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Constraint Satisfaction Problem (CSP)

Definition (Instance of the CSP)

Instance of the CSP consists of:

I V . . . a set of variables

I A . . . a domain
I list of constraints of the form R(x1, . . . , xk), where

I x1, . . . , xk ∈ V
I R is a k-ary relation on A (i.e. R ⊆ Ak) constraint relation

An assignment f : V → A satisfies R(x1, . . . , xk), if
(f (x1), . . . , f (xk)) ∈ R

f : V → A is a solution if it satisfies all the constraints
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Some questions we can ask

I Decision CSP: Does a solution exist?

I Max-CSP: Find a map satisfying maximum number of
constraints

I Approx. Max-CSP: Find a map satisfying at least
0.7× Optimum constraints

Definition

An algorithm (α, β)-approximates CSP (0 ≤ α ≤ β ≤ 1) if it
returns an assignment satisfying α-fraction of the constraints
given a β-satisfiable instance.

Example

(0.7β, β)-approximating algorithm returns a map satisfying at least
0.7× Optimum constraints.
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Fixed constraint language

Definition

A constraint language Γ is a finite set of relations on a finite set A.
An instance of CSP(Γ) is a CSP instance such that every
constraint relation is from Γ.

Given Γ:

I Is decision CSP(Γ) in P? = Is (1, 1)-approximation in P?

I For which α, β is (α, β)-approximation of CSP(Γ) in P

I In between: Is robust approximation of CSP(Γ) in P?
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Between decision and approximation

Definition (Zwick’98)

CSP(Γ) admits a robust algorithm, if there is a polynomial time
algorithm which
(1− g(ε), 1− ε)-approximates CSP(Γ) (for every ε),
where g(ε)→ 0 when ε→ 0, and g(0) = 0.

Motivation: Instances close to satisfiable (e.g. corrupted by
noise), we want to find an “almost solution”.

Techniques: Linear programming (LP), Semidefinite
programming (SDP)

Questions:

I For which Γ does CSP(Γ) admit a robust algorithm?

I What is (asymptotically) the best dependence of g on ε?
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Positive results

I HORN-k-SAT
I (1− O(1/(log(1/ε))), 1− ε) LP Zwick’98

I HORN-2-SAT
I (1− 3ε, 1− ε) Khanna, Sudan, Trevisan, Williamson’00
I (1− 2ε, 1− ε) Guruswami, Zhou’11

I 2-SAT
I (1− O(ε1/3), 1− ε) SDP Zwick’98
I (1− O(ε1/2), 1− ε) Charikar, 2 × Makarychev’09
I the same bound for CUT Goemans, Williamson’95

I Unique-Games(q) - generalization of CUT

I (1− O(ε1/5 log1/2(1/ε)), 1− ε) Khot’02
I (1− O(ε1/2), 1− ε) Charikar, 2 × Makarychev’06

Essentially optimal assuming UGC Khot’02, Khot, Kindler,
Mossel, O’Donnell’07, Guruswami, Zhou’11
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Negative results

I If the decision CSP(Γ) is NP-complete, then CSP(Γ) has no
robust algorithm

I PCP theorem for |A| = 2 Khanna,Sudan,Trevisan,
Williamson’00

I for larger A Jonsson, Krokhin, Kuivinen’09

I LIN-p has no robust algorithm Hastad’01

What distinguishes between
LIN-p, 3-SAT and 2-SAT, HORN-SAT?
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Decision CSPs and bounded width

I Pol Γ = clone of polymorphisms (operations compatible with
all relations in Γ)

I Complexity of the decision problem for CSP(Γ) controlled by
HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00

I CSP(Γ) has bounded width iff it can be solved by local
consistency checking

I CSP(Γ) has bounded width iff Γ “cannot encode linear
equations”, equivalently, HSP(Pol Γ) does not contain a
reduct of a module (for core Γ) Barto, Kozik’09 Bulatov’09

I Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width

Conjecture (Guruswami-Zhou 11)

CSP(Γ) admits a robust algorithm iff CSP(Γ) has bounded width.
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Universal algebra attacks robust approximation

I robust approximation also (+-) controlled by polymorphisms
Dalmau, Krokhin’11

I ⇒ one direction of the Guruswami-Zhou conjecture is true

I Conjecture confirmed for width 1 CSPs
Kun, O’Donell, Tamaki, Yoshida, Zhou’11,
Dalmau, Krokhin’11.
width 1 iff linear programming relaxation can be used.

I Conjecture confirmed Barto, Kozik’11. Using a
semidefinite programming relaxation and Prague strategies.

