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Three computational problems 2/36

3-coloring problem for graphs
Input: graph
Output: yes if it’s 3-colorable; no otherwise

3SAT
Input: eg. (x ∨ y ∨ ¬z) ∧ (¬y ∨ ¬w ∨ u) ∧ . . .
Output: yes if it’s satisfiable

Linear equations
Input: eg. 2x + 3y + z = 2, 3y + 2w + 37z = 1, . . .
Output: yes if it has a solution

What is the computational complexity?
ie. How fast does the best algorithm run?

eg. Can 3SAT or 3-coloring be solved in polynomial time?
answer = $1,000,000



Ideal world vs reality 3/36

CoolF: computational problems −→ objects capturing symmetry

CoolF(X) = CoolF(Y) iff X and Y have the same complexity

undecidable

PSPACE-c

NP-c

P

computational

problems
symmetries

(P)CSPs over fixed finite templates
I tiny portion of problems on the left

I CoolF’(X) = CoolF’(Y) ⇒ X , Y have the same complexity



Outline 4/36

Constraint Satisfaction Problems (CSPs) over finite templates

I class of computational problems

I goal: determine the computational complexity

I symmetry determines the complexity + improvements

I goal scored (two complexity classes: P, NP-complete)

Promise Constraint Satisfaction Problems (PCSPs)

I larger class of computational problems, goal not scored
I richer on both algorithmic and hardness side

I algorithms need to be infinitary
I hardness requires heavy tools

I further improvement to the basics

Barto, Buĺın, Krokhin, Opřsal: Algebraic approach to promise constraint satisfaction



CSP – definition and examples



Definition 6/36

Fix A = (A;R, S , . . . ) relational structure, A finite

Definition (CSP(A))

Input: pp-sentence φ, eg. (∃x1∃x2 . . . )R(x1, x3) ∧ S(x5, x2) ∧ . . .
Answer Yes: φ satisfied in A
Answer No: φ not satisfied in A

Search version: Find a satisfying assignment.
Search looks harder, but it’s not [Bulatov, Jeavons, Krokhin’05]

Fact: Always in NP.



Example 1: 3-coloring 7/36

K3 = (A;R) where

I A = {lilac ,mauve, cyclamen}
I R = (binary) inequality relation on A

Input of CSP(K3) is, e.g.

(∃x1∃x2 . . . ∃x4)R(x1, x2)∧R(x1, x3)∧R(x1, x4)∧R(x2, x3)∧R(x2, x4)

Viewpoint

I variables = vertices

I clauses (constraints) = edges

CSP(K3) is the 3-coloring problem for graphs

Fact: It is NP-hard (7-coloring NP-hard, 2-coloring in P)



Examples 2: hypergraph coloring problems 8/36

I 3NAE2 = ({0, 1}; 3NAE2) where
3NAE2 = all but {(0, 0, 0), (1, 1, 1)}

CSP(3NAE2) = positive not-all-equal 3-SAT
= 2-coloring problem for 3-uniform hypergraphs

I 3NAE4 = ({0, 1, 2, 3}; 3NAE4), where 3NAE4 still ternary

CSP(3NAE4) = 4-coloring problem for 3-uniform hypergraphs

I 1IN3 = ({0, 1}; 1in3) where
1in3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}

CSP(1IN3) = positive 1-in-3 SAT

Fact: All NP-hard



Example 3: systems of linear equations 9/36

3LIN5 = (Z5; L0000, L0001, . . . , L4444) where e.g.

L1234 = {(x , y , z) ∈ Z3
5 : 1x + 2y + 3z = 4}

(note: relations are affine subspaces of Z3
5)

CSP(3LIN5) = solving systems of linear equations in Z5

Fact: In P



CSP and symmetry



Polymorphisms 11/36

polymorphism of A: mapping f : An → A
compatible with every relation

compatible with R: f applied component-wise to tuples in R
is a tuple in R

Example: f (x1, . . . , x4) = 2x1 + 3x2 + 3x3 + 3x4 f : Z4
5 → Z5

is compatible with each Labcd
because f (v1, . . . , v4) is an affine combination of these

vectors (as 2 + 3 + 3 + 3 = 1)
and Labcd is an affine subspace

Pol(A): the set of all polymorphisms (it is a “clone”)
= set of multivariable symmetries of A



Basics of algebraic theory, 1st step 12/36

Jeavons’98: On the algebraic structure of combinatorial problems

Theorem

Complexity of CSP(A) is determined by Pol(A):

If Pol(A) ⊆ Pol(B) then CSP(B) reduces to CSP(A).

So: CSP(3LIN5) is in P because 3LIN5 has a lot of polymorphs
CSP(1IN3) is NP-complete because 1IN3 has few



Systems of functional equations 13/36

System of functional equations is, e.g.

f (g(x , y), z) = g(x , h(y , z))

m(y , x , x) = m(y , y , y)

m(x , x , y) = m(y , y , y)

Satisfied in M, where M is a set of functions:
symbols can be interpreted in M so that
each equality is (universally) satisfied

Example: The above system is satisfied in Pol(3LIN5):

I take f (x , y) = g(x , y) = h(x , y) = x
(note: projections are always polymoprhisms)

I take m(x , y , z) = x − y + z



Basics of algebraic theory, 2nd step 14/36

Bulatov, Jeavons, Krokhin’05: Classifying the complexity of constraints using finite

algebras + Bodirsky’08: PhD thesis

Theorem

Complexity of CSP(A) is determined by
systems of functional equations satisfied in Pol(A):

So: CSP(3LIN5) is in P because
Pol(3LIN5) satisfies strong systems of functional equations.



Basics of algebraic theory, 3rd step 15/36

Barto, Opřsal, Pinsker’18: The wonderland of reflections

minor condition = system of functional equations, each of the form
symbol(variables) = symbol(variables),
e.g. m(y , x , x) = m(y , y , y), m(x , x , y) = m(y , y , y)

Theorem

Complexity of CSP(A) determined by
minor conditions satisfied in Pol(A):

So: CSP(EQ5) is in P because it satisfies strong minor conditions.



The Three Steps (movie) 16/36

harder
fewer
symmetries

3SAT

3COL

3LIN
2SAT

3SAT

3COL

3LIN
2SAT

CSPs symmetries

equally
complex

(1) polymorphisms

(2) systems of functional equations satisfied by polymorphisms

(3) minor conditions satisfied by polymorphisms

Where are the borderlines between complexity classes?
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The algebraic dichotomy conjecture 17/36

Minor condition is trivial:
satisfied in every Pol(A)
= satisfied by some projections

Corollary

If Pol(A) satisfies only trivial minor conditions,
then CSP(A) is NP-hard.

Conjecture ([Bulatov, Jeavons, Krokhin’05])

If Pol(A) satisfies some non-trivial minor condition,
then CSP(A) is in P.



Borderline 18/36

Theorem

Let M = Pol(A). The following are equivalent.

I M satisfies some nontrivial minor condition
I There is no mapping ξ :M→ N

I if f is of arity n, then ξ(f ) ∈ {1, 2, . . . , n}
( think: an important coordinate of f )

I ξ behaves nicely with minors

I M satisfies, for some n ≥ 2, the minor condition

c(x1, x2, . . . , xn) = c(x2, . . . , xn, x1)

[Barto, Kozik’12]

I . . .

I . . . zillion other characterizations . . .

I . . .



Results 19/36

Characterizations of the conjectured borderline

I classic Universal Algebra [Taylor’77], [Hobby, McKenzie’88]

I numerous new [Maróti, McKenzie’08],[Siggers’10], [BK’12], . . .

Applicability of algorithms

I describing all solutions
[Idziak, Marković, McKenzie, Valeriote, Willard’07]

I constraint propagation algorithms [Barto, Kozik’09], [Bulatov]

Conjecture for special classes

I 2-element domain [Schaefer’78]

I graphs [Hell, Nešeťril’90]

I 3-element domain [Bulatov’06]

I conservative structures [Bulatov’03 ’16], [Barto’11]

I digraphs without sources or sinks [Barto,Kozik,Niven’09]

Conjecture confirmed [Bulatov’17], [Zhuk’17]



Dichotomy 20/36

harder
fewer
symmetries

3SAT

3COL

3LIN
2SAT

3SAT

3COL

3LIN
2SAT

CSPs symmetries

equally
complex

NP-c

P

I only trivial minor conditions ⇒ NP-complete
single and simple reason for hardness

I some nontrivial minor condition ⇒ P
+ concrete minor conditions



Beyond 21/36

Classifications in variants of CSP

I optimization [Kolmogorov, Krokhin, Roĺınek’15]

I counting [Bulatov’08], [Dyer, Richerby’10]

I robust satisfiability [Barto,Kozik’12]

What next?

I infinite domains

I approximation

I PCSP



PCSP



Relax! 23/36

CSP(A) is often NP-complete

What can we do?

1. Approximation: Try to satisfy only some fraction of the
constraints, eg.

for a satisfiable 3SAT instance,
find an assignment satisfying at least 90% of the clauses

Theorem: NP-hard [Håstad’01]

2. PCSP: Try to satisfy a relaxed version of all constraints, eg.

for a 3-colorable graph,
find a 37-coloring



Definition 24/36

Fix 2 relational structures in the same language

I A = (A;RA,SA, . . . )

I B = (B;RB,SB, . . . )

I there is a homomorphism A→ B (eg. A ⊆ B,RA ⊆ RB, . . . )

Definition (PCSP(A,B))

Input: pp-sentence φ, eg. (∃x1∃x2 . . . )R(x1, x3) ∧ S(x5, x2) ∧ . . .
Answer Yes: φ satisfied in A
Answer No: φ not satisfied in B

Search version: Find a B-satisfying assignment
given an A-satisfiable input.

