Algebraic Theory of Promise Constraint Satisfaction Problems, First Steps

Libor Barto

Department of Algebra, Charles University, Prague

FCT 2019, Copenhagen, 14 August

European Research Council Established by the European Commission CoCoSym: Symmetry in Computational Complexity

This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 771005)

Outline

Constraint Satisfaction Problems (CSPs) over finite templates

- class of computational problems
- goal: determine the computational complexity
- 3 step development of algebraic theory
- goal scored (two complexity classes: P, NP-complete)

Promise Constraint Satisfaction Problems (PCSPs)

- larger class of computational problems, goal not scored
- richer on both algorithmic and hardness side
 - algorithms need to be infinitary
 - hardness requires heavy tools
- algebraic theory for CSP generalizes
- 4th step: drastic simplification of the basics

Barto, Bulín, Krokhin, Opršal: Algebraic approach to promise constraint satisfaction

 $\begin{array}{rcl} {\rm CoolFunc: \ \, computational \ \, problems \longrightarrow objects \ \, capturing \ \, symmetry} \\ {\rm kernel \ \, of \ \, CoolFunc \ \, = \ \, polynomial \ \, time \ \, reducibility} \end{array}$

(P)CSPs over fixed finite templates

- tiny portion of problems on the left
- kernel \subsetneq polynomial time reducibility

CSP

Fix
$$\mathbb{A} = (A; R, S, \dots)$$
 relational structure

Definition $(CSP(\mathbb{A}))$

Input: pp-sentence ϕ , eg. $(\exists x_1 \exists x_2 \dots) R(x_1, x_3) \land S(x_5, x_2) \land \dots$ **Answer Yes:** ϕ satisfied in \mathbb{A} **Answer No:** ϕ not satisfied in \mathbb{A}

Search version: Find a satisfying assignment. Search looks harder, but it's not [Bulatov, Jeavons, Krokhin'05]

Fact: Always in NP.

 $\mathbb{K}_3 = (A; R)$ where

- ► *A* = {*lilac*, *mauve*, *cyclamen*}
- R = (binary) inequality relation on A

Input of $CSP(\mathbb{K}_3)$ is, e.g. $(\exists x_1 \exists x_2 \dots \exists x_4) R(x_1, x_2) \land R(x_1, x_3) \land R(x_1, x_4) \land R(x_2, x_3) \land R(x_2, x_4)$

Viewpoint

- variables = vertices
- clauses (constraints) = edges

 $\operatorname{CSP}(\mathbb{K}_3)$ is the 3-coloring problem for graphs

Fact: It is NP-hard (7-coloring NP-hard, 2-coloring in P)

SNAE₄ = ({0,1,2,3}; SNAE₄), where SNAE₄ still ternary CSP(3NAE₄) = 4-coloring problem for 3-uniform hypergraphs

Fact: All NP-hard

$$\begin{aligned} 3\mathbb{LIN}_5 &= (\mathbb{Z}_5; L_{0000}, L_{0001}, \dots, L_{4444}) \text{ where e.g.} \\ L_{1234} &= \{(x, y, z) \in \mathbb{Z}_5^3 : 1x + 2y + 3z = 4\} \\ \text{ (note: relations are affine subspaces of } \mathbb{Z}_5^3 \text{)} \\ CSP(3\mathbb{LIN}_5) &= \text{ solving systems of linear equations in } \mathbb{Z}_5 \end{aligned}$$

CSP and symmetry

polymorphism of A: mapping $f : A^n \to A$ compatible with every relation

compatible with R: f applied component-wise to tuples in R is a tuple in R

Example: $f(x_1, \ldots, x_4) = 2x_1 + 3x_2 + 3x_3 + 3x_4$ $f : \mathbb{Z}_5^4 \to \mathbb{Z}_5$ is compatible with each L_{abcd} because $f(\mathbf{v}_1, \ldots, \mathbf{v}_4)$ is an affine combination of these vectors (as 2 + 3 + 3 + 3 = 1) and L_{abcd} is an affine subspace

 $\mathsf{Pol}(\mathbb{A})$: the set of all polymorphisms (it is a "clone") = set of (multivariable) symmetries of \mathbb{A} Jeavons'98: On the algebraic structure of combinatorial problems

Theorem

Complexity of $CSP(\mathbb{A})$ is determined by $Pol(\mathbb{A})$: If $Pol(\mathbb{A}) \subseteq Pol(\mathbb{B})$ then $CSP(\mathbb{B})$ reduces to $CSP(\mathbb{A})$.

Proof.

If $Pol(\mathbb{A}) \subseteq Pol(\mathbb{B})$, then relations in \mathbb{B} can be defined from relations in \mathbb{A} by a pp-formula.

[Geiger'69, Bondarčuk, Kalužnin, Kotov, Romov'69]

This gives a computational reduction of $CSP(\mathbb{B})$ to $CSP(\mathbb{A})$.

So: $CSP(3LIN_5)$ is in P because $3LIN_5$ has a lot of polymorphs CSP(1IN3) is NP-complete because 1IN3 has few

System of functional equations is, e.g.

$$f(g(x, y), z) = g(x, h(y, z))$$

$$m(y, x, x) = m(y, y, y)$$

$$m(x, x, y) = m(y, y, y)$$

Satisfied in \mathcal{M} , where \mathcal{M} is a set of functions: symbols can be interpreted in \mathcal{M} so that each equality is (universally) satisfied

Example: The above system is satisfied in $Pol(3LIN_5)$:

• take
$$m(x, y, z) = x - y + z$$

Bulatov, Jeavons, Krokhin'05: Classifying the complexity of constraints using finite algebras + Bodirsky'08: PhD thesis

Theorem

Complexity of CSP(A) is determined by systems of functional equations satisfied in Pol(A): If each system satisfied in Pol(A) is satisfied in Pol(B), then CSP(B) reduces to CSP(A).

Proof.

Previous theorem, pp-definitions \rightarrow pp-interpretations, the HSP theorem [Birkhoff'35]

 Barto, Opršal, Pinsker'18: The wonderland of reflections

minor condition = system of functional equations, each of the form symbol(variables) = symbol(variables),e.g. m(y, x, x) = m(y, y, y), m(x, x, y) = m(y, y, y)

Theorem

Complexity of CSP(A) determined by minor conditions satisfied in Pol(A):

If each minor condition satisfied in $Pol(\mathbb{A})$ is satisfied in $Pol(\mathbb{B})$, then $CSP(\mathbb{B})$ reduces to $CSP(\mathbb{A})$.

Proof.

pp-interpretation \rightarrow pp-construction, version of the HSP theorem.

(1) polymorphisms

- (2) systems of functional equations satisfied by polymorphisms
- (3) minor conditions satisfied by polymorphisms

(1) polymorphisms

- (2) systems of functional equations satisfied by polymorphisms
- (3) minor conditions satisfied by polymorphisms

(1) polymorphisms

- (2) systems of functional equations satisfied by polymorphisms
- (3) minor conditions satisfied by polymorphisms

- (1) polymorphisms
- (2) systems of functional equations satisfied by polymorphisms
- (3) minor conditions satisfied by polymorphisms

- (1) polymorphisms
- (2) systems of functional equations satisfied by polymorphisms
- (3) minor conditions satisfied by polymorphisms

- (1) polymorphisms
- (2) systems of functional equations satisfied by polymorphisms
- (3) minor conditions satisfied by polymorphisms

- (1) polymorphisms
- (2) systems of functional equations satisfied by polymorphisms
- (3) minor conditions satisfied by polymorphisms

- (1) polymorphisms
- (2) systems of functional equations satisfied by polymorphisms
- (3) minor conditions satisfied by polymorphisms

Minor condition is trivial:

```
satisfied in every Pol(\mathbb{A})
```

= satisfied in $\mathcal{P}\textsc{,}$ the set of projections on $\{0,1\}$

Corollary

If $Pol(\mathbb{A})$ satisfies only trivial minor conditions, then $CSP(\mathbb{A})$ is NP-hard.

Theorem ([Bulatov'17], [Zhuk'17])

If $Pol(\mathbb{A})$ satisfies some non-trivial minor condition, then $CSP(\mathbb{A})$ is in P.

Dichotomy

- only trivial minor conditions \Rightarrow NP-complete
- some nontrivial minor condition \Rightarrow P

Further steps?

PCSP

 $CSP(\mathbb{A})$ is often NP-complete

What can we do?

1. **Approximation:** Try to satisfy only some fraction of the constraints, eg.

for a satisfiable 3SAT instance, find an assignment satisfying at least 90% of the clauses **Theorem:** NP-hard [Håstad'01]

 PCSP: Try to satisfy a relaxed version of all constraints, eg. for a 3-colorable graph, find a 37-coloring

Definition

Fix 2 relational structures in the same language

$$\blacktriangleright \mathbb{A} = (A; R^{\mathbb{A}}, S^{\mathbb{A}}, \dots)$$

$$\blacktriangleright \mathbb{B} = (B; R^{\mathbb{B}}, S^{\mathbb{B}}, \dots)$$

▶ there is a homomorphism $\mathbb{A} \to \mathbb{B}$ (eg. $A \subseteq B, R^{\mathbb{A}} \subseteq R^{\mathbb{B}}, \dots$)

Definition $(PCSP(\mathbb{A}, \mathbb{B}))$

Input: pp-sentence ϕ , eg. $(\exists x_1 \exists x_2 \dots) R(x_1, x_3) \land S(x_5, x_2) \land \dots$ **Answer Yes:** ϕ satisfied in \mathbb{A} **Answer No:** ϕ not satisfied in \mathbb{B}

Search version: Find a B-satisfying assignment given an A-satisfiable input. (it may be a harder problem, we don't know)

```
Recall: \mathbb{K}_n = (\{1, 2, \dots, n\}; \text{ inequality})
```

PCSP(K₃, K₄) Input: a graph Answer Yes: it is 3-colorable Answer No: it is not 4-colorable

Search version: Find a 4-coloring of a 3-colorable graph

Fun facts:

- ► Theorem: it is NP-hard [Brakensiek, Guruswami'16] (more generally PCSP(K_n, K_{2n-2}) is NP-hard)
- $\operatorname{PCSP}(\mathbb{K}_n, \mathbb{K}_{2n-1})$ [Bulín, Krokhin, Opršal'19]
- ► $\operatorname{PCSP}(\mathbb{K}_n, \mathbb{K}_{\binom{n}{\lfloor n/2 \rfloor} 1}), n \ge 4$ [Wrochna, Živný]
- 6-coloring 3-colorable graph: complexity not known
- ▶ **Conjecture**: *k*-coloring *l*-colorable graph NP-hard ($k \ge l \ge 3$)

Recall: $3\mathbb{NAE}_k$ ternary not-all-equal relation on a *k*-element set

PCSP(3NAE₂, 3NAE₁₃₇) Input: a 3-uniform hypergraph Answer Yes: it is 2-colorable Answer No: it is not 137-colorable

Theorem: It is NP-hard [Dinur,Regev,Smyth'05] (more generally $PCSP(3NAE_l, 3NAE_k)$ NP-hard for every $k \ge l \ge 2$)

Proof uses

- ▶ the PCP theorem [Arora, Lund, Motwani, Sudan, Szegedy'98]
- + the Parallel Repetition Thoerem [Raz'98]
- Lovász's theorem on Kneser's graphs [Lovász'78]

Fact: It is in P. Algorithm for finding a 2-coloring of a Yes input:

- for each hyperedge $\{x, y, z\}$ write x + y + z = 1
- solve the system over $\mathbb{Q} \setminus \{\frac{1}{3}\}$ (it is solvable in $\{0,1\}$)
- assign $x \mapsto 1$ iff x > 1/3

Note: algorithm uses infinite domain CSP **Theorem:** infinity is necessary [Barto'19]

PCSP and symmetry

polymorphism of (\mathbb{A}, \mathbb{B}) : mapping $f : A^n \to B$ compatible with every relation-pair

compatible with $(R^{\mathbb{A}}, R^{\mathbb{B}})$: f applied to tuples in $R^{\mathbb{A}}$ is a tuple in $R^{\mathbb{B}}$

Example: $f(x_1, \dots, x_{97}) = 1$ iff $\frac{\sum x_i}{97} > \frac{1}{3}$ $f : \{0, 1\}^{97} \to \{0, 1\}$ is compatible with $(1in3, 3NAE_2)$

 $\mathsf{Pol}(\mathbb{A}, \mathbb{B})$: the set of all polymorphisms (it is a "minion") = set of (multivariable) symmetries of (\mathbb{A}, \mathbb{B}) **1st step** (polymorphisms): can be generalized [Brakensiek, Guruswami'18] using [Pippenger'02]

2nd step (systems of functional equations): makes no sense since polymorphisms can no longer be composed

3rd step (minor conditions): the same as in CSP!

Definition (MinorCond(N, \mathcal{M}))

Input: minor condition **X** with symbols of arity *N* **Answer Yes: X** is trivial (=satisfied in \mathcal{P}) **Answer No: X** not satisfied in \mathcal{M}

Theorem ([Bulín, Krokhin, Opršal'19])

Let $\mathcal{M} = \mathsf{Pol}(\mathbb{A}, \mathbb{B})$. The following computational problems are equivalent for a large enough N.

- (i) $CSP(\mathbb{A})$
- (ii) MinorCond(N, \mathcal{M})

Consequence: 3rd step **Proof:** direct, simple, known Given input of $\mathrm{CSP}(3\mathbb{NAE}_2)$, eg.

$$(\exists a, b, c, d) R(c, a, b) \land R(a, d, c)$$

transform it to a minor condition, eg.

$$f_1(x_1, x_0, x_0, x_0, x_1, x_1) = g_c(x_0, x_1)$$

$$f_1(x_0, x_1, x_0, x_1, x_0, x_1) = g_a(x_0, x_1)$$

$$f_1(x_0, x_0, x_1, x_1, x_1, x_0) = g_b(x_0, x_1)$$

$$f_2(x_1, x_0, x_0, x_0, x_1, x_1) = g_a(x_0, x_1)$$

$$f_2(x_0, x_1, x_0, x_1, x_0, x_1) = g_d(x_0, x_1)$$

$$f_2(x_0, x_0, x_1, x_1, x_1, x_0) = g_c(x_0, x_1)$$

"Yes input \rightarrow Yes input": easy "No input \rightarrow No input": for contrapositive use $y \mapsto g_y(0,1)$. Given a minor condition, e.g.

$$f(x_1, x_2, x_1, x_3) = g(x_1, x_2, x_3)$$
$$h(x_3, x_1) = g(x_1, x_2, x_3)$$

- ▶ introduce variables f_{a_1,a_2,a_3,a_4} one for each $(a_1,\ldots,a_4) \in A^4$, h_{a_1,a_2} , and g_{a_1,a_2,a_3} .
- ▶ so evaluation of f's \leftrightarrow function f : $A^4 \rightarrow A$
- express that f, g, h are polymorphisms (by constraints)
- merge variables to enforce the equations

Remarks

CSP

- fix a finite relational structure
- restrict to primitive positive (pp-) sentences
- **Another problem:** Given a structure \mathfrak{A} and 1st order sentence ϕ (different language), decide whether symbols in ϕ can be interpreted in \mathfrak{A} so that \mathfrak{A} satisfies ϕ .

Our case: solving functional equations over an algebra

- fix a finite algebraic structure
- restrict to universally quantified conjunction of (special) equations
- take a promise version

Borderline for CSPs

Theorem

▶ ...

. . .

Let $\mathcal{M} = \mathsf{Pol}(\mathbb{A}, \mathbb{A})$. The following are equivalent.

- *M* satisfies some nontrivial minor condition
- There is no mapping $\xi : \mathcal{M} \to \mathbb{N}$
 - if f is of arity n, then ξ(f) ∈ {1,2,...,n}
 (think: an important coordinate of f)
 - ξ behaves nicely with minors
- \mathcal{M} satisfies, for some $n \geq 2$, the minor condition

$$c(x_1, x_2, \ldots, x_n) = c(x_2, \ldots, x_n, x_1)$$

[Barto, Kozik'12]

... zillion other characterizations ...

Theorem

Let $\mathcal{M} = \mathsf{Pol}(\mathbb{A}, \mathbb{B})$. If there exists $C \in \mathbb{N}$ and a mapping $\xi : \mathcal{M} \to P(\mathbb{N})$ such that

- if f is of arity n, then ξ(f) ⊆ {1,2,...,n}, |ξ(f)| ≤ C
 (think: a small set of important coordinates of f)
- ξ behaves nicely with minors

Then $PCSP(\mathbb{A}, \mathbb{B})$ is NP-complete.

Summary

CSP

- problem about minor conditions
- Complexity captured by a piece of information about polymorphisms

PCSP is cool and fun

- Basics work but a lot is open: eg. borderlines, special cases
- More algorithms needed
- More interesting hardness proofs (PCP, topology)
- Q: What else can we forget about polymorphisms?

Reading

- Barto, Krokhin, Willard: Polymorphisms, and How to Use Them
- other surveys in this Dagstuhl Follow-Up volume
- Barto, Bulín, Krokhin, Opršal: Algebraic Approach to Promise Constraint Satisfaction

CoolFunc: computational problems \longrightarrow objects capturing symmetry kernel of CoolFunc = polynomial time reducibility

Thank you!