I Randomized (1− O(log log(1/ε)/ log(1/ε)), 1− ε)-approx
algorithm

I Deterministic (1− O(log log(1/ε)/
√

log(1/ε)), 1− ε)-approx
algorithm

I Krokhin’11: even the quantitative dependence on ε is +-
controlled by polymorphisms.
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SDP relaxation for general CSP

Notation and simplifying assumptions:

I A: domain

I Γ contains only binary relations, CSP(Γ) has bounded width

I V : variables, I: instance, C: constraints

I ∀ {x , y} ⊆ V , x 6= y there is at most one constraint
Rxy (x , y) ∈ C

I Opt(I) = 1− ε: optimal fraction of satisfied constraints

I We want to find an assignment satisfying almost all
constraints)

Canonical SDP relaxation is strong enough to get optimal
approximation constants (assuming UGC) Raghavendra’08
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Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.
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I xayb is the weight (nonnegative) of the pair (a, b) between
variables x , y

I Sum of all weights (between x , y) is 1 from (SDP3)

I We are trying to give small weights to pairs outside Rxy
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I ⇒ for every y ,
||xa||2 = sum of weights of edges between x and y via a
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Strategy

I We try to produce a good assignment from the SDP output
vectors.

I In particular, is it true that
if SDPOpt(I) = 1 then I has a solution?
This was suggested by Guruswami as the first step to attack
the conjecture

I So, assume SDPOpt(I) = 1.

I It follows that xayb = 0 for every (a, b) 6∈ Rxy

I Define Pxy = {(a, b) ∈ A2 : xayb > 0}.
Replace Rxy with Pxy .
If the new instance has a solution then the old one has a
solution.

I Define Px = {a ∈ A : xa 6= o}.
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Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}

I For B ⊆ Px , we have yB+(x ,y) = xB + w,
where wxB = 0, and w = o iff B = B + (x , y)− (x , y).

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B
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Random facts about Px , Pxy - summary

Definition

The new instance with constraints Pxy (x , y) and subsets
Px ⊆ A, x ∈ V satisfies
(for every x , y ∈ V , B ⊆ Px and patterns p, q from x to x)

(P1) It is 1-minimal (Pxy is a subdirect subset of Px × Py )

(P2) If B + p = B then B − p = B

(P3) If B + p + q = B then B + p = B

I Slightly weaker notion than Prague strategy

I Every Prague strategy has a solution (if Pxy ’s are invariant
under Pol Γ...) BK

I Every weak Prague strategy has a solution BK
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General case

I SDPOpt(Γ) = 1− ε, ε small

I Choose δ (randomly with some distribution)

I Put Pxy = {(a, b) : xaxb > δ}
I Put Px = {a : ||xa||2 > δ}
I If δ not too tiny

then for almost all x , y we have Pxy ⊆ Rxy .

I Give up other constraints

I Now we can work with Pxy instead of Rxy
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Enforcing (P1)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

we want (P1) Pxy is a subdirect subset of Px × Py

I Give up Pxy for which some xayb is in (δ − enough, δ)
δ is chosen so that we don’t delete too much

I (P1) Pxy ⊆ Px × Py :
If xayb > δ then ||xa||2 = xayB ≥ xayb > δ

I (P1) Subdirectness: If ||xa||2 = xayB > δ then
xayb ≥ δ/|A|. Then xayB ≥ δ (as δ/|A| > δ − enough)

Important property: yB+(x ,y) is

I either almost (� δ) the same as xB

(in case that B + (x , y , x) = B),

I or significantly (> δ) longer than xB (otherwise)
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Enforcing (P2)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

We want (P2) If B + p = B then B − p = B

I Divide the unit ball into layers
(thickness about δ, randomly shifted)

I Give up Pxy if there are almost the same vectors xB , yB+(x ,y)

in different layers.

Recall that yB+(x ,y) is

I either almost the same as xB (in case that B + (x , y , x) = B),

I or significantly longer (> δ) than xB ⇒ vector jumps to
higher layer

This guarantees (P2)

(note: so far we only used lengths ⇒ can be done for LP
relaxation)
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Enforcing (P3)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

(P3) If B + p + q = B then B + p = B

I Choose sufficiently many hyperplanes (randomly)

(x) Give up variables x for which some pair xB , xC is not cut

(y) Give up constraints Pxy for which there are almost the same
vectors xB , yB+(x ,y) which are cut

I This guarantees (P3)

I Remark: Different number of hyperplanes is used for different
layers otherwise (x) or (y) would delete too much

Now we have a Prague instance. Algebraic closure has a solution
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Final remarks

I Is the quantitative dependence optimal?

I How to improve derandomization to match the randomized
version?

I What can we say about the quantitative dependence on ε in
general?

I Guess: NU ⇒ polynomial loss, or SD(∧) ⇒ polynomial loss
I Candidates for hardness: 2-semilattices?

I Explore further SDP,LP ↔ consistency notions

I Thank you!
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