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CSP for universal algebraist

Definition

A . . . finite idempotent algebra (always)

Instance of CSP(A) = finite set V + set C of constraints

Constraint = subalgebra of AI , where I ⊆ V is the scope

Solution of the instance = mapping f : V → A such that f|I ∈ R|I
for every constraint R ≤ AI

Example

every scope is equal to V
⇓

set of solutions = intersection of constraints

to study CSP = to study intersection properties of subpowers



Application 1: SD(∧) algebras 1/3

A is SD(∧), if HSP(A) is meet semi-distributive
⇔ HSP(A) omits 1, 2
⇔ A has Willard terms
⇔ A not interpretable into module ⇔ . . .

Definition

An instance of CSP(A) is (2, 3)-minimal, if

I ∀ three-element I ⊆ V ∃R ⊆ AK in C such that I ⊆ K

I ∀ at most two-element I ⊆ V ∀R ⊆ AK , R ′ ⊆ AK ′
in C such

that I ⊆ K , K ′ we have R|I = R ′|I



Application 1: SD(∧) algebras 2/3

Theorem (Barto, Kozik 09)

A is SD(∧) iff every (2, 3)-minimal instance of CSP(A) has a
solution

Corollary

If A is SD(∧) and R1, . . . , Rn ≤ An have the same binary
projections, then ∩Ri 6= ∅



Application 1: SD(∧) algebras 3/3

WNU = operation f satisfying
f (x , . . . , x , y) = f (x , . . . , x , y , x) = · · · = f (y , x , . . . , x)

Corollary (Kozik, Valeriote)

A is SD(∧) iff A has WNUs of all arities ≥ 3.

Proof.

Take V big enough. Let F = free algebra in HSP(A) over {x , y}.
for every three element I we include one constraint RI ≤ FI , where

RI = 〈(x , x , y), (x , y , x), (y , x , x)〉
It is (2, 3)-minimal instance of CSP(F) ⇒ ∃ solution f : V → F .
V is big ⇒ ∃i , j , k f (i) = f (j) = f (k) = b
b ∈ R{i ,j ,k} ⇒ A has WNU of arity 3

Collapses of Maltsev conditions for finite algebras



Application 2: CD ⇒ NU 1/2

A . . . relational structure (on a finite set A)
Pol(A) . . . clone of all operations compatible with all relations in A

Theorem (Geiger, Bodnarchuk, Kaluznin, Kotov, Romov 68)

∀ finite algebra A ∃ A such that Pol(A) = Clo(A)

Definition

Finite A is finitely related, if ∃ A with finitely many relations such
that Pol(A) = Clo(A)

Example

Algebras with near-unanimity term (by Baker-Pixley)

(Recall: near-unanimity = operation f satisfying
x = f (x , . . . , x , y) = f (x , . . . , x , y , x) = · · · = f (y , x , . . . , x) )



Application 2: CD ⇒ NU 2/2

Theorem (Barto 09)

If A is finitely related and HSP(A) is congruence distributive, then
A has a near-unanimity term.

Proof.

Say A has at most k-ary relations, Clo(A) = Pol(A).
n . . . big enough natural number
V = An

F ≤ AV . . . free algebra on n-generators (=n-ary operations)

For every at most k-element I ⊆ V we include the constraint F|I

Solutions of this instance = n-ary operations of A
. . . . . . . . .

More collapses of Maltsev conditions for finitely related algebras



Application 3: few subpowers ⇒ finitely related 1/2

A has few subpowers, if |{R ≤ An}| ≤ 2polynomial(n)

⇔ subpowers of A have small generating sets
⇔ A has a cube term ⇔ ...

Example

Maltsev algebras, algebras with near-unanimity operation
Few subpowers ⇒ HSP(A) is congruence modular

Theorem (Aichinger, Mayr, McKenzie 09)

Every finite algebra with few subpowers is finitely related.

Proof.

Use compact representations of subpowers developed for CSP by
Dalmau, Bulatov; Berman, Idziak, Markovic, McKenzie, Valeriote,
Willard
. . . . . . . . .
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Corollary

On a finite set, there is countably many clones with few subpowers
(in particular, there is countably many Maltsev clones on a finite
set).

(2 years ago open for expansions of Z8!)

Conjecture (Valeriote’s conjecture, Edinburgh conjecture)

If A is finitely related and HSP(A) is congruence modular, then A
has few subpowers.



Application 4: Taylor algebras

A is Taylor, if HSP(A) doesn’t contain a G-set
⇔ HSP(A) omits 1
⇔ HSP(A) satisfies a nontrivial Maltsev condition
⇔ A has a Taylor term ⇔ . . .

Theorem (Barto, Kozik, Niven 08)

Let A be a Taylor algebra, R ≤ A× A subdirect and assume that
∃ k , l such that (Rk ◦ R−k)l = A2. Then ∃ a ∈ A (a, a) ∈ R.

Corollary (Siggers, Markovic, McKenzie 10)

A is Taylor iff A has a term t satisfying t(xyyz) = t(yzxx).

Proof.

F ... free algebra on {x , y , z}
R ... subalgebra of F2 generated by (x , y), (y , z), (y , x), (z , x).
Apply the theorem



CSP ⇒ it is a good idea to study algebras via relations

CSP ⇒ better understanding of intersection properties ⇒ Maltsev
conditions

CSP ⇒ new important classes of algebras

CSP ⇒ absorption rocks

Thank you!


