
Robust satisfiability of CSPs

Libor Barto (Charles University in Prague)

joint work with Marcin Kozik (Jagiellonian University)

Dagstuhl, November 4, 2012

Constraint Satisfaction Problem (CSP)

Definition (Instance of the CSP)

Instance of the CSP consists of:

I V . . . a set of variables

I A . . . a domain
I list of constraints of the form R(x1, . . . , xk), where

I x1, . . . , xk ∈ V
I R is a k-ary relation on A (i.e. R ⊆ Ak) constraint relation

An assignment f : V → A satisfies R(x1, . . . , xk), if
(f (x1), . . . , f (xk)) ∈ R

f : V → A is a solution if it satisfies all the constraints

Constraint Satisfaction Problem (CSP)

Definition (Instance of the CSP)

Instance of the CSP consists of:

I V . . . a set of variables

I A . . . a domain
I list of constraints of the form R(x1, . . . , xk), where

I x1, . . . , xk ∈ V
I R is a k-ary relation on A (i.e. R ⊆ Ak) constraint relation

An assignment f : V → A satisfies R(x1, . . . , xk), if
(f (x1), . . . , f (xk)) ∈ R

f : V → A is a solution if it satisfies all the constraints

Some questions we can ask

I Decision CSP: Does a solution exist?

I Max-CSP: Find a map satisfying maximum number of
constraints

I Approx. Max-CSP: Find a map satisfying at least
0.7× Optimum constraints

Definition

An algorithm (α, β)-approximates CSP (0 ≤ α ≤ β ≤ 1) if it
returns an assignment satisfying α-fraction of the constraints
given a β-satisfiable instance.

Example

(0.7β, β)-approximating algorithm returns a map satisfying at least
0.7× Optimum constraints.

Some questions we can ask

I Decision CSP: Does a solution exist?

I Max-CSP: Find a map satisfying maximum number of
constraints

I Approx. Max-CSP: Find a map satisfying at least
0.7× Optimum constraints

Definition

An algorithm (α, β)-approximates CSP (0 ≤ α ≤ β ≤ 1) if it
returns an assignment satisfying α-fraction of the constraints
given a β-satisfiable instance.

Example

(0.7β, β)-approximating algorithm returns a map satisfying at least
0.7× Optimum constraints.

Some questions we can ask

I Decision CSP: Does a solution exist?

I Max-CSP: Find a map satisfying maximum number of
constraints

I Approx. Max-CSP: Find a map satisfying at least
0.7× Optimum constraints

Definition

An algorithm (α, β)-approximates CSP (0 ≤ α ≤ β ≤ 1) if it
returns an assignment satisfying α-fraction of the constraints
given a β-satisfiable instance.

Example

(0.7β, β)-approximating algorithm returns a map satisfying at least
0.7× Optimum constraints.

Fixed constraint language

Definition

A constraint language Γ is a finite set of relations on a finite set A.
An instance of CSP(Γ) is a CSP instance such that every
constraint relation is from Γ.

Given Γ:

I Is decision CSP(Γ) in P? = Is (1, 1)-approximation in P?

I For which α, β is (α, β)-approximation of CSP(Γ) in P

I In between: Is robust approximation of CSP(Γ) in P?

Fixed constraint language

Definition

A constraint language Γ is a finite set of relations on a finite set A.
An instance of CSP(Γ) is a CSP instance such that every
constraint relation is from Γ.

Given Γ:

I Is decision CSP(Γ) in P? = Is (1, 1)-approximation in P?

I For which α, β is (α, β)-approximation of CSP(Γ) in P

I In between: Is robust approximation of CSP(Γ) in P?

Between decision and approximation

Definition (Zwick’98)

CSP(Γ) admits a robust algorithm, if there is a polynomial time
algorithm which
(1− g(ε), 1− ε)-approximates CSP(Γ) (for every ε),
where g(ε)→ 0 when ε→ 0, and g(0) = 0.

Motivation: Instances close to satisfiable (e.g. corrupted by
noise), we want to find an “almost solution”.

Techniques: Linear programming (LP), Semidefinite
programming (SDP)

Questions:

I For which Γ does CSP(Γ) admit a robust algorithm?

I What is (asymptotically) the best dependence of g on ε?

Between decision and approximation

Definition (Zwick’98)

CSP(Γ) admits a robust algorithm, if there is a polynomial time
algorithm which
(1− g(ε), 1− ε)-approximates CSP(Γ) (for every ε),
where g(ε)→ 0 when ε→ 0, and g(0) = 0.

Motivation: Instances close to satisfiable (e.g. corrupted by
noise), we want to find an “almost solution”.

Techniques: Linear programming (LP), Semidefinite
programming (SDP)

Questions:

I For which Γ does CSP(Γ) admit a robust algorithm?

I What is (asymptotically) the best dependence of g on ε?

Between decision and approximation

Definition (Zwick’98)

CSP(Γ) admits a robust algorithm, if there is a polynomial time
algorithm which
(1− g(ε), 1− ε)-approximates CSP(Γ) (for every ε),
where g(ε)→ 0 when ε→ 0, and g(0) = 0.

Motivation: Instances close to satisfiable (e.g. corrupted by
noise), we want to find an “almost solution”.

Techniques: Linear programming (LP), Semidefinite
programming (SDP)

Questions:

I For which Γ does CSP(Γ) admit a robust algorithm?

