
Algebraic Theory of
Promise Constraint Satisfaction Problems,

First Steps

Libor Barto

Department of Algebra, Charles University, Prague

FCT 2019, Copenhagen, 14 August

CoCoSym: Symmetry in Computational Complexity

This project has received funding from the European Research Council

(ERC) under the European Unions Horizon 2020 research and

innovation programme (grant agreement No 771005)

Outline 2/36

Constraint Satisfaction Problems (CSPs) over finite templates

I class of computational problems

I goal: determine the computational complexity

I 3 step development of algebraic theory

I goal scored (two complexity classes: P, NP-complete)

Promise Constraint Satisfaction Problems (PCSPs)

I larger class of computational problems, goal not scored
I richer on both algorithmic and hardness side

I algorithms need to be infinitary
I hardness requires heavy tools

I algebraic theory for CSP generalizes

I 4th step: drastic simplification of the basics

Barto, Buĺın, Krokhin, Opřsal: Algebraic approach to promise constraint satisfaction

Ideal world vs reality 3/36

CoolFunc: computational problems −→ objects capturing symmetry

kernel of CoolFunc = polynomial time reducibility

undecidable

PSPACE-c

NP-c

P

computational

problems
symmetries

(P)CSPs over fixed finite templates

I tiny portion of problems on the left

I kernel (polynomial time reducibility

CSP

Definition 5/36

Fix A = (A;R, S , . . .) relational structure

Definition (CSP(A))

Input: pp-sentence φ, eg. (∃x1∃x2 . . .)R(x1, x3) ∧ S(x5, x2) ∧ . . .
Answer Yes: φ satisfied in A
Answer No: φ not satisfied in A

Search version: Find a satisfying assignment.
Search looks harder, but it’s not [Bulatov, Jeavons, Krokhin’05]

Fact: Always in NP.

Example 1: 3-coloring 6/36

K3 = (A;R) where

I A = {lilac ,mauve, cyclamen}
I R = (binary) inequality relation on A

Input of CSP(K3) is, e.g.

(∃x1∃x2 . . . ∃x4)R(x1, x2)∧R(x1, x3)∧R(x1, x4)∧R(x2, x3)∧R(x2, x4)

Viewpoint

I variables = vertices

I clauses (constraints) = edges

CSP(K3) is the 3-coloring problem for graphs

Fact: It is NP-hard (7-coloring NP-hard, 2-coloring in P)

Examples 2: hypergraph coloring problems 7/36

I 3NAE2 = ({0, 1}; 3NAE2) where
3NAE2 = all but {(0, 0, 0), (1, 1, 1)}

CSP(3NAE2) = positive not-all-equal 3-SAT
= 2-coloring problem for 3-uniform hypergraphs

I 3NAE4 = ({0, 1, 2, 3}; 3NAE4), where 3NAE4 still ternary

CSP(3NAE4) = 4-coloring problem for 3-uniform hypergraphs

I 1IN3 = ({0, 1}; 1in3) where
1in3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}

CSP(1IN3) = positive 1-in-3 SAT

Fact: All NP-hard

Example 3: systems of linear equations 8/36

3LIN5 = (Z5; L0000, L0001, . . . , L4444) where e.g.

L1234 = {(x , y , z) ∈ Z3
5 : 1x + 2y + 3z = 4}

(note: relations are affine subspaces of Z3
5)

CSP(3LIN5) = solving systems of linear equations in Z5

Fact: In P

CSP and symmetry

Polymorphisms 10/36

polymorphism of A: mapping f : An → A
compatible with every relation

compatible with R: f applied component-wise to tuples in R
is a tuple in R

Example: f (x1, . . . , x4) = 2x1 + 3x2 + 3x3 + 3x4 f : Z4
5 → Z5

is compatible with each Labcd
because f (v1, . . . , v4) is an affine combination of these

vectors (as 2 + 3 + 3 + 3 = 1)
and Labcd is an affine subspace

Pol(A): the set of all polymorphisms (it is a “clone”)
= set of (multivariable) symmetries of A

Algebraic theory, 1st step 11/36

Jeavons’98: On the algebraic structure of combinatorial problems

Theorem

Complexity of CSP(A) is determined by Pol(A):

If Pol(A) ⊆ Pol(B) then CSP(B) reduces to CSP(A).

Proof.

If Pol(A) ⊆ Pol(B), then relations in B can be defined from
relations in A by a pp-formula.

[Geiger’69, Bondarčuk, Kalužnin, Kotov, Romov’69]

This gives a computational reduction of CSP(B) to CSP(A).

