac{1}{3}$ $f : \{0, 1\}^{97} \to \{0, 1\}$ is compatible with $(1in3, 3NAE_2)$

 $\mathsf{Pol}(\mathbb{A}, \mathbb{B})$: the set of all polymorphisms (it is a "minion") = set of multivariable symmetries of (\mathbb{A}, \mathbb{B}) **1st step** (polymorphisms): can be generalized [Brakensiek, Guruswami'18] using [Pippenger'02]

2nd step (systems of functional equations): makes no sense since polymorphisms can no longer be composed

3rd step (minor conditions): the same as in CSP!

Definition (MinorCond(N, \mathcal{M}))

Input: minor condition **X** with symbols of arity *N* **Answer Yes: X** is trivial (=satisfied in \mathcal{P}) **Answer No: X** not satisfied in \mathcal{M}

Theorem ([Bulín, Krokhin, Opršal'19])

Let $\mathcal{M} = \mathsf{Pol}(\mathbb{A}, \mathbb{B})$. The following computational problems are equivalent for a large enough N.

- (i) $CSP(\mathbb{A})$
- (ii) MinorCond(N, \mathcal{M})

Consequence: 3rd step **Proof:** direct, simple, known

No conjectured borderlines

Algorithms

- applicability of some algorithms understood [BBKO]
- new algorithms [Brakensiek,Guruswami]

Classification for special classes

 2-element domain – far from finished known for symmetric relations partially [Brakensiek,Guruswami'18] fully [Ficak,Kozik,Olšák, Stankiewicz'19]

 graphs – major open problem partial results

Theorem (ввко)

Let $\mathcal{M} = \mathsf{Pol}(\mathbb{A}, \mathbb{B})$. If there exists $C \in \mathbb{N}$ and a mapping $\xi : \mathcal{M} \to P(\mathbb{N})$ such that

if f is of arity n, then ξ(f) ⊆ {1,2,...,n}, |ξ(f)| ≤ C
 (think: a small set of important coordinates of f)

• ξ behaves nicely with minors Then $PCSP(\mathbb{A}, \mathbb{B})$ is NP-complete.

This criterion (more precisely, a slightly stronger one) is good enough for all known cases...

Summary

- problem about minor conditions
- Complexity captured by a piece of information about polymorphisms
- Single, simple reason for hardness

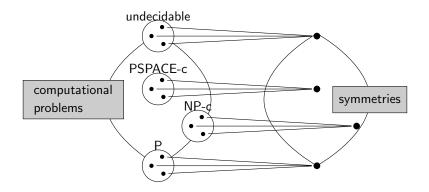
PCSP is cool and fun

- Basics work but a lot is open: eg. borderlines, special cases
- More algorithms needed
- More interesting hardness proofs (PCP, topology)
- Bridge between CSP and approximation

Message to TCS

- Concrete problems \rightarrow classes of problems
- Unary symmetries \rightarrow multivariate symmetries
- Analysis \rightarrow geometry

CoolFunc: computational problems \longrightarrow objects capturing symmetry kernel of CoolFunc = polynomial time reducibility



Thank you for your patience!