I What is (asymptotically) the best dependence of g on ε?

Between decision and approximation

Definition (Zwick’98)

CSP(Γ) admits a robust algorithm, if there is a polynomial time
algorithm which
(1− g(ε), 1− ε)-approximates CSP(Γ) (for every ε),
where g(ε)→ 0 when ε→ 0, and g(0) = 0.

Motivation: Instances close to satisfiable (e.g. corrupted by
noise), we want to find an “almost solution”.

Techniques: Linear programming (LP), Semidefinite
programming (SDP)

Questions:

I For which Γ does CSP(Γ) admit a robust algorithm?

I What is (asymptotically) the best dependence of g on ε?

Positive results

I HORN-k-SAT
I (1− O(1/(log(1/ε))), 1− ε) LP Zwick’98

I HORN-2-SAT
I (1− 3ε, 1− ε) Khanna, Sudan, Trevisan, Williamson’00
I (1− 2ε, 1− ε) Guruswami, Zhou’11

I 2-SAT
I (1− O(ε1/3), 1− ε) SDP Zwick’98
I (1− O(ε1/2), 1− ε) Charikar, 2 × Makarychev’09
I the same bound for CUT Goemans, Williamson’95

I Unique-Games(q) - generalization of CUT

I (1− O(ε1/5 log1/2(1/ε)), 1− ε) Khot’02
I (1− O(ε1/2), 1− ε) Charikar, 2 × Makarychev’06

Essentially optimal assuming UGC Khot’02, Khot, Kindler,
Mossel, O’Donnell’07, Guruswami, Zhou’11

Positive results

I HORN-k-SAT
I (1− O(1/(log(1/ε))), 1− ε) LP Zwick’98

I HORN-2-SAT
I (1− 3ε, 1− ε) Khanna, Sudan, Trevisan, Williamson’00
I (1− 2ε, 1− ε) Guruswami, Zhou’11

I 2-SAT
I (1− O(ε1/3), 1− ε) SDP Zwick’98
I (1− O(ε1/2), 1− ε) Charikar, 2 × Makarychev’09
I the same bound for CUT Goemans, Williamson’95

I Unique-Games(q) - generalization of CUT

I (1− O(ε1/5 log1/2(1/ε)), 1− ε) Khot’02
I (1− O(ε1/2), 1− ε) Charikar, 2 × Makarychev’06

Essentially optimal assuming UGC Khot’02, Khot, Kindler,
Mossel, O’Donnell’07, Guruswami, Zhou’11

Negative results

I If the decision CSP(Γ) is NP-complete, then CSP(Γ) has no
robust algorithm

I PCP theorem for |A| = 2 Khanna,Sudan,Trevisan,
Williamson’00

I for larger A Jonsson, Krokhin, Kuivinen’09

I LIN-p has no robust algorithm Hastad’01

What distinguishes between
LIN-p, 3-SAT and 2-SAT, HORN-SAT?

Negative results

I If the decision CSP(Γ) is NP-complete, then CSP(Γ) has no
robust algorithm

I PCP theorem for |A| = 2 Khanna,Sudan,Trevisan,
Williamson’00

I for larger A Jonsson, Krokhin, Kuivinen’09

I LIN-p has no robust algorithm Hastad’01

What distinguishes between
LIN-p, 3-SAT and 2-SAT, HORN-SAT?

Negative results

I If the decision CSP(Γ) is NP-complete, then CSP(Γ) has no
robust algorithm

I PCP theorem for |A| = 2 Khanna,Sudan,Trevisan,
Williamson’00

I for larger A Jonsson, Krokhin, Kuivinen’09

I LIN-p has no robust algorithm Hastad’01

What distinguishes between
LIN-p, 3-SAT and 2-SAT, HORN-SAT?

Decision CSPs and bounded width

I Pol Γ = clone of polymorphisms (operations compatible with
all relations in Γ)

I Complexity of the decision problem for CSP(Γ) controlled by
HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00

I CSP(Γ) has bounded width iff it can be solved by local
consistency checking

I CSP(Γ) has bounded width iff Γ “cannot encode linear
equations”, equivalently, HSP(Pol Γ) does not contain a
reduct of a module (for core Γ) Barto, Kozik’09 Bulatov’09

I Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width

Conjecture (Guruswami-Zhou 11)

CSP(Γ) admits a robust algorithm iff CSP(Γ) has bounded width.

Decision CSPs and bounded width

I Pol Γ = clone of polymorphisms (operations compatible with
all relations in Γ)

I Complexity of the decision problem for CSP(Γ) controlled by
HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00

I CSP(Γ) has bounded width iff it can be solved by local
consistency checking

I CSP(Γ) has bounded width iff Γ “cannot encode linear
equations”, equivalently, HSP(Pol Γ) does not contain a
reduct of a module (for core Γ) Barto, Kozik’09 Bulatov’09

I Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width

Conjecture (Guruswami-Zhou 11)

CSP(Γ) admits a robust algorithm iff CSP(Γ) has bounded width.

