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Outline 2/32

Task from the organizers: talk about recent developments
in the complexity of CSPs

It will be of interest to participants even if graph covers will not show up at all

Recent developments in fixed-template CSPs:

» computational complexity fully classified
» PCSP: promise CSP
» new insight: LabelCover is everywhere
(in (P)CSP and variants)
» algorithmically more interesting
» more tools are useful: algebraic topology, analysis



CSP



Fix A = (A; R, S,...) finite relational structure, eg. digraph (A; R)

Definition (CSP(A))

Input: X of the same signature as A
Answer Yes: X — A (homomorphism)
Answer No: X 4 A

Definition (search version of CSP(A))

Input: X such that X — A
Task: Find X — A

Examples
» A = K3: 3-coloring problem
» A = (Z,; affine subspaces): solving linear equations in Z,
» A =({0,1};...): 3-SAT, HORN-3-SAT, NAE-3-SAT,
1-in-3-SAT



Variants of fixed-template CSPs 5/32

Different questions:
» counting (solved [Bulatov'08] [Dyer,Richerby'10])
> optimization (solved [Thapper, zivny'13])

» approximation (part solved modulo UGC [Raghavendra'08])

Generalizations:
» valued CSP (solved [Kolmogorov,Krokhin,Rolinek'15])

» infinite domains
» PCSP

Restrictions:
> restricted inputs: planar, bounded-degree

> restricted homomorphisms: covers



CSP and symmetry



Polymorphisms 7/32

polymorphism of A: homomorphism f : A" — A

Pol(A): the set of all polymorphisms (it is a “clone™)
= set of multivariable symmetries of A

Example: f(xi,...,x4) =2x1 +3x2 +3x3 +3x4 is a
polymorphism of (Zs; affine subspaces) because affine subspaces
are closed under affine combinations (note 2 + 3 + 3 4 3+ = 1)

Example: a projection f(xi,...,Xn) = X
is always a polymorphism

Example: f(xi,...,xn) = a(x;) for a bijection «
are the only polymorphisms of K3



Algebraic theory, 1st step 8/32

Jeavons'98: On the algebraic structure of combinatorial problems

motiv.: Feder,Vardi'98:The Computational Structure of Monotone Monadic SNP. ..

Theorem
Complexity of CSP(A) is determined by Pol(A):
If Pol(A) C Pol(B) then CSP(B) reduces to CSP(A).

Proof.

If Pol(A) C Pol(B), then relations in B can be defined from relations in A by a
pp-formula.

[Geiger'69, Bondaréuk, Kaluznin, Kotov, Romov'69]
This gives a computational reduction of CSP(B) to CSP(A). O

So: 3-coloring is NP-complete because K3 has few symmetries



Systems of functional equations 9/32

System of functional equations is, e.g.

f(g(x,y),z) = g(x, h(y, z))
m(y,x,x) =m(y,y,y)
m(x,x,y) = m(y,y,y)

Satisfied in M, where M is a set of functions:
symbols can be interpreted in M so that
each equality is (universally) satisfied

Example: The above system is satisfied in
Pol(Zs; affine subspaces)

» take f(x,y) = g(x,y) = h(x,y) = x

> take m(x,y,z) =x—y+z



Algebraic theory, 2nd step 10/32

Bulatov, Jeavons, Krokhin'05: Classifying the complexity of constraints using finite

algebras + Bodirsky’08: PhD thesis

Theorem

Complexity of CSP(A) is determined by
systems of functional equations satisfied in Pol(A):

If each system satisfied in Pol(A) is satisfied in Pol(B),
then CSP(B) reduces to CSP(A).

Proof.
Previous theorem, pp-definitions — pp-interpretations,
the HSP theorem [Birkhoff’'35] O

So: solving linear equations over Zg is in P because
their template satisfies strong systems of functional equations



Algebraic theory, 3rd step 11/32

Barto, Opr3al, Pinsker'18: The wonderland of reflections

minor condition = system of functional equations, each of the form
symbol(variables) = symbol(variables),
e.g. m(y,x,x) =m(y,y.y), m(x,x,y) = m(y,y,y)

Theorem

Complexity of CSP(A) determined by
minor conditions satisfied in Pol(A):

If each minor condition satisfied in Pol(A) is satisfied in Pol(B),
then CSP(B) reduces to CSP(A).

Proof.

pp-interpretation — pp-construction,
version of the HSP theorem. |



The classification result

Minor condition is trivial:
satisfied in every Pol(A)
= satisfied in P, the set of projections on {0,1}

Corollary

If Pol(A) satisfies only trivial minor conditions,
then CSP(A) is NP-hard.

Theorem ( : )

If Pol(A) satisfies some non-trivial minor condition,
then CSP(A) is in P.

Proof.

Both complex

News: the 2 approaches are closer [Barto, Bulatov, Kozik, Zhuk] Ol



Algebraic theory, 4th step 13/32

(Barto,) Bulin, Krokhin, Opr3al: Algebraic approach to promise constraint satisfaction

Definition (MinorCond(N, M))

Input: minor condition X with symbols of arity N
Answer Yes: X is trivial (=satisfied in P)
Answer No: X not satisfied in M

Theorem

Let M = Pol(A). The following computational problems are
equivalent for a large enough N.

(i) CSP(A)

(i) MinorCond(N, M)

Consequence: 3rd step
Proof: direct, simple, known
Note: No # —VYes



Relax! 14/32

What can we do for NP-complete CSP(A)?

1. Try to satisfy only some fraction of the constraints, eg.

for a satisfiable 3SAT instance,
find an assignment satisfying at least 90% of the clauses

2. Try to satisfy a relaxed version of all constraints, eg.

for a 3-colorable graph,
find a 37-coloring



Approximation and LabelCover

satisfying a fraction of constraints



3SAT is hard to approximate 16,32

Theorem ( )

The following problem is NP-complete for every e > 0

Input: 3SAT instance, eg. (x1V —xq Vx3) A (—x2 Vx5V —x3) A ...
Answer Yes: it is satisfiable

Answer No: no (7/8 + €)—fraction of clauses is satisfiable

Corollary: It is NP-hard to satisfy 90% of clauses
of a satisfiable 3SAT instance.

Proof.

Reduction from a version of the Label Cover problem

(reduction uses Fourier analysis of Boolean functions. Ol



Label Cover 17/32

LaberCover(N) is CSP(A; (Grg)s:.a—a) Where |A| = N and
Grg = {(a,¢(a)) : a € [N]}

Definition (GapLabelCover(N, ¢))

Input: like LaberCover(N)
Answer Yes: ¢ is satisfiable
Answer No: no e—fraction of constraints is satisfiable

Theorem

For every € > 0 there exists N such that
GapLabelCover(N, €) is NP-complete

Proof: The PCP theorem [Arora, Lund, Motwani, Sudan, Szegedy'98]
Parallel Repetition Thoerem [Raz'98]



Fun fact 18/32

The following two problems are the same!

» MinorCond(N, P) ie. deciding whether a given minor
condition is trivial

» LaberCover(N) ie. deciding whether a given label cover input
is satisfiable

Because:

> interpretation of f and g by projections making the following
equation true
f(x3, x1,x1,x2,x1) = g(x1, X2, X3, X4, X5)

» corresponds to a satisfying assignment of Gry(f, g) where
¢:1—3, 235—1 42

» under the correspondence
i <> projection onto the ith coordinate

Remark: often implicitely used (“long code”)



Everything is Label Cover 19/32

Input: bipartite minor condition (symbols of arity )
Answer Yes: it is trivial

Answer No:

(GapLabelCover(N, €)) no efraction of equations is trivial
(MinorCond(N, M)) not satisfied in M

» 1st is crucial problem for hardness of approximation
» 2nd is equivalent to CSP(A) if M = Pol(A)
» Single source of hardness (no ad-hoc reductions)

1st with € = 1 ie. LaberCover(N)
trivially reduces to every NP-complete CSP



PCSP

satisfying a relaxed version of all constraints



Definition

Fix 2 finite relational structures A — B

Definition (PCSP(A, B))

Input: X
Answer Yes: X — A
Answer No: X 4 B

Definition (search version of PCSP(A, B))

Input: X such that X — A
Task: Find X — B

(it may be a harder problem, we don't know)

Example: PCSP(K3,Ky) is 4-coloring of a 3-colorable graph



Label Cover still works

polymorphism of (A,B): homomorphism A" — B

Pol(A,B): the set of all polymorphisms (it is a “minion”)
= set of multivariable symmetries of (A, B)

Theorem

Let M = Pol(A,B). The following computational problems are
equivalent for a large enough N.

(i) CSP(A,B)
(i) MinorCond(N, M)

Shows that PCSP is in some sense more natural than CSP.



Example 1: graphs (symmetric, loopless)

PCSP(K3, Ky)
Input: 3-colorable graph
Task: find a 4-coloring

Conjectures
» PCSP(Kg, K;) NP-hard (/ > k > 3), (3,6) open
» Stronger: PCSP(A,B) NP-hard for any non-bipartite
» Enough to show: PCSP(Cy4q, Kx) NP-hard

Recent hardness results:
> PCSP(KmKQn_z) [Brakensiek, Guruswami'16]
» PCSP(K,,Kz,-1) [Bulin, Krokhin, Oprsal'19]

> PCSP(Km K(L ; J)_1), n >4 [Wrochna, Zivny'20]
n/2

» PCSP(Cyqq, K3) [Oprtal, Krokhin'19]



Example 2: hypergraph coloring 24/32

3NAE ternary not-all-equal relation on a k-element set

PCSP(3NAE,, 3NAE37)
Input: a 3-uniform hypergraph
Answer Yes: it is 2-colorable
Answer No: it is not 137-colorable

Theorem: It is NP-hard [Dinur,Regev,Smyth’05]
(more generally PCSP(3NAE,, 3NAE) NP-hard
for every k > | > 2)



Example 3: 1-in-3 vs not-all-equal

PCSP(1-in-3-SAT,NAE-SAT) (combinatorial formulation):
Input: a 3-uniform hypergraph which has
a 2-coloring such that
exactly one vertex in each hyperedge receives 1
Task: find a 2-coloring

Fact: It is in P. Algorithm for finding a 2-coloring of:
» for each hyperedge {x,y,z} write x+y+z=1
> solve the system over Q\ {3} (it is solvable in {0,1})
» assign x — 1iff x > 1/3

Note: algorithm uses infinite domain CSP
Theorem: infinity is necessary [Barto’'19]

Shows that PCSPs are algorithmically more interesting



Hardness proofs

Label Cover and topology



How to prove PCSP(A, B) is NP-hard

» Denote M = Pol(A,B)
» Strategy: Find e so that
GapLabelCover(N, €) < MinorCond(N, M) trivially

Input: minor condition M (symbols of arity N)

Answer Yes: it is trivial

Answer No:

(GapLabelCover(N, €)) no efraction of equations is trivial

(MinorCond(N, M)) not satisfied in M

» enough: M satisfied in M
= some e-fraction of equations is trivial
» enough: for each f € M find a small (constant-size) set of
“important coordinates”
if the choice behaves somewhat nicely with minors, then
probabilistic argument gives us =



PCSP(K3,K,) is NP-hard

> every f : K§ — Ky is close to an essentially unary function:

(37) (3c € Ka) (3a) (Vx € K)
f(X1y...yxn) #c= f(x1,...,%) = a(x)

» such an / is unique

» {i} is the small set of important coordinates



PCSP(C137,K3) is NP-hard

v

f : C{3; — Kj is topologically S” — S (S a circle)
define wf € Z for i € {1,...,n}
» fix all coordinates but / arbitrarily, call it f; : S — S
> W,f is the winding number of f;

v

v

behave very nicely with minors, eg. if
g(x1,x2,x3) = f(x1,x1, X2, x3) then wf = Wl’r + W2f

v

winding number of unary f is bounded above by a constant C
therefore >~ w; < C, actually > |w;| < C

v

important coordinates of f := those / with w,f #0

v



More hardness proofs 30/32

» Hardness of hypergraph coloring

» proof (now) follows the same strategy
> needs a better version of GaplLabelCover
» combinatorial core to get important coordinates:
high chromatic number of Kresner's graphs [Lovisz'78]

» Hardness of PCSP(K3, Ks)

» almost for free since Pol(K3, Ks) satisfies less minor conditions
than PO|(NA]E2, NAElOOOO)

» PCSP(K3,Kg)?
» people mostly tried analytic approach to analyze
polymorphisms



Summary



Summary 32/32

» Label Cover madness

» CSP (and PCSP) is equivalent to a gap version of Label Cover

> a different gap version of Label Cover crucial in the hardness
proofs (both approximation and PCSP)

> in progress: intermediate problems

» PCSP algorithmically more interesting

> linear programming, linear equations over Z
> requires infinite-domain CSP

» topology is implicitely or explicitely in most PCSP
NP-hardness proofs (CSP hardness is easy)

» question: what about other kind of homomorphisms, like
covers or harmonic morphisms?
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Thank you!