So: CSP(3LIN5) is in P because 3LIN5 has a lot of polymorphs
CSP(1IN3) is NP-complete because 1IN3 has few

Systems of functional equations 12/36

System of functional equations is, e.g.

f (g(x , y), z) = g(x , h(y , z))

m(y , x , x) = m(y , y , y)

m(x , x , y) = m(y , y , y)

Satisfied in M, where M is a set of functions:
symbols can be interpreted in M so that
each equality is (universally) satisfied

Example: The above system is satisfied in Pol(3LIN5):

I take f (x , y) = g(x , y) = h(x , y) = x
(note: projections are always polymoprhisms)

I take m(x , y , z) = x − y + z

Algebraic theory, 2nd step 13/36

Bulatov, Jeavons, Krokhin’05: Classifying the complexity of constraints using finite

algebras + Bodirsky’08: PhD thesis

Theorem

Complexity of CSP(A) is determined by
systems of functional equations satisfied in Pol(A):

If each system satisfied in Pol(A) is satisfied in Pol(B),
then CSP(B) reduces to CSP(A).

Proof.

Previous theorem, pp-definitions → pp-interpretations,
the HSP theorem [Birkhoff’35]

So: CSP(3LIN5) is in P because
Pol(3LIN5) satisfies strong systems of functional equations.

Algebraic theory, 3rd step 14/36

Barto, Opřsal, Pinsker’18: The wonderland of reflections

minor condition = system of functional equations, each of the form
symbol(variables) = symbol(variables),
e.g. m(y , x , x) = m(y , y , y), m(x , x , y) = m(y , y , y)

Theorem

Complexity of CSP(A) determined by
minor conditions satisfied in Pol(A):

If each minor condition satisfied in Pol(A) is satisfied in Pol(B),
then CSP(B) reduces to CSP(A).

Proof.

pp-interpretation → pp-construction,
version of the HSP theorem.

The Three Steps (movie) 15/36

harder
fewer
symmetries

3SAT

3COL

3LIN
2SAT

3SAT

3COL

3LIN
2SAT

CSPs symmetries

equally
complex

(1) polymorphisms

(2) systems of functional equations satisfied by polymorphisms

(3) minor conditions satisfied by polymorphisms

Where are the borderlines between complexity classes?

The Three Steps (movie) 15/36

harder
fewer
symmetries

3SAT

3COL

3LIN
2SAT

3SAT

3COL

3LIN
2SAT

CSPs symmetries

equally
complex

(1) polymorphisms

(2) systems of functional equations satisfied by polymorphisms

(3) minor conditions satisfied by polymorphisms

Where are the borderlines between complexity classes?

The Three Steps (movie) 15/36

harder
fewer
symmetries

3SAT

3COL

3LIN
2SAT

3SAT

3COL

3LIN
2SAT

CSPs symmetries

equally
complex

(1) polymorphisms

(2) systems of functional equations satisfied by polymorphisms

(3) minor conditions satisfied by polymorphisms

Where are the borderlines between complexity classes?

The Three Steps (movie) 15/36

harder
fewer
symmetries

3SAT

3COL

3LIN
2SAT

3SAT

3COL

3LIN
2SAT

CSPs symmetries

equally
complex

(1) polymorphisms

(2) systems of functional equations satisfied by polymorphisms

(3) minor conditions satisfied by polymorphisms

Where are the borderlines between complexity classes?

The Three Steps (movie) 15/36

harder
fewer
symmetries

3SAT

3COL

3LIN
2SAT

3SAT

3COL

3LIN
2SAT

CSPs symmetries

equally
complex

(1) polymorphisms

(2) systems of functional equations satisfied by polymorphisms

(3) minor conditions satisfied by polymorphisms

Where are the borderlines between complexity classes?

The Three Steps (movie) 15/36

harder
fewer
symmetries

3SAT

3COL

3LIN
2SAT

3SAT

3COL

3LIN
2SAT

CSPs symmetries

equally
complex

(1) polymorphisms

(2) systems of functional equations satisfied by polymorphisms

(3) minor conditions satisfied by polymorphisms

Where are the borderlines between complexity classes?

The Three Steps (movie) 15/36

harder
fewer
symmetries

3SAT

3COL

3LIN
2SAT

3SAT

3COL

3LIN
2SAT

CSPs symmetries

equally
complex

(1) polymorphisms

(2) systems of functional equations satisfied by polymorphisms

(3) minor conditions satisfied by polymorphisms

Where are the borderlines between complexity classes?

The Three Steps (movie) 15/36

harder
fewer
symmetries

3SAT

3COL

3LIN
2SAT

3SAT

3COL

3LIN
2SAT

CSPs symmetries

equally
complex

(1) polymorphisms

(2) systems of functional equations satisfied by polymorphisms

(3) minor conditions satisfied by polymorphisms

Where are the borderlines between complexity classes?

The classification result 16/36

Minor condition is trivial:
satisfied in every Pol(A)
= satisfied in P, the set of projections on {0, 1}

Corollary

If Pol(A) satisfies only trivial minor conditions,
then CSP(A) is NP-hard.

Theorem ([Bulatov’17], [Zhuk’17])

If Pol(A) satisfies some non-trivial minor condition,
then CSP(A) is in P.

Dichotomy 17/36

harder
fewer
symmetries

3SAT

3COL

3LIN
2SAT

3SAT

3COL

3LIN
2SAT

CSPs symmetries

equally
complex

NP-c

P

I only trivial minor conditions ⇒ NP-complete

I some nontrivial minor condition ⇒ P

Further steps?

PCSP

Relax! 19/36

CSP(A) is often NP-complete

What can we do?

1. Approximation: Try to satisfy only some fraction of the
constraints, eg.

for a satisfiable 3SAT instance,
find an assignment satisfying at least 90% of the clauses

Theorem: NP-hard [Håstad’01]

2. PCSP: Try to satisfy a relaxed version of all constraints, eg.

for a 3-colorable graph,
find a 37-coloring

Definition 20/36

Fix 2 relational structures in the same language

I A = (A;RA,SA, . . .)

I B = (B;RB,SB, . . .)

I there is a homomorphism A→ B (eg. A ⊆ B,RA ⊆ RB, . . .)

Definition (PCSP(A,B))

Input: pp-sentence φ, eg. (∃x1∃x2 . . .)R(x1, x3) ∧ S(x5, x2) ∧ . . .
Answer Yes: φ satisfied in A
Answer No: φ not satisfied in B

Search version: Find a B-satisfying assignment
given an A-satisfiable input.

(it may be a harder problem, we don’t know)

Example 1: 4-coloring a 3-colorable graph 21/36

Recall: Kn = ({1, 2, . . . , n}; inequality)

PCSP(K3,K4)
Input: a graph
Answer Yes: it is 3-colorable
Answer No: it is not 4-colorable

Search version: Find a 4-coloring of a 3-colorable graph

Fun facts:

I Theorem: it is NP-hard [Brakensiek, Guruswami’16]

(more generally PCSP(Kn,K2n−2) is NP-hard)

I PCSP(Kn,K2n−1) [Buĺın, Krokhin, Opřsal’19]

I PCSP(Kn,K(n
bn/2c)−1), n ≥ 4 [Wrochna, Živný]

I 6-coloring 3-colorable graph: complexity not known

I Conjecture: k-coloring l-colorable graph NP-hard (k ≥ l ≥ 3)

Example 2: hypergraph coloring 22/36

Recall: 3NAEk ternary not-all-equal relation on a k-element set

PCSP(3NAE2, 3NAE137)
Input: a 3-uniform hypergraph
Answer Yes: it is 2-colorable
Answer No: it is not 137-colorable

Theorem: It is NP-hard [Dinur,Regev,Smyth’05]

(more generally PCSP(3NAEl , 3NAEk) NP-hard
for every k ≥ l ≥ 2)

Proof uses

I the PCP theorem [Arora, Lund, Motwani, Sudan, Szegedy’98]

I + the Parallel Repetition Thoerem [Raz’98]

I Lovász’s theorem on Kneser’s graphs [Lovász’78]

Example 3: 1-in-3 vs not-all-equal 23/36

Recall: 1IN3 = ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)})

PCSP(1IN3, 3NAE2)
Input: a 3-uniform hypergraph
Answer Yes: there is a 2-coloring such that

exactly one vertex in each hyperedge receives 1
Answer No: it is not 2-colorable

Fact: It is in P. Algorithm for finding a 2-coloring of a Yes input:

I for each hyperedge {x , y , z} write x + y + z = 1

I solve the system over Q \ {1
3} (it is solvable in {0, 1})

I assign x 7→ 1 iff x > 1/3

Note: algorithm uses infinite domain CSP
Theorem: infinity is necessary [Barto’19]

PCSP and symmetry

Polymorphisms 25/36

polymorphism of (A,B): mapping f : An → B
compatible with every relation-pair

compatible with (RA,RB): f applied to tuples in RA

is a tuple in RB

Example: f (x1, . . . , x97) = 1 iff
∑

xi
97 > 1

3 f : {0, 1}97 → {0, 1}
is compatible with (1in3, 3NAE2)

Pol(A,B): the set of all polymorphisms (it is a “minion”)
= set of (multivariable) symmetries of (A,B)

Algebraic theory, 3 steps 26/36

1st step (polymorphisms):
can be generalized [Brakensiek, Guruswami’18]

using [Pippenger’02]

2nd step (systems of functional equations):
makes no sense
since polymorphisms can no longer be composed

3rd step (minor conditions): the same as in CSP!

Algebraic theory, 4th step 27/36

Definition (MinorCond(N ,M))

Input: minor condition X with symbols of arity N
Answer Yes: X is trivial (=satisfied in P)
Answer No: X not satisfied in M

Theorem ([Buĺın, Krokhin, Opřsal’19])

Let M = Pol(A,B). The following computational problems are
equivalent for a large enough N.

(i) CSP(A)

(ii) MinorCond(N,M)

Consequence: 3rd step
Proof: direct, simple, known

Proof 1: Reduction from CSP 28/36

Given input of CSP(3NAE2), eg.

(∃a, b, c , d) R(c , a, b) ∧ R(a, d , c)

transform it to a minor condition, eg.

f1(x1, x0, x0, x0, x1, x1) = gc(x0, x1)

f1(x0, x1, x0, x1, x0, x1) = ga(x0, x1)

f1(x0, x0, x1, x1, x1, x0) = gb(x0, x1)

f2(x1, x0, x0, x0, x1, x1) = ga(x0, x1)

f2(x0, x1, x0, x1, x0, x1) = gd(x0, x1)

f2(x0, x0, x1, x1, x1, x0) = gc(x0, x1)

“Yes input → Yes input”: easy
“No input → No input”: for contrapositive use y 7→ gy (0, 1).

Proof 2: Reduction to CSP 29/36

Given a minor condition, e.g.

f (x1, x2, x1, x3) = g(x1, x2, x3)

h(x3, x1) = g(x1, x2, x3)

I introduce variables fa1,a2,a3,a4 one for each (a1, . . . , a4) ∈ A4,
ha1,a2 , and ga1,a2,a3 .

I so evaluation of f ’s ↔ function f : A4 → A

I express that f , g , h are polymorphisms (by constraints)

I merge variables to enforce the equations

Remarks

Two classes of computational problems 31/36

General problem: Given a structure A and 1st order sentence φ
(the same language), decide whether A satisfies φ.

CSP

I fix a finite relational structure

I restrict to primitive positive (pp-) sentences

Another problem: Given a structure A and 1st order sentence φ
(different language), decide whether symbols in φ can be
interpreted in A so that A satisfies φ.

Our case: solving functional equations over an algebra

I fix a finite algebraic structure

I restrict to universally quantified conjunction of (special)
equations

I take a promise version

Borderline for CSPs 32/36

Theorem

Let M = Pol(A,A). The following are equivalent.

I M satisfies some nontrivial minor condition
I There is no mapping ξ :M→ N

I if f is of arity n, then ξ(f) ∈ {1, 2, . . . , n}
(think: an important coordinate of f)

I ξ behaves nicely with minors

I M satisfies, for some n ≥ 2, the minor condition

c(x1, x2, . . . , xn) = c(x2, . . . , xn, x1)

[Barto, Kozik’12]

I . . .

I . . . zillion other characterizations . . .

I . . .

A hardness criterion for PCSPs 33/36

Theorem

Let M = Pol(A,B). If there exists C ∈ N and a mapping
ξ :M→ P(N) such that

I if f is of arity n, then ξ(f) ⊆ {1, 2, . . . , n}, |ξ(f)| ≤ C
(think: a small set of important coordinates of f)

I ξ behaves nicely with minors

Then PCSP(A,B) is NP-complete.

Summary

Summary 35/36

CSP

I = problem about minor conditions

I Complexity captured by a piece of information about
polymorphisms

PCSP is cool and fun

I Basics work but a lot is open: eg. borderlines, special cases

I More algorithms needed

I More interesting hardness proofs (PCP, topology)

I Q: What else can we forget about polymorphisms?

Reading
I Barto, Krokhin, Willard: Polymorphisms, and How to Use Them
I other surveys in this Dagstuhl Follow-Up volume
I Barto, Buĺın, Krokhin, Opřsal: Algebraic Approach to Promise

Constraint Satisfaction

Ideal world 36/36

CoolFunc: computational problems −→ objects capturing symmetry

kernel of CoolFunc = polynomial time reducibility

undecidable

PSPACE-c

NP-c

P

computational

problems
symmetries

Thank you!

	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:
	hours:
	separatortime: :
	minutes:

