Cyclic terms for join semi-distributive varieties I

Libor Barto

joint work with Marcin Kozik

Department of Algebra Faculty of Mathematics and Physics Charles University in Prague Czech Republic

AAA Bern 2009

WNUs

Definition

w is a weak near-unanimity operation (WNU), if

• w is idempotent $w(x, x, \dots, x) = x$

$$\blacktriangleright w(x,x,\ldots,x,y) = w(x,x,\ldots,x,y,x) = \cdots = w(y,x,x,\ldots,x).$$

WNUs

Definition

w is a weak near-unanimity operation (WNU), if

• w is idempotent $w(x, x, \dots, x) = x$

•
$$w(x, x, ..., x, y) = w(x, x, ..., x, y, x) = \cdots = w(y, x, x, ..., x).$$

Theorem (TCT (Hobby, McKenzie), Taylor)

For a locally finite variety $\mathcal V$ TFAE

- V omits type 1
- ▶ *V* satisfies some nontrivial idempotent Maltsev condition
- ▶ V has a Taylor term

WNUs

Definition

w is a weak near-unanimity operation (WNU), if

• w is idempotent $w(x, x, \dots, x) = x$

•
$$w(x, x, ..., x, y) = w(x, x, ..., x, y, x) = \cdots = w(y, x, x, ..., x).$$

Theorem (TCT (Hobby, McKenzie), Taylor)

For a locally finite variety $\mathcal V$ TFAE

- V omits type 1
- ▶ *V* satisfies some nontrivial idempotent Maltsev condition
- ▶ V has a Taylor term

Theorem (Maróti, McKenzie 06)

V has a WNU term

L. Barto, M. Kozik (Prague)

Cyclic operation

Definition

- t is a cyclic operation, if
 - t is idempotent t(x, x, ..., x) = x

►
$$t(x_1, x_2, ..., x_n) = t(x_2, x_3, ..., x_n, x_1).$$

Cyclic operation

Definition

- t is a cyclic operation, if
 - t is idempotent t(x, x, ..., x) = x

•
$$t(x_1, x_2, ..., x_n) = t(x_2, x_3, ..., x_n, x_1).$$

Every cyclic operation is a WNU

Cyclic operation

Definition

- t is a cyclic operation, if
 - t is idempotent t(x, x, ..., x) = x

•
$$t(x_1, x_2, ..., x_n) = t(x_2, x_3, ..., x_n, x_1).$$

Every cyclic operation is a WNU

Motivation for cyclic and WNU operations: The complexity of Constraint Satisfaction Problems

Theorems

Let $\mathcal{V} = HSP(\mathbf{A})$, **A** finite. If

Then **A** (thus \mathcal{V}) has a p-ary cyclic term for all primes p > |A|.

L. Barto, M. Kozik (Prague)

Cyclic terms for $SD(\lor)$

Theorems

- Let $\mathcal{V} = HSP(\mathbf{A})$, **A** finite. If
 - |A| ≤ 3 and V has a majority term (07 Kozik, Marković, Stanovský & Computer)

Then **A** (thus V) has a p-ary cyclic term for all primes p > |A|.

Cyclic terms for $SD(\lor)$

Theorems

- Let $\mathcal{V} = HSP(\mathbf{A})$, **A** finite. If
 - |A| ≤ 3 and V has a majority term (07 Kozik, Marković, Stanovský & Computer)
 - ▶ V has a majority term (07 Barto, Kozik, Niven)

Then **A** (thus V) has a p-ary cyclic term for all primes p > |A|.

Theorems

- Let $\mathcal{V} = HSP(\mathbf{A})$, **A** finite. If
 - |A| ≤ 3 and V has a majority term (07 Kozik, Marković, Stanovský & Computer)
 - ▶ V has a majority term (07 Barto, Kozik, Niven)
 - V is congruence distributive (07 BKN)

Then **A** (thus V) has a p-ary cyclic term for all primes p > |A|.

Theorems

- Let $\mathcal{V} = HSP(\mathbf{A})$, **A** finite. If
 - |A| ≤ 3 and V has a majority term (07 Kozik, Marković, Stanovský & Computer)
 - ▶ V has a majority term (07 Barto, Kozik, Niven)
 - V is congruence distributive (07 BKN)
 - V is congruence modular (07 Maróti, McKenzie)

Then **A** (thus \mathcal{V}) has a p-ary cyclic term for all primes p > |A|.

Theorems

- Let $\mathcal{V} = HSP(\mathbf{A})$, **A** finite. If
 - |A| ≤ 3 and V has a majority term (07 Kozik, Marković, Stanovský & Computer)
 - ▶ V has a majority term (07 Barto, Kozik, Niven)
 - V is congruence distributive (07 BKN)
 - V is congruence modular (07 Maróti, McKenzie)
 - ▶ *V* is congruence join semi-distributive (07 BKN)

Then **A** (thus \mathcal{V}) has a p-ary cyclic term for all primes p > |A|.

Theorems

- Let $\mathcal{V} = HSP(\mathbf{A})$, **A** finite. If
 - |A| ≤ 3 and V has a majority term (07 Kozik, Marković, Stanovský & Computer)
 - ▶ V has a majority term (07 Barto, Kozik, Niven)
 - V is congruence distributive (07 BKN)
 - V is congruence modular (07 Maróti, McKenzie)
 - ▶ *V* is congruence join semi-distributive (07 BKN)
 - ▶ *V* is congruence join semi-distributive (08 BK)

Then **A** (thus \mathcal{V}) has a p-ary cyclic term for all primes p > |A|.

Theorems

- Let $\mathcal{V} = HSP(\mathbf{A})$, **A** finite. If
 - |A| ≤ 3 and V has a majority term (07 Kozik, Marković, Stanovský & Computer)
 - ▶ V has a majority term (07 Barto, Kozik, Niven)
 - V is congruence distributive (07 BKN)
 - V is congruence modular (07 Maróti, McKenzie)
 - ▶ *V* is congruence join semi-distributive (07 BKN)
 - ▶ V is congruence join semi-distributive (08 BK)
 - ► V omits 1 (09 BK)

Then **A** (thus V) has a p-ary cyclic term for all primes p > |A|.

 Finite generation is necