Applications of the Constraint Satisfaction Problem to Universal Algebra

Libor Barto

Department of Mathematics and Statistics McMaster University Hamilton, ON, Canada

> Department of Algebra Charles University Prague, Czech Republic

AMS Spring Sectional Meeting 2011

Definition

A . . . finite idempotent algebra (always)

Instance of $CSP(\mathbf{A}) = finite set V + set C of constraints$ $Constraint = subalgebra of <math>\mathbf{A}^{I}$, where $I \subseteq V$ is the scope

Solution of the instance = mapping $f : V \to A$ such that $f_{|I} \in R_{|I}$ for every constraint $R \leq \mathbf{A}^{I}$

Example

```
every scope is equal to V
\downarrow\downarrow
set of solutions = intersection of constraints
```

to study CSP = to study intersection properties of subpowers

A is $SD(\land)$, if HSP(**A**) is meet semi-distributive

- $\Leftrightarrow \mathsf{HSP}(A) \text{ omits } \mathbf{1}, \mathbf{2}$
- \Leftrightarrow **A** has Willard terms
- $\Leftrightarrow \textbf{A} \text{ not interpretable into module} \Leftrightarrow \dots$

Definition

An instance of $\mathrm{CSP}(\mathbf{A})$ is (2,3)-minimal, if

- ▶ \forall three-element $I \subseteq V \exists R \subseteq \mathbf{A}^{K}$ in C such that $I \subseteq K$
- ▶ \forall at most two-element $I \subseteq V$ $\forall R \subseteq \mathbf{A}^{K}$, $R' \subseteq \mathbf{A}^{K'}$ in C such that $I \subseteq K, K'$ we have $R_{|I} = R'_{|I}$

1/3

Theorem (Barto, Kozik 09)

A is ${\rm SD}(\wedge)$ iff every (2,3)-minimal instance of ${\rm CSP}(A)$ has a solution

Corollary

If **A** is $SD(\wedge)$ and $R_1, \ldots, R_n \leq \mathbf{A}^n$ have the same binary projections, then $\cap R_i \neq \emptyset$

Application 1: $SD(\wedge)$ algebras

WNU = operation f satisfying $f(x,...,x,y) = f(x,...,x,y,x) = \cdots = f(y,x,...,x)$

Corollary (Kozik, Valeriote)

A is $SD(\wedge)$ iff A has WNUs of all arities ≥ 3 .

Proof.

Take V big enough. Let $\mathbf{F} = \text{free algebra in HSP}(\mathbf{A})$ over $\{x, y\}$. for every three element I we include one constraint $R_I \leq \mathbf{F}^I$, where $R_I = \langle (x, x, y), (x, y, x), (y, x, x) \rangle$ It is (2, 3)-minimal instance of $\text{CSP}(\mathbf{F}) \Rightarrow \exists$ solution $f : V \to F$. V is big $\Rightarrow \exists i, j, k \ f(i) = f(j) = f(k) = b$ $b \in R_{\{i,j,k\}} \Rightarrow \mathbf{A}$ has WNU of arity 3

3/3

Collapses of Maltsev conditions for finite algebras

 \mathbb{A} ... relational structure (on a finite set A) $\mathsf{Pol}(\mathbb{A})$... clone of all operations compatible with all relations in \mathbb{A}

Theorem (Geiger, Bodnarchuk, Kaluznin, Kotov, Romov 68)

 \forall finite algebra $A \exists A$ such that Pol(A) = Clo(A)

Definition

Finite A is finitely related, if \exists $\mathbb A$ with finitely many relations such that $\mathsf{Pol}(\mathbb A)=\mathsf{Clo}(A)$

Example

Algebras with near-unanimity term (by Baker-Pixley)

(Recall: near-unanimity = operation f satisfying $x = f(x, ..., x, y) = f(x, ..., x, y, x) = \cdots = f(y, x, ..., x)$)

Theorem (Barto 09)

If A is finitely related and HSP(A) is congruence distributive, then A has a near-unanimity term.

Proof.

Say A has at most k-ary relations, $Clo(\mathbf{A}) = Pol(A)$. $n \dots$ big enough natural number $V = A^n$ $F \leq \mathbf{A}^V \dots$ free algebra on *n*-generators (=*n*-ary operations) For every at most k-element $I \subseteq V$ we include the constraint $F_{|I|}$ Solutions of this instance = *n*-ary operations of **A**

More collapses of Maltsev conditions for finitely related algebras

Application 3: few subpowers \Rightarrow finitely related 1/2

A has few subpowers, if $|\{R \le A^n\}| \le 2^{polynomial(n)}$ \Leftrightarrow subpowers of A have small generating sets \Leftrightarrow A has a cube term \Leftrightarrow ...

Example

Maltsev algebras, algebras with near-unanimity operation Few subpowers \Rightarrow HSP(**A**) is congruence modular

Theorem (Aichinger, Mayr, McKenzie 09)

Every finite algebra with few subpowers is finitely related.

Proof.

Use compact representations of subpowers developed for CSP by Dalmau, Bulatov; Berman, Idziak, Markovic, McKenzie, Valeriote, Willard

.

Corollary

On a finite set, there is countably many clones with few subpowers (in particular, there is countably many Maltsev clones on a finite set).

(2 years ago open for expansions of $\mathbb{Z}_8!$)

Conjecture (Valeriote's conjecture, Edinburgh conjecture)

If A is finitely related and HSP(A) is congruence modular, then A has few subpowers.

Application 4: Taylor algebras

- A is Taylor, if HSP(A) doesn't contain a G-set
- $\Leftrightarrow \mathsf{HSP}(\mathbf{A}) \text{ omits } \mathbf{1}$
- $\Leftrightarrow \mathsf{HSP}(\mathbf{A}) \text{ satisfies a nontrivial Maltsev condition}$
- $\Leftrightarrow \textbf{A} \text{ has a Taylor term} \Leftrightarrow \dots$

Theorem (Barto, Kozik, Niven 08)

Let **A** be a Taylor algebra, $R \leq \mathbf{A} \times \mathbf{A}$ subdirect and assume that $\exists k, l \text{ such that } (R^k \circ R^{-k})^l = A^2$. Then $\exists a \in A \quad (a, a) \in R$.

Corollary (Siggers, Markovic, McKenzie 10)

A is Taylor iff **A** has a term t satisfying t(xyyz) = t(yzxx).

Proof.

F ... free algebra on $\{x, y, z\}$ *R* ... subalgebra of **F**² generated by (x, y), (y, z), (y, x), (z, x). Apply the theorem $\mathsf{CSP} \Rightarrow \mathsf{it} \mathsf{ is a good} \mathsf{ idea} \mathsf{ to study algebras via relations}$

 $\mathsf{CSP} \Rightarrow \mathsf{better}$ understanding of intersection properties $\Rightarrow \mathsf{Maltsev}$ conditions

- $\mathsf{CSP} \Rightarrow \mathsf{new} \text{ important classes of algebras}$
- $\mathsf{CSP} \Rightarrow \mathsf{absorption} \ \mathsf{rocks}$

Thank you!