Decision CSPs and bounded width

I Pol Γ = clone of polymorphisms (operations compatible with
all relations in Γ)

I Complexity of the decision problem for CSP(Γ) controlled by
HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00

I CSP(Γ) has bounded width iff it can be solved by local
consistency checking

I CSP(Γ) has bounded width iff Γ “cannot encode linear
equations”, equivalently, HSP(Pol Γ) does not contain a
reduct of a module (for core Γ) Barto, Kozik’09 Bulatov’09

I Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width

Conjecture (Guruswami-Zhou 11)

CSP(Γ) admits a robust algorithm iff CSP(Γ) has bounded width.

Decision CSPs and bounded width

I Pol Γ = clone of polymorphisms (operations compatible with
all relations in Γ)

I Complexity of the decision problem for CSP(Γ) controlled by
HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00

I CSP(Γ) has bounded width iff it can be solved by local
consistency checking

I CSP(Γ) has bounded width iff Γ “cannot encode linear
equations”, equivalently, HSP(Pol Γ) does not contain a
reduct of a module (for core Γ) Barto, Kozik’09 Bulatov’09

I Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width

Conjecture (Guruswami-Zhou 11)

CSP(Γ) admits a robust algorithm iff CSP(Γ) has bounded width.

Decision CSPs and bounded width

I Pol Γ = clone of polymorphisms (operations compatible with
all relations in Γ)

I Complexity of the decision problem for CSP(Γ) controlled by
HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00

I CSP(Γ) has bounded width iff it can be solved by local
consistency checking

I CSP(Γ) has bounded width iff Γ “cannot encode linear
equations”, equivalently, HSP(Pol Γ) does not contain a
reduct of a module (for core Γ) Barto, Kozik’09 Bulatov’09

I Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width !!!

Conjecture (Guruswami-Zhou 11)

CSP(Γ) admits a robust algorithm iff CSP(Γ) has bounded width.

Decision CSPs and bounded width

I Pol Γ = clone of polymorphisms (operations compatible with
all relations in Γ)

I Complexity of the decision problem for CSP(Γ) controlled by
HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00

I CSP(Γ) has bounded width iff it can be solved by local
consistency checking

I CSP(Γ) has bounded width iff Γ “cannot encode linear
equations”, equivalently, HSP(Pol Γ) does not contain a
reduct of a module (for core Γ) Barto, Kozik’09 Bulatov’09

I Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width

Conjecture (Guruswami-Zhou 11)

CSP(Γ) admits a robust algorithm iff CSP(Γ) has bounded width.

Universal algebra attacks robust approximation

I robust approximation also (+-) controlled by polymorphisms
Dalmau, Krokhin’11

I ⇒ one direction of the Guruswami-Zhou conjecture is true

I Conjecture confirmed for width 1 CSPs
Kun, O’Donell, Tamaki, Yoshida, Zhou’11,
Dalmau, Krokhin’11.
width 1 iff linear programming relaxation can be used.

I Conjecture confirmed Barto, Kozik’11. Using a
semidefinite programming relaxation and Prague strategies.

I Randomized (1− O(log log(1/ε)/ log(1/ε)), 1− ε)-approx
algorithm

I Deterministic (1− O(log log(1/ε)/
√

log(1/ε)), 1− ε)-approx
algorithm

I Krokhin’11: even the quantitative dependence on ε is +-
controlled by polymorphisms.

Universal algebra attacks robust approximation

I robust approximation also (+-) controlled by polymorphisms
Dalmau, Krokhin’11

I ⇒ one direction of the Guruswami-Zhou conjecture is true

I Conjecture confirmed for width 1 CSPs
Kun, O’Donell, Tamaki, Yoshida, Zhou’11,
Dalmau, Krokhin’11.
width 1 iff linear programming relaxation can be used.

I Conjecture confirmed Barto, Kozik’11. Using a
semidefinite programming relaxation and Prague strategies.

I Randomized (1− O(log log(1/ε)/ log(1/ε)), 1− ε)-approx
algorithm

I Deterministic (1− O(log log(1/ε)/
√

log(1/ε)), 1− ε)-approx
algorithm

I Krokhin’11: even the quantitative dependence on ε is +-
controlled by polymorphisms.

Universal algebra attacks robust approximation

I robust approximation also (+-) controlled by polymorphisms
Dalmau, Krokhin’11

I ⇒ one direction of the Guruswami-Zhou conjecture is true

I Conjecture confirmed for width 1 CSPs
Kun, O’Donell, Tamaki, Yoshida, Zhou’11,
Dalmau, Krokhin’11.
width 1 iff linear programming relaxation can be used.

I Conjecture confirmed Barto, Kozik’11. Using a
semidefinite programming relaxation and Prague strategies.

I Randomized (1− O(log log(1/ε)/ log(1/ε)), 1− ε)-approx
algorithm

I Deterministic (1− O(log log(1/ε)/
√

log(1/ε)), 1− ε)-approx
algorithm

I Krokhin’11: even the quantitative dependence on ε is +-
controlled by polymorphisms.

Universal algebra attacks robust approximation

I robust approximation also (+-) controlled by polymorphisms
Dalmau, Krokhin’11

I ⇒ one direction of the Guruswami-Zhou conjecture is true

I Conjecture confirmed for width 1 CSPs
Kun, O’Donell, Tamaki, Yoshida, Zhou’11,
Dalmau, Krokhin’11.
width 1 iff linear programming relaxation can be used.

I Conjecture confirmed Barto, Kozik’11. Using a
semidefinite programming relaxation and Prague strategies.

