Algebraic Theory of
Promise Constraint Satisfaction Problems,
First Steps

Libor Barto

Department of Algebra, Charles University, Prague

FCT 2019, Copenhagen, 14 August

CoCoSym: Symmetry in Computational Complexity

,-rc This project has received funding from the European Research Council
(ERC) under the European Unions Horizon 2020 research and
search Council  iNNOVation programme (grant agreement No 771005)




Outline 2/36

Constraint Satisfaction Problems (CSPs) over finite templates

v

class of computational problems

v

goal: determine the computational complexity

v

3 step development of algebraic theory

v

goal scored (two complexity classes: P, NP-complete)

Promise Constraint Satisfaction Problems (PCSPs)
» larger class of computational problems, goal not scored

> richer on both algorithmic and hardness side

» algorithms need to be infinitary
» hardness requires heavy tools

v

algebraic theory for CSP generalizes

v

4th step: drastic simplification of the basics

Barto, Bulin, Krokhin, Opr3al: Algebraic approach to promise constraint satisfaction



Ideal world vs reality 3/36

CoolFunc: computational problems — objects capturing symmetry
kernel of CoolFunc = polynomial time reducibility

undecidable

computational

symmetries
problems

(P)CSPs over fixed finite templates
> tiny portion of problems on the left
> kernel C polynomial time reducibility



CSP



Definition

Fix A= (AR, S,...) relational structure

Definition (CSP(A))

Input: pp-sentence ¢, eg. (Ixy3xz ... )R(x1,x3) A S(x5,x2) A ...
Answer Yes: ¢ satisfied in A
Answer No: ¢ not satisfied in A

Search version: Find a satisfying assignment.
Search looks harder, but it's not [Bulatov, Jeavons, Krokhin'05]

Fact: Always in NP.



Example 1: 3-coloring 6/36

K3 = (A; R) where
» A = {lilac, mauve, cyclamen}

» R = (binary) inequality relation on A

Input of CSP(K3) is, e.g.
(Ix13xz ... Ixg) R(x1, x2)AR(x1, x3) AR(x1, Xa) AR(x2, x3) AR(x2, Xa)
Viewpoint

> variables = vertices

» clauses (constraints) = edges

CSP(K3) is the 3-coloring problem for graphs
Fact: It is NP-hard (7-coloring NP-hard, 2-coloring in P)



Examples 2: hypergraph coloring problems 7/36

> 3NAE, = ({0,1}; 3NAE;) where
3NAE, = all but {(0,0,0),(1,1,1)}

CSP(3NAE;) = positive not-all-equal 3-SAT
= 2-coloring problem for 3-uniform hypergraphs

» 3NAE, = ({0,1,2,3};3NAE,), where 3NAE, still ternary
CSP(3NAE,) = 4-coloring problem for 3-uniform hypergraphs

» 1IN3 = ({0, 1}; 1in3) where
1in3 = {(0,0,1),(0,1,0),(1,0,0)}
CSP(1IN3) = positive 1-in-3 SAT

Fact: All NP-hard



Example 3: systems of linear equations 8/36

3LINs = (Zs; Loooo, Looo1s - - - » Lasaa) where e.g.
Lioza = {(x,y,2) € Z3 : Ix + 2y + 3z = 4}

(note: relations are affine subspaces of Z3)
CSP(3LINs) = solving systems of linear equations in Zs

Fact: In P



CSP and symmetry



Polymorphisms 10/36

polymorphism of A: mapping f : A" — A
compatible with every relation

compatible with R: f applied component-wise to tuples in R
is a tuple in R

Example: f(xi,...,xa) =2x1+3x +3x3+3xq f:7Z¢ — Zs
is compatible with each L,pcq
because f(vi,...,vs) is an affine combination of these
vectors (as2+3+3+3=1)
and L;peq is an affine subspace

Pol(A): the set of all polymorphisms (it is a “clone”)
= set of (multivariable) symmetries of A



Algebraic theory, 1st step 11/36

Jeavons'98: On the algebraic structure of combinatorial problems

Theorem
Complexity of CSP(A) is determined by Pol(A):
If Pol(A) C Pol(B) then CSP(B) reduces to CSP(A).

Proof.

If Pol(A) C Pol(B), then relations in B can be defined from
relations in A by a pp-formula.

[Geiger'69, Bondaréuk, Kaluznin, Kotov, Romov'69]
This gives a computational reduction of CSP(B) to CSP(A). [

So: CSP(3LIN5) is in P because 3LINs has a lot of polymorphs
CSP(1IN3) is NP-complete because 1IN3 has few



Systems of functional equations 12/36

System of functional equations is, e.g.

f(g(x,y),z) = g(x, h(y,z))
m(y,x,x) =m(y,y,y)
m(x,x,y) =m(y,y,y)

Satisfied in M, where M is a set of functions:
symbols can be interpreted in M so that
each equality is (universally) satisfied

Example: The above system is satisfied in Pol(3LIN5):

> take f(x,y) = g(x,y) = h(x,y) = x
(note: projections are always polymoprhisms)

> take m(x,y,z) =x—y+z



Algebraic theory, 2nd step 13/36

Bulatov, Jeavons, Krokhin'05: Classifying the complexity of constraints using finite
algebras + Bodirsky’08: PhD thesis

Theorem
Complexity of CSP(A) is determined by
systems of functional equations satisfied in Pol(A):

If each system satisfied in Pol(A) is satisfied in Pol(B),
then CSP(B) reduces to CSP(A).

Previous theorem, pp-definitions — pp-interpretations,
the HSP theorem [Birkhoff’35] Ol

So: CSP(3LIN5) is in P because
Pol(3LINs) satisfies strong systems of functional equations.



Algebraic theory, 3rd step 14/36

Barto, Opr3al, Pinsker'18: The wonderland of reflections

minor condition = system of functional equations, each of the form
symbol(variables) = symbol(variables),
eg. m(y,x,x) =m(y,y,y), m(x,x,y) =m(y,y,y)

Theorem

Complexity of CSP(A) determined by
minor conditions satisfied in Pol(A):

If each minor condition satisfied in Pol(A) is satisfied in Pol(B),
then CSP(B) reduces to CSP(A).

Proof.

pp-interpretation — pp-construction,
version of the HSP theorem. []



The Three Steps (movie) 15/36

CSPs symmetries
" \)
equally
complex
fewer
harderT T symmetries

(1) polymorphisms
(2) systems of functional equations satisfied by polymorphisms

(3) minor conditions satisfied by polymorphisms

Where are the borderlines between complexity classes?
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The Three Steps (movie) 15/36
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The classification result 16/36

Minor condition is trivial:
satisfied in every Pol(A)
= satisfied in P, the set of projections on {0,1}

Corollary

If Pol(A) satisfies only trivial minor conditions,
then CSP(A) is NP-hard.

Theorem ( : )

If Pol(A) satisfies some non-trivial minor condition,
then CSP(A) is in P.



Dichotomy 17/36
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» only trivial minor conditions = NP-complete

» some nontrivial minor condition = P

Further steps?



PCSP



Relax! 19/36

CSP(A) is often NP-complete

What can we do?

1. Approximation: Try to satisfy only some fraction of the
constraints, eg.

for a satisfiable 3SAT instance,
find an assignment satisfying at least 90% of the clauses
Theorem: NP-hard [Hastad'01]

2. PCSP: Try to satisfy a relaxed version of all constraints, eg.

for a 3-colorable graph,
find a 37-coloring



Definition 20/36

Fix 2 relational structures in the same language
» A= (ARMNSA L)
» B=(B;RE,SB ...)
» there is a homomorphism A — B (eg. AC B,R* C RE,...)

Definition (PCSP(A, B))

Input: pp-sentence ¢, eg. (Ix13x2...)R(x1,x3) A S(x5,%2) A ...
Answer Yes: ¢ satisfied in A
Answer No: ¢ not satisfied in B

Search version: Find a B-satisfying assignment
given an A-satisfiable input.

(it may be a harder problem, we don't know)



Example 1: 4-coloring a 3-colorable graph 21/36

Recall: K, = ({1,2,..., n}; inequality)
PCSP(K3,Ky)
Input: a graph
Answer Yes: it is 3-colorable
Answer No: it is not 4-colorable

Search version: Find a 4-coloring of a 3-colorable graph

Fun facts:

» Theorem: it is NP-hard [Brakensiek, Guruswami'16]
(more generally PCSP(K,,, K2,_2) is NP-hard)
PCSP(K,,, Kgn_l) [Bulin, Krokhin, Opr3al’19]

PCSP(K,,,K( n )_1), n >4 [Wrochna, Zivny]
Ln/2]

6-coloring 3-colorable graph: complexity not known

v

v

v

v

Conjecture: k-coloring /-colorable graph NP-hard (k > | > 3)



Example 2: hypergraph coloring 22/36

Recall: 3NAE/ ternary not-all-equal relation on a k-element set

PCSP(3NAE,, 3NAE;37)
Input: a 3-uniform hypergraph
Answer Yes: it is 2-colorable
Answer No: it is not 137-colorable

Theorem: It is NP-hard [Dinur,Regev,Smyth’'05]
(more generally PCSP(3NAE,, 3NAE,) NP-hard
for every k > | > 2)

Proof uses
» the PCP theorem [Arora, Lund, Motwani, Sudan, Szegedy'98]
» + the Parallel Repetition Thoerem [Raz'98]

» Lovasz's theorem on Kneser's graphs [Lovasz'78]



Example 3: 1-in-3 vs not-all-equal

Recall: 1IN3 = ({0,1};{(1,0,0),(0,1,0),(0,0,1)})
PCSP(1IN3,3NAE,)

Input: a 3-uniform hypergraph

Answer Yes: there is a 2-coloring such that

exactly one vertex in each hyperedge receives 1
Answer No: it is not 2-colorable

Fact: It is in P. Algorithm for finding a 2-coloring of a Yes input:
» for each hyperedge {x,y,z} write x+y+z=1
> solve the system over Q \ {3} (it is solvable in {0,1})
» assign x — 1iff x > 1/3

Note: algorithm uses infinite domain CSP
Theorem: infinity is necessary [Barto'19]



PCSP and symmetry



Polymorphisms 25/36

polymorphism of (A, B): mapping f : A" — B
compatible with every relation-pair

compatible with (R, RE): f applied to tuples in R*
is a tuple in RE

Example: f(xy,...,xo7) = 1 iff ZX’ >3 f:{0,1}% — {0,1}
is compatible with (1in3, 3NAE2)

Pol(A,B): the set of all polymorphisms (it is a “minion”)
= set of (multivariable) symmetries of (A,B)



Algebraic theory, 3 steps

1st step (polymorphisms):
can be generalized [Brakensiek, Guruswami'18]
using [Pippenger'02]

2nd step (systems of functional equations):
makes no sense
since polymorphisms can no longer be composed

3rd step (minor conditions): the same as in CSP!



Algebraic theory, 4th step 27/36

Definition (MinorCond(N, M))

Input: minor condition X with symbols of arity N
Answer Yes: X is trivial (=satisfied in P)
Answer No: X not satisfied in M

Theorem ( )

Let M = Pol(A,B). The following computational problems are
equivalent for a large enough N.

(i) CSP(A)

(i) MinorCond(N, M)

Consequence: 3rd step
Proof: direct, simple, known



Proof 1: Reduction from CSP

Given input of CSP(3NAE;), eg.

(3a,b,c,d) R(c,a,b) AR(a,d,c)

transform it to a minor condition, eg.

f1(x1, X0, X0, X0, X1, X1) = &c(X0, X1)
fl(X()a X1, X0, X1, X07X1) = ga(X07 Xl)

fl(X()a X0, X1, X17X1)X0) = gb(XOa Xl)

fo(x1, X0, X0, X0, X1, X1) = ga(X0, X1)
f2(x0, X1, X0, X1, X0, X1) = 8d(X0, X1)
fo(x0, X0, X1, X1, X1, X0) = 8c(x0, X1)

“Yes input — Yes input”: easy
“No input — No input”: for contrapositive use y — g, (0, 1).



Proof 2: Reduction to CSP 29/36

Given a minor condition, e.g.

f(x1,x2,x1,x3) = g(x1, X2, X3)
h(X37X1) = g(X17 X27X3)

» introduce variables f3, 4, 4, 2, One for each (ay,...,as) € A%,
hal,azv and g21,22,23'

» so evaluation of f's <+ function f : A* — A

» express that f, g, h are polymorphisms (by constraints)

» merge variables to enforce the equations



Remarks



Two classes of computational problems 31/36

General problem: Given a structure 2l and 1st order sentence ¢
(the same language), decide whether 2 satisfies ¢.

CSP
» fix a finite relational structure

> restrict to primitive positive (pp-) sentences

Another problem: Given a structure 2 and 1st order sentence ¢
(different language), decide whether symbols in ¢ can be
interpreted in 2 so that 2 satisfies ¢.

Our case: solving functional equations over an algebra
» fix a finite algebraic structure

» restrict to universally quantified conjunction of (special)
equations

> take a promise version



Borderline for CSPs 32/36

Let M = Pol(A, A). The following are equivalent.
» M satisfies some nontrivial minor condition
> There is no mapping £ : M — N

» if f is of arity n, then &(f) € {1,2,...,n}
(think: an important coordinate of f)

> & behaves nicely with minors

» M satisfies, for some n > 2, the minor condition
c(x1, X2,y Xn) = (X2, -+, Xn, X1)
[Barto, Kozik’12]
>
» ... zillion other characterizations . . .



A hardness criterion for PCSPs

Theorem

Let M = Pol(A,B). If there exists C € N and a mapping
¢ : M — P(N) such that

» if f is of arity n, then {(f) C {1,2,...,n}, [¢(f)| < C
(think: a small set of important coordinates of f)

> & behaves nicely with minors
Then PCSP(A,B) is NP-complete.



Summary



Summary 35/36

CSP
» = problem about minor conditions
» Complexity captured by a piece of information about
polymorphisms
PCSP is cool and fun

» Basics work but a lot is open: eg. borderlines, special cases

v

More algorithms needed
» More interesting hardness proofs (PCP, topology)

v

Q: What else can we forget about polymorphisms?

Reading
» Barto, Krokhin, Willard: Polymorphisms, and How to Use Them
» other surveys in this Dagstuhl Follow-Up volume
» Barto, Bulin, Krokhin, Opr3al: Algebraic Approach to Promise
Constraint Satisfaction



Ideal world 36/36

CoolFunc: computational problems — objects capturing symmetry

kernel of CoolFunc = polynomial time reducibility

undecidable

computational

symmetries

problems

Thank youl!
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