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CSP and UA

Fruitful cooperation UA ↔ Computer Science:

I Applications of UA to the complexity of the CSP (not in this
lecture)

I Study of the CSP has a great impact on (parts of) UA
I Surprisingly strong properties of quite general classes of

algebras
I New important classes of algebras discovered

(FS - few subpowers, CS - congruence singular)
I Fundamental new results about classic classes

(CP - congruence permutable, CD - congruence distributive)
I ⇒ CSP is not just a fashion



Outline

I Apologies

I Picture of a naked mathematician

I Instance of the CSP

I Examples - CSP in UA

CS → CP → FS → CM → Taylor
↑ ↑ ↑

NU → CD → CSD(∧)

I Useful technique - absorbing subalgebras (+ some news)
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CSP for universal algebraist

Definition

A . . . finite idempotent algebra (always)

Instance of CSP(A) = finite set V + set C of constraints

Constraint = subalgebra of AI , where I ⊆ V is the scope

Solution of the instance = mapping f : V → A such that f|I ∈ R|I
for every constraint R ≤ AI

Example

every scope is equal to V
⇓

set of solutions = intersection of constraints

to study CSP = to study intersection properties of subpowers



Example 1: Taylor algebras 1/3

A is Taylor, if

HSP(A) (equivalently HS(A) ?Szendrei, ?Bulatov ) doesn’t contain
a two-element algebra whose every operation is a projection

⇔ HSP(A) satisfies a nontrivial Maltsev condition

⇔ A has a Taylor term Taylor 77, i.e. a term t satisfying a set of
identities in two variables x , y of the form

t(x , ·, ·, . . . ) ≈ t(y , ·, ·, . . . )
t(·, x , ·, . . . ) ≈ t(·, y , ·, . . . )

. . .

t(·, ·, . . . , x) ≈ t(·, ·, . . . , y)

⇔ HSP(A) omits 1 Hobby, McKenzie 88
⇔ . . .



Example 1: Taylor algebras 2/3

Smooth theorem (Barto, Kozik, Niven 08)

Let A be a Taylor algebra, R ≤ A2 subdirect and assume that
∃ k, l ∈ N such that (Rk ◦ R−k)l = A2. Then ∃ a ∈ A (a, a) ∈ R.

Corollary (Siggers, Kearnes, Marković, McKenzie 10)

A is Taylor iff A has a term t satisfying t(x , y , y , z) = t(y , z , x , x).

Proof.

F ... free algebra on {x , y , z}
R ... subalgebra of F2 generated by (x , y), (y , z), (y , x), (z , x).
Apply the theorem

Collapses of Maltsev conditions for finite algebras



Example 1: Taylor algebras 3/3

Other intersection property
(a generalization of Maróti, McKenzie 06):

Theorem (Barto, Kozik 09)

Let A be a Taylor algebra, p a prime, p > |A|, and ∅ 6= R ≤ Ap. If
R is invariant under cyclic shift of coordinates, then
∃ a ∈ A (a, a, . . . , a) ∈ R.

Corollary

Let A be an algebra, p a prime, p > |A|. Then A is Taylor iff A
has a cyclic term of arity p
(i.e. a term satisfying t(x1, . . . , xp) = t(x2, . . . , xp, x1))



Example 1: Taylor algebras 3/3

Other intersection property
(a generalization of Maróti, McKenzie 06):

Theorem (Barto, Kozik 09)

Let A be a Taylor algebra, p a prime, p > |A|, and ∅ 6= R ≤ Ap. If
R is invariant under cyclic shift of coordinates, then
∃ a ∈ A (a, a, . . . , a) ∈ R.

Problem

Find a common generalization of this theorem and the smooth
theorem.

Reading: L. Barto, M. Kozik: Absorbing subalgebras, cyclic terms and

the constraint satisfaction problem



Example 2: CSD(∧) algebras 1/3

A is CSD(∧), if
HSP(A) (or HS(A)) doesn’t contain a reduct of a module

⇔ HSP(A) is meet semi-distributive
α ∧ β = α ∧ γ ⇒ α ∧ (β ∨ γ) = α ∧ β

⇔ HSP(A) omits 1, 2

⇔ A has Willard terms

Definition

An instance of CSP(A) is (2, 3)-minimal, if

I ∀ three-element I ⊆ V ∃R ⊆ AK in C such that I ⊆ K

I ∀ at most two-element I ⊆ V ∀R ⊆ AK , R ′ ⊆ AK ′
such that

I ⊆ K ,K ′ we have R|I = R ′|I



Example 2: CSD(∧) algebras 2/3

Theorem (Barto, Kozik 09 Bulatov 09)

A is CSD(∧) iff every (2, 3)-minimal instance of CSP(A) has a
solution

Corollary

If A is CSD(∧) and R1, . . . ,Rn ≤ An have the same binary
projections, then ∩Ri 6= ∅



Example 2: CSD(∧) algebras 3/3

WNU = operation f satisfying
f (x , . . . , x , y) = f (x , . . . , x , y , x) = · · · = f (y , x , . . . , x)

Corollary (Kozik, Valeriote)

A is CSD(∧) iff A has WNUs of all arities ≥ 3.

Proof.

Take V big enough. Let F = free algebra in HSP(A) over {x , y}.
for every three element I we include one constraint RI ≤ FI , where

RI = 〈(x , x , y), (x , y , x), (y , x , x)〉
It is (2, 3)-minimal instance of CSP(F) ⇒ ∃ solution f : V → F .
V is big ⇒ ∃i , j , k f (i) = f (j) = f (k) = b
b ∈ R{i ,j ,k} ⇒ A has WNU of arity 3

Reading: Doesn’t exist yet :(

Collapses of Maltsev conditions for finite algebras



Example 3: CD ⇒ NU 1/2

A . . . relational structure (on a finite set A)
Pol(A) . . . clone of all operations compatible with all relations in A

Theorem (Geiger, Bodnarchuk, Kaluznin, Kotov, Romov 68)

∀ finite algebra A ∃ A such that Pol(A) = Clo(A)

Definition

Finite A is finitely related, if ∃ A with finitely many relations such
that Pol(A) = Clo(A)

Example

Algebras with near-unanimity term (by Baker-Pixley)

(Recall: near-unanimity = operation f satisfying
x = f (x , . . . , x , y) = f (x , . . . , x , y , x) = · · · = f (y , x , . . . , x) )



Example 3: CD ⇒ NU 2/2

Theorem (Barto 09)

If A is finitely related and HSP(A) is congruence distributive, then
A has a near-unanimity term.

Proof.

Say A has at most k-ary relations, Clo(A) = Pol(A).
n . . . big enough natural number
V = An

F ≤ AV . . . free algebra on n-generators (=n-ary operations)

For every at most k-element I ⊆ V we include the constraint F|I

Solutions of this instance = n-ary operations of A
. . . . . . . . .

Reading: L. Barto: Finitely related algebras in congruence distributive

varieties have near unanimity terms

More collapses of Maltsev conditions for finitely related algebras



Example 4: few subpowers ⇒ finitely related 1/2

A has few subpowers, if |{R ≤ An}| ≤ 2polynomial(n)

⇔ subpowers of A have small generating sets
⇔ A has a cube term ⇔ ...

Example

Maltsev algebras, algebras with near-unanimity operation
Few subpowers ⇒ HSP(A) is congruence modular

Theorem (Aichinger, Mayr, McKenzie 09)

Every finite algebra with few subpowers is finitely related.

Proof.

Use compact representations of subpowers developed for CSP by
Dalmau, Bulatov; Berman, Idziak, Markovic, McKenzie, Valeriote,
Willard
. . . . . . . . .



Example 4: few subpowers ⇒ finitely related 2/2

Corollary

On a finite set, there is countably many clones with few subpowers
(in particular, there is countably many Maltsev clones on a finite
set).

(2 years ago open for expansions of Z8!)

Conjecture (Valeriote’s conjecture, Edinburgh conjecture)

If A is finitely related and HSP(A) is congruence modular, then A
has few subpowers.

Reading: A. Bulatov, V. Dalmau: A simple algorithm for Mal’tsev
constraints
J. Berman, P. Idziak, P. Markovic, R. McKenzie, M. Valeriote and R.
Willard: Varieties with few subalgebras of powers

E. Aichinger, P. Mayr, R. McKenzie: On the number of finite algebraic

structures



Example 5: CS - congruence singularity (unfinished)

Congruence uniform .... |x/α| = |y/α|
Congruence singular .... |x/α||x/β| = |x/α ∨ β||x/α ∧ β|
strong malcev conditions....
Bulatov, Dalmau....
Reading: M. Dyer, D. Richerby: An effective dichotomy for the counting

constraint satisfaction problem



A technique for our results with Kozik + ? 1/5

Definition

B is an absorbing subuniverse of an algebra A, if

I B ≤ A

I A has a term t such that t(a1, . . . , an) ∈ B whenever all but
(at most) 1 of the ai ’s are in B.

Example

Singletons are absorbing subuniverses iff A has a near-unanimity
operation

Useful because:

I Algebras often have proper absorbing subuniverses

I Some connectivity properties of subpowers can be pushed
inside absorbing subuniverses



Absorption 2/5

Theorem

Let A be a Taylor algebra, R ≤ A2 subdirect and assume that
∃ l ∈ N such that (R ◦ R−1)l = A2 and R l = A2. Then ∃ a ∈ A
(a, a) ∈ R.

Proof.

(0) Assume |A| > 1

(1) Find a proper absorbing subuniverse B of A

(2) Walk with B to find a proper absorbing subuniverse C of A
such that S ≤ C2 is subdirect, where S = R ∩ C 2

(3) Prove that (S ◦ S−1)l ′ = A2 and S l ′ = A2



Absorption 3/5

Proof.

(0) Assume |A| > 1

(1) Find a proper absorbing subuniverse B of A

(2) Walk with B to find a proper absorbing subuniverse C of A
such that S ≤ C2 is subdirect, where S = R ∩ C 2

(3) Prove that (S ◦ S−1)l ′ = A2 and S l ′ = A2

Ad (1):

(Special case of) Absorption Theorem

Let A be a Taylor algebra, R ≤ A2 subdirect, R 6= A2, and
(R ◦ R−1)l = A2 for some l. Then A has a proper absorbing set.



Absorption - news 4/5

Studying CSPs in NL.....

Theorem (Barto, Kozik, Willard 11)

Let A be an algebra (no assumptions on A!). Then
there exists a ∈ A such that
for any n ∈ N and any B ≤ C ≤ An such that

B is subdirect in An

C contains all constant tuples
B absorbs C

we have (a, a, . . . , a) ∈ B

Ross has a problem

Let Ab(A) be the set of all such a’s. Easy to see that Ab(A) ≤ A.
What is this??????? (what is it good for? what characterizes this
subalgebra? ....)



Decidability of absorption 5/5

Problem

Is the following problem decidable? Input is a finite algebra A and
a subset. Question is whether the subset is an absorbing
subuniverse of A.

Affirmative answer would generalize Maróti’s result that NU is
decidable

Problem

Is the following problem decidable? Input is a finite relational
structure A and a subset. Question is weather the subset is an
absorbing subuniverse of Pol(A).