(it may be a harder problem, we don’t know)



Example 1: 4-coloring a 3-colorable graph 25/36

Recall: Kn = ({1, 2, . . . , n}; inequality)

PCSP(K3,K4) search version
Input: a graph
Promise: it is 3-colorable
Task: find a 4-coloring

Fun facts:

I Theorem: it is NP-hard [Brakensiek, Guruswami’16]

(more generally PCSP(Kn,K2n−2) is NP-hard)

I PCSP(Kn,K2n−1) [Buĺın, Krokhin, Opřsal’19]

I PCSP(Kn,K( n
bn/2c)−1), n ≥ 4 [Wrochna, Živný]

I 6-coloring 3-colorable graph: complexity not known

I Conjecture: k-coloring l-colorable graph NP-hard (k ≥ l ≥ 3)



Example 2: hypergraph coloring 26/36

Recall: 3NAEk ternary not-all-equal relation on a k-element set

PCSP(3NAE2, 3NAE137) search version
Input: a 3-uniform hypergraph
Promise: it is 2-colorable
Task: find a 137-coloring

Theorem: It is NP-hard [Dinur,Regev,Smyth’05]

(more generally PCSP(3NAEl , 3NAEk) NP-hard
for every k ≥ l ≥ 2)

Proof uses

I the PCP theorem [Arora, Lund, Motwani, Sudan, Szegedy’98]

I + the Parallel Repetition Theorem [Raz’98]

I Lovász’s theorem on Kneser’s graphs [Lovász’78]



Example 3: 1-in-3 vs not-all-equal 27/36

Recall: 1IN3 = ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)})

PCSP(1IN3, 3NAE2) search version
Input: a 3-uniform hypergraph
Promise: there is a 2-coloring such that

exactly one vertex in each hyperedge receives 1
Task: find a 2-coloring

Fact: It is in P. Algorithm:

I for each hyperedge {x , y , z} write x + y + z = 1

I solve the system over Q \ {1
3} (it is solvable in {0, 1})

I assign x 7→ 1 iff x > 1/3

Note: algorithm uses infinite domain CSP
Theorem: infinity is necessary

Barto’19: Promises make finite problems infinitary



PCSP and symmetry



Polymorphisms 29/36

polymorphism of (A,B): mapping f : An → B
compatible with every relation-pair

compatible with (RA,RB): f applied to tuples in RA

is a tuple in RB

Example: f (x1, . . . , x97) = 1 iff
∑

xi
97 > 1

3 f : {0, 1}97 → {0, 1}
is compatible with (1in3, 3NAE2)

Pol(A,B): the set of all polymorphisms (it is a “minion”)
= set of multivariable symmetries of (A,B)



Algebraic theory, 3 steps 30/36

1st step (polymorphisms):
can be generalized [Brakensiek, Guruswami’18]

using [Pippenger’02]

2nd step (systems of functional equations):
makes no sense
since polymorphisms can no longer be composed

3rd step (minor conditions): the same as in CSP!



Basics of algebraic theory, 4th step 31/36

Definition (MinorCond(N ,M))

Input: minor condition X with symbols of arity N
Answer Yes: X is trivial (=satisfied in P)
Answer No: X not satisfied in M

Theorem ([Buĺın, Krokhin, Opřsal’19])

Let M = Pol(A,B). The following computational problems are
equivalent for a large enough N.

(i) CSP(A)

(ii) MinorCond(N,M)

Consequence: 3rd step
Proof: direct, simple, known



Results 32/36

No conjectured borderlines

Algorithms

I applicability of some algorithms understood [BBKO]

I new algorithms [Brakensiek,Guruswami]

Classification for special classes

I 2-element domain – far from finished
known for symmetric relations

partially [Brakensiek,Guruswami’18]

fully [Ficak,Kozik,Oľsák, Stankiewicz’19]

I graphs – major open problem
partial results



A hardness criterion for PCSPs 33/36

Theorem (BBKO)

Let M = Pol(A,B). If there exists C ∈ N and a mapping
ξ :M→ P(N) such that

I if f is of arity n, then ξ(f ) ⊆ {1, 2, . . . , n}, |ξ(f )| ≤ C
( think: a small set of important coordinates of f )

I ξ behaves nicely with minors

Then PCSP(A,B) is NP-complete.

This criterion (more precisely, a slightly stronger one)

is good enough for all known cases...



Summary



Summary 35/36

CSP

I = problem about minor conditions

I Complexity captured by a piece of information about
polymorphisms

I Single, simple reason for hardness

PCSP is cool and fun

I Basics work but a lot is open: eg. borderlines, special cases

I More algorithms needed

I More interesting hardness proofs (PCP, topology)

I Bridge between CSP and approximation

Message to TCS

I Concrete problems → classes of problems

I Unary symmetries → multivariate symmetries

I Analysis → geometry



Ideal world 36/36

CoolFunc: computational problems −→ objects capturing symmetry

kernel of CoolFunc = polynomial time reducibility

undecidable

PSPACE-c

NP-c

P

computational

problems
symmetries

Thank you for your patience!