I Randomized (1− O(log log(1/ε)/ log(1/ε)), 1− ε)-approx
algorithm

I Deterministic (1− O(log log(1/ε)/
√

log(1/ε)), 1− ε)-approx
algorithm

I Krokhin’11: even the quantitative dependence on ε is +-
controlled by polymorphisms.

SDP relaxation for general CSP

Notation and simplifying assumptions:

I A: domain

I Γ contains only binary relations, CSP(Γ) has bounded width

I V : variables, I: instance, C: constraints

I ∀ {x , y} ⊆ V , x 6= y there is at most one constraint
Rxy (x , y) ∈ C

I Opt(I) = 1− ε: optimal fraction of satisfied constraints

I We want to find an assignment satisfying almost all
constraints)

Canonical SDP relaxation is strong enough to get optimal
approximation constants (assuming UGC) Raghavendra’08

SDP relaxation for general CSP

Notation and simplifying assumptions:

I A: domain

I Γ contains only binary relations, CSP(Γ) has bounded width

I V : variables, I: instance, C: constraints

I ∀ {x , y} ⊆ V , x 6= y there is at most one constraint
Rxy (x , y) ∈ C

I Opt(I) = 1− ε: optimal fraction of satisfied constraints

I We want to find an assignment satisfying almost all
constraints)

Canonical SDP relaxation is strong enough to get optimal
approximation constants (assuming UGC) Raghavendra’08

SDP relaxation for general CSP

Notation and simplifying assumptions:

I A: domain

I Γ contains only binary relations, CSP(Γ) has bounded width

I V : variables, I: instance, C: constraints

I ∀ {x , y} ⊆ V , x 6= y there is at most one constraint
Rxy (x , y) ∈ C

I Opt(I) = 1− ε: optimal fraction of satisfied constraints

I We want to find an assignment satisfying almost all
constraints)

Canonical SDP relaxation is strong enough to get optimal
approximation constants (assuming UGC) Raghavendra’08

SDP relaxation for general CSP

Notation and simplifying assumptions:

I A: domain

I Γ contains only binary relations, CSP(Γ) has bounded width

I V : variables, I: instance, C: constraints

I ∀ {x , y} ⊆ V , x 6= y there is at most one constraint
Rxy (x , y) ∈ C

I Opt(I) = 1− ε: optimal fraction of satisfied constraints

I We want to find an assignment satisfying almost all
constraints)

Canonical SDP relaxation is strong enough to get optimal
approximation constants (assuming UGC) Raghavendra’08

Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Intuition:

I xayb is the weight (nonnegative) of the pair (a, b) between
variables x , y

I Sum of all weights (between x , y) is 1 from (SDP3)

I We are trying to give small weights to pairs outside Rxy

Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Intuition:

I xayb is the weight (nonnegative) of the pair (a, b) between
variables x , y

I Sum of all weights (between x , y) is 1 from (SDP3)

I We are trying to give small weights to pairs outside Rxy

Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Intuition:

I xayb is the weight (nonnegative) of the pair (a, b) between
variables x , y

I Sum of all weights (between x , y) is 1 from (SDP3)

I We are trying to give small weights to pairs outside Rxy

Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Always SDPOpt(I) ≥ Opt(I)

Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Further properties:

I ||xa||2 is the weight of a

I ||xa||2 =(SDP2) xaxA =(SDP3) xayA

I ⇒ for every y ,
||xa||2 = sum of weights of edges between x and y via a

Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Further properties:

I ||xa||2 is the weight of a

I ||xa||2 =(SDP2) xaxA =(SDP3) xayA

I ⇒ for every y ,
||xa||2 = sum of weights of edges between x and y via a

Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Further properties:

I ||xa||2 is the weight of a

I ||xa||2 =(SDP2) xaxA =(SDP3) xayA

I ⇒ for every y ,
||xa||2 = sum of weights of edges between x and y via a

Strategy

I We try to produce a good assignment from the SDP output
vectors.

I In particular, is it true that
if SDPOpt(I) = 1 then I has a solution?
This was suggested by Guruswami as the first step to attack
the conjecture

I So, assume SDPOpt(I) = 1.

I It follows that xayb = 0 for every (a, b) 6∈ Rxy

I Define Pxy = {(a, b) ∈ A2 : xayb > 0}.
Replace Rxy with Pxy .
If the new instance has a solution then the old one has a
solution.

I Define Px = {a ∈ A : xa 6= o}.

Strategy

I We try to produce a good assignment from the SDP output
vectors.

I In particular, is it true that
if SDPOpt(I) = 1 then I has a solution?
This was suggested by Guruswami as the first step to attack
the conjecture

I So, assume SDPOpt(I) = 1.

I It follows that xayb = 0 for every (a, b) 6∈ Rxy

I Define Pxy = {(a, b) ∈ A2 : xayb > 0}.
Replace Rxy with Pxy .
If the new instance has a solution then the old one has a
solution.

I Define Px = {a ∈ A : xa 6= o}.

Strategy

I We try to produce a good assignment from the SDP output
vectors.

I In particular, is it true that
if SDPOpt(I) = 1 then I has a solution?
This was suggested by Guruswami as the first step to attack
the conjecture

I So, assume SDPOpt(I) = 1.

I It follows that xayb = 0 for every (a, b) 6∈ Rxy

I Define Pxy = {(a, b) ∈ A2 : xayb > 0}.
Replace Rxy with Pxy .
If the new instance has a solution then the old one has a
solution.

I Define Px = {a ∈ A : xa 6= o}.

Strategy

I We try to produce a good assignment from the SDP output
vectors.

I In particular, is it true that
if SDPOpt(I) = 1 then I has a solution?
This was suggested by Guruswami as the first step to attack
the conjecture

I So, assume SDPOpt(I) = 1.

I It follows that xayb = 0 for every (a, b) 6∈ Rxy

I Define Pxy = {(a, b) ∈ A2 : xayb > 0}.
Replace Rxy with Pxy .
If the new instance has a solution then the old one has a
solution.

I Define Px = {a ∈ A : xa 6= o}.

Strategy

I We try to produce a good assignment from the SDP output
vectors.

I In particular, is it true that
if SDPOpt(I) = 1 then I has a solution?
This was suggested by Guruswami as the first step to attack
the conjecture

I So, assume SDPOpt(I) = 1.

I It follows that xayb = 0 for every (a, b) 6∈ Rxy

I Define Pxy = {(a, b) ∈ A2 : xayb > 0}.
Replace Rxy with Pxy .
If the new instance has a solution then the old one has a
solution.

I Define Px = {a ∈ A : xa 6= o}.

Strategy

I We try to produce a good assignment from the SDP output
vectors.

I In particular, is it true that
if SDPOpt(I) = 1 then I has a solution?
This was suggested by Guruswami as the first step to attack
the conjecture

I So, assume SDPOpt(I) = 1.

I It follows that xayb = 0 for every (a, b) 6∈ Rxy

I Define Pxy = {(a, b) ∈ A2 : xayb > 0}.
Replace Rxy with Pxy .
If the new instance has a solution then the old one has a
solution.

I Define Px = {a ∈ A : xa 6= o}.

Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}

I For B ⊆ Px , we have yB+(x ,y) = xB + w,
where wxB = 0, and w = o iff B = B + (x , y)− (x , y).

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

I It is a subset: If xayb > 0 then xa, yb 6= o
I It is subdirect: If xa 6= o then 0 6= ||xa||2 = xayA,

therefore xayb 6= 0 for some b

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}

I For B ⊆ Px , we have yB+(x ,y) = xB + w,
where wxB = 0, and w = o iff B = B + (x , y)− (x , y).

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}

I For B ⊆ Px , we have yB+(x ,y) = xB + w,
where wxB = 0, and w = o iff B = B + (x , y)− (x , y).

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}
I For B ⊆ Px , we have yB+(x ,y) = xB + w,

where wxB = 0, and w = o iff B = B + (x , y)− (x , y).

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}
I For B ⊆ Px , we have yB+(x ,y) = xB + w,

where wxB = 0, and w = o iff B = B + (x , y)− (x , y).
I wxB = (yB+(x,y)− xB)xB = yB+(x,y)xB − xBxB = yB+(x,y)xB −

yAxB = −(yA − yB+(x,y))xB = −yA−(B+(x,y))xB = 0
I ww = · · · = xA−ByB+(x,y)

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}
I For B ⊆ Px , we have yB+(x ,y) = xB + w,

where wxB = 0, and w = o iff B = B + (x , y)− (x , y).

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}
I For B ⊆ Px , we have yB+(x ,y) = xB + w,

where wxB = 0, and w = o iff B = B + (x , y)− (x , y).

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}
I For B ⊆ Px , we have yB+(x ,y) = xB + w,

where wxB = 0, and w = o iff B = B + (x , y)− (x , y).

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

Random facts about Px , Pxy - summary

Definition

The new instance with constraints Pxy (x , y) and subsets
Px ⊆ A, x ∈ V satisfies
(for every x , y ∈ V , B ⊆ Px and patterns p, q from x to x)

(P1) It is 1-minimal (Pxy is a subdirect subset of Px × Py)

(P2) If B + p = B then B − p = B

(P3) If B + p + q = B then B + p = B

I Slightly weaker notion than Prague strategy

I Every Prague strategy has a solution (if Pxy ’s are invariant
under Pol Γ...) BK

I Every weak Prague strategy has a solution BK

Weak Prague instance

Definition

An instance with constraints Pxy (x , y) and subsets Px ⊆ A, x ∈ V
is a weak Prague instance if
(for every x , y ∈ V , B ⊆ Px and patterns p, q from x to x)

(P1) It is 1-minimal (Pxy is a subdirect subset of Px × Py)

(P2) If B + p = B then B − p = B

(P3) If B + p + q = B then B + p = B

I Slightly weaker notion than Prague strategy

I Every Prague strategy has a solution (if Pxy ’s are invariant
under Pol Γ...) BK

I Every weak Prague strategy has a solution BK

Weak Prague instance

Definition

An instance with constraints Pxy (x , y) and subsets Px ⊆ A, x ∈ V
is a weak Prague instance if
(for every x , y ∈ V , B ⊆ Px and patterns p, q from x to x)

(P1) It is 1-minimal (Pxy is a subdirect subset of Px × Py)

(P2) If B + p = B then B − p = B

(P3) If B + p + q = B then B + p = B

I Slightly weaker notion than Prague strategy

I Every Prague strategy has a solution (if Pxy ’s are invariant
under Pol Γ...) BK

I Every weak Prague strategy has a solution BK

Weak Prague instance

Definition

An instance with constraints Pxy (x , y) and subsets Px ⊆ A, x ∈ V
is a weak Prague instance if
(for every x , y ∈ V , B ⊆ Px and patterns p, q from x to x)

(P1) It is 1-minimal (Pxy is a subdirect subset of Px × Py)

(P2) If B + p = B then B − p = B

(P3) If B + p + q = B then B + p = B

I Slightly weaker notion than Prague strategy

I Every Prague strategy has a solution (if Pxy ’s are invariant
under Pol Γ...) BK

I Every weak Prague strategy has a solution BK

General case

I SDPOpt(Γ) = 1− ε, ε small

I Choose δ (randomly with some distribution)

I Put Pxy = {(a, b) : xaxb > δ}
I Put Px = {a : ||xa||2 > δ}
I If δ not too tiny

then for almost all x , y we have Pxy ⊆ Rxy .

I Give up other constraints

I Now we can work with Pxy instead of Rxy

General case

I SDPOpt(Γ) = 1− ε, ε small

I Choose δ (randomly with some distribution)

I Put Pxy = {(a, b) : xaxb > δ}
I Put Px = {a : ||xa||2 > δ}

I If δ not too tiny
then for almost all x , y we have Pxy ⊆ Rxy .

I Give up other constraints

I Now we can work with Pxy instead of Rxy

General case

I SDPOpt(Γ) = 1− ε, ε small

I Choose δ (randomly with some distribution)

I Put Pxy = {(a, b) : xaxb > δ}
I Put Px = {a : ||xa||2 > δ}
I If δ not too tiny

then for almost all x , y we have Pxy ⊆ Rxy .

I Give up other constraints

I Now we can work with Pxy instead of Rxy

General case

I SDPOpt(Γ) = 1− ε, ε small

I Choose δ (randomly with some distribution)

I Put Pxy = {(a, b) : xaxb > δ}
I Put Px = {a : ||xa||2 > δ}
I If δ not too tiny

then for almost all x , y we have Pxy ⊆ Rxy .

I Give up other constraints

I Now we can work with Pxy instead of Rxy

General case

I SDPOpt(Γ) = 1− ε, ε small

I Choose δ (randomly with some distribution)

I Put Pxy = {(a, b) : xaxb > δ}
I Put Px = {a : ||xa||2 > δ}
I If δ not too tiny

then for almost all x , y we have Pxy ⊆ Rxy .

I Give up other constraints

I Now we can work with Pxy instead of Rxy

Enforcing (P1)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

we want (P1) Pxy is a subdirect subset of Px × Py

I Give up Pxy for which some xayb is in (δ − enough, δ)
δ is chosen so that we don’t delete too much

I (P1) Pxy ⊆ Px × Py :
If xayb > δ then ||xa||2 = xayB ≥ xayb > δ

I (P1) Subdirectness: If ||xa||2 = xayB > δ then
xayb ≥ δ/|A|. Then xayB ≥ δ (as δ/|A| > δ − enough)

Important property: yB+(x ,y) is

I either almost (� δ) the same as xB

(in case that B + (x , y , x) = B),

I or significantly (> δ) longer than xB (otherwise)

Enforcing (P1)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

we want (P1) Pxy is a subdirect subset of Px × Py

I Give up Pxy for which some xayb is in (δ − enough, δ)
δ is chosen so that we don’t delete too much

I (P1) Pxy ⊆ Px × Py :
If xayb > δ then ||xa||2 = xayB ≥ xayb > δ

I (P1) Subdirectness: If ||xa||2 = xayB > δ then
xayb ≥ δ/|A|. Then xayB ≥ δ (as δ/|A| > δ − enough)

Important property: yB+(x ,y) is

I either almost (� δ) the same as xB

(in case that B + (x , y , x) = B),

I or significantly (> δ) longer than xB (otherwise)

Enforcing (P1)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

we want (P1) Pxy is a subdirect subset of Px × Py

I Give up Pxy for which some xayb is in (δ − enough, δ)
δ is chosen so that we don’t delete too much

I (P1) Pxy ⊆ Px × Py :
If xayb > δ then ||xa||2 = xayB ≥ xayb > δ

I (P1) Subdirectness: If ||xa||2 = xayB > δ then
xayb ≥ δ/|A|. Then xayB ≥ δ (as δ/|A| > δ − enough)

Important property: yB+(x ,y) is

I either almost (� δ) the same as xB

(in case that B + (x , y , x) = B),

I or significantly (> δ) longer than xB (otherwise)

Enforcing (P1)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

we want (P1) Pxy is a subdirect subset of Px × Py

I Give up Pxy for which some xayb is in (δ − enough, δ)
δ is chosen so that we don’t delete too much

I (P1) Pxy ⊆ Px × Py :
If xayb > δ then ||xa||2 = xayB ≥ xayb > δ

I (P1) Subdirectness: If ||xa||2 = xayB > δ then
xayb ≥ δ/|A|. Then xayB ≥ δ (as δ/|A| > δ − enough)

Important property: yB+(x ,y) is

I either almost (� δ) the same as xB

(in case that B + (x , y , x) = B),

I or significantly (> δ) longer than xB (otherwise)

Enforcing (P1)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

we want (P1) Pxy is a subdirect subset of Px × Py

I Give up Pxy for which some xayb is in (δ − enough, δ)
δ is chosen so that we don’t delete too much

I (P1) Pxy ⊆ Px × Py :
If xayb > δ then ||xa||2 = xayB ≥ xayb > δ

I (P1) Subdirectness: If ||xa||2 = xayB > δ then
xayb ≥ δ/|A|. Then xayB ≥ δ (as δ/|A| > δ − enough)

Important property: yB+(x ,y) is

I either almost (� δ) the same as xB

(in case that B + (x , y , x) = B),

I or significantly (> δ) longer than xB (otherwise)

Enforcing (P1)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

we want (P1) Pxy is a subdirect subset of Px × Py

I Give up Pxy for which some xayb is in (δ − enough, δ)
δ is chosen so that we don’t delete too much

I (P1) Pxy ⊆ Px × Py :
If xayb > δ then ||xa||2 = xayB ≥ xayb > δ

I (P1) Subdirectness: If ||xa||2 = xayB > δ then
xayb ≥ δ/|A|. Then xayB ≥ δ (as δ/|A| > δ − enough)

Important property: yB+(x ,y) is

I either almost (� δ) the same as xB

(in case that B + (x , y , x) = B),

I or significantly (> δ) longer than xB (otherwise)

Enforcing (P1)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

we want (P1) Pxy is a subdirect subset of Px × Py

I Give up Pxy for which some xayb is in (δ − enough, δ)
δ is chosen so that we don’t delete too much

I (P1) Pxy ⊆ Px × Py :
If xayb > δ then ||xa||2 = xayB ≥ xayb > δ

I (P1) Subdirectness: If ||xa||2 = xayB > δ then
xayb ≥ δ/|A|. Then xayB ≥ δ (as δ/|A| > δ − enough)

Important property: yB+(x ,y) is

I either almost (� δ) the same as xB

(in case that B + (x , y , x) = B),

I or significantly (> δ) longer than xB (otherwise)

Enforcing (P2)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

We want (P2) If B + p = B then B − p = B

I Divide the unit ball into layers
(thickness about δ, randomly shifted)

I Give up Pxy if there are almost the same vectors xB , yB+(x ,y)

in different layers.

Recall that yB+(x ,y) is

I either almost the same as xB (in case that B + (x , y , x) = B),

I or significantly longer (> δ) than xB ⇒ vector jumps to
higher layer

This guarantees (P2)

(note: so far we only used lengths ⇒ can be done for LP
relaxation)

Enforcing (P2)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

We want (P2) If B + p = B then B − p = B

I Divide the unit ball into layers
(thickness about δ, randomly shifted)

I Give up Pxy if there are almost the same vectors xB , yB+(x ,y)

in different layers.

Recall that yB+(x ,y) is

I either almost the same as xB (in case that B + (x , y , x) = B),

I or significantly longer (> δ) than xB ⇒ vector jumps to
higher layer

This guarantees (P2)

(note: so far we only used lengths ⇒ can be done for LP
relaxation)

Enforcing (P2)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

We want (P2) If B + p = B then B − p = B

I Divide the unit ball into layers
(thickness about δ, randomly shifted)

I Give up Pxy if there are almost the same vectors xB , yB+(x ,y)

in different layers.

Recall that yB+(x ,y) is

I either almost the same as xB (in case that B + (x , y , x) = B),

I or significantly longer (> δ) than xB ⇒ vector jumps to
higher layer

This guarantees (P2)

(note: so far we only used lengths ⇒ can be done for LP
relaxation)

Enforcing (P2)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

We want (P2) If B + p = B then B − p = B

I Divide the unit ball into layers
(thickness about δ, randomly shifted)

I Give up Pxy if there are almost the same vectors xB , yB+(x ,y)

in different layers.

Recall that yB+(x ,y) is

I either almost the same as xB (in case that B + (x , y , x) = B),

I or significantly longer (> δ) than xB ⇒ vector jumps to
higher layer

This guarantees (P2)

(note: so far we only used lengths ⇒ can be done for LP
relaxation)

Enforcing (P2)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

We want (P2) If B + p = B then B − p = B

I Divide the unit ball into layers
(thickness about δ, randomly shifted)

I Give up Pxy if there are almost the same vectors xB , yB+(x ,y)

in different layers.

Recall that yB+(x ,y) is

I either almost the same as xB (in case that B + (x , y , x) = B),

I or significantly longer (> δ) than xB ⇒ vector jumps to
higher layer

This guarantees (P2)

(note: so far we only used lengths ⇒ can be done for LP
relaxation)

Enforcing (P3)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

(P3) If B + p + q = B then B + p = B

I Choose sufficiently many hyperplanes (randomly)

(x) Give up variables x for which some pair xB , xC is not cut

(y) Give up constraints Pxy for which there are almost the same
vectors xB , yB+(x ,y) which are cut

I This guarantees (P3)

I Remark: Different number of hyperplanes is used for different
layers otherwise (x) or (y) would delete too much

Now we have a Prague instance. Algebraic closure has a solution

Enforcing (P3)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

(P3) If B + p + q = B then B + p = B

I Choose sufficiently many hyperplanes (randomly)

(x) Give up variables x for which some pair xB , xC is not cut

(y) Give up constraints Pxy for which there are almost the same
vectors xB , yB+(x ,y) which are cut

I This guarantees (P3)

I Remark: Different number of hyperplanes is used for different
layers otherwise (x) or (y) would delete too much

Now we have a Prague instance. Algebraic closure has a solution

Enforcing (P3)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

(P3) If B + p + q = B then B + p = B

I Choose sufficiently many hyperplanes (randomly)

(x) Give up variables x for which some pair xB , xC is not cut

(y) Give up constraints Pxy for which there are almost the same
vectors xB , yB+(x ,y) which are cut

I This guarantees (P3)

I Remark: Different number of hyperplanes is used for different
layers otherwise (x) or (y) would delete too much

Now we have a Prague instance. Algebraic closure has a solution

Enforcing (P3)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

(P3) If B + p + q = B then B + p = B

I Choose sufficiently many hyperplanes (randomly)

(x) Give up variables x for which some pair xB , xC is not cut

(y) Give up constraints Pxy for which there are almost the same
vectors xB , yB+(x ,y) which are cut

I This guarantees (P3)

I Remark: Different number of hyperplanes is used for different
layers otherwise (x) or (y) would delete too much

Now we have a Prague instance. Algebraic closure has a solution

Enforcing (P3)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

(P3) If B + p + q = B then B + p = B

I Choose sufficiently many hyperplanes (randomly)

(x) Give up variables x for which some pair xB , xC is not cut

(y) Give up constraints Pxy for which there are almost the same
vectors xB , yB+(x ,y) which are cut

I This guarantees (P3)

I Remark: Different number of hyperplanes is used for different
layers otherwise (x) or (y) would delete too much

Now we have a Prague instance. Algebraic closure has a solution

Enforcing (P3)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

(P3) If B + p + q = B then B + p = B

I Choose sufficiently many hyperplanes (randomly)

(x) Give up variables x for which some pair xB , xC is not cut

(y) Give up constraints Pxy for which there are almost the same
vectors xB , yB+(x ,y) which are cut

I This guarantees (P3)

I Remark: Different number of hyperplanes is used for different
layers otherwise (x) or (y) would delete too much

Now we have a Prague instance. Algebraic closure has a solution

Enforcing (P3)

Pxy = {(a, b) ∈ A2 : xayb > δ}, Px = {a ∈ A : ||xa||2 > δ}

(P3) If B + p + q = B then B + p = B

I Choose sufficiently many hyperplanes (randomly)

(x) Give up variables x for which some pair xB , xC is not cut

(y) Give up constraints Pxy for which there are almost the same
vectors xB , yB+(x ,y) which are cut

I This guarantees (P3)

I Remark: Different number of hyperplanes is used for different
layers otherwise (x) or (y) would delete too much

Now we have a Prague instance. Algebraic closure has a solution

Final remarks

I Is the quantitative dependence optimal?

I How to improve derandomization to match the randomized
version?

I What can we say about the quantitative dependence on ε in
general?

I Guess: NU ⇒ polynomial loss, or SD(∧) ⇒ polynomial loss
I Candidates for hardness: 2-semilattices?

I Explore further SDP,LP ↔ consistency notions

I Thank you!

Final remarks

I Is the quantitative dependence optimal?

I How to improve derandomization to match the randomized
version?

I What can we say about the quantitative dependence on ε in
general?

I Guess: NU ⇒ polynomial loss, or SD(∧) ⇒ polynomial loss
I Candidates for hardness: 2-semilattices?

I Explore further SDP,LP ↔ consistency notions

I Thank you!

Final remarks

I Is the quantitative dependence optimal?

I How to improve derandomization to match the randomized
version?

I What can we say about the quantitative dependence on ε in
general?

I Guess: NU ⇒ polynomial loss, or SD(∧) ⇒ polynomial loss
I Candidates for hardness: 2-semilattices?

I Explore further SDP,LP ↔ consistency notions

I Thank you!

Final remarks

I Is the quantitative dependence optimal?

I How to improve derandomization to match the randomized
version?

I What can we say about the quantitative dependence on ε in
general?

I Guess: NU ⇒ polynomial loss, or SD(∧) ⇒ polynomial loss

I Candidates for hardness: 2-semilattices?

I Explore further SDP,LP ↔ consistency notions

I Thank you!

Final remarks

I Is the quantitative dependence optimal?

I How to improve derandomization to match the randomized
version?

I What can we say about the quantitative dependence on ε in
general?

I Guess: NU ⇒ polynomial loss, or SD(∧) ⇒ polynomial loss
I Candidates for hardness: 2-semilattices?

I Explore further SDP,LP ↔ consistency notions

I Thank you!

Final remarks

I Is the quantitative dependence optimal?

I How to improve derandomization to match the randomized
version?

I What can we say about the quantitative dependence on ε in
general?

I Guess: NU ⇒ polynomial loss, or SD(∧) ⇒ polynomial loss
I Candidates for hardness: 2-semilattices?

I Explore further SDP,LP ↔ consistency notions

I Thank you!

Final remarks

I Is the quantitative dependence optimal?

I How to improve derandomization to match the randomized
version?

I What can we say about the quantitative dependence on ε in
general?

I Guess: NU ⇒ polynomial loss, or SD(∧) ⇒ polynomial loss
I Candidates for hardness: 2-semilattices?

I Explore further SDP,LP ↔ consistency notions

I Thank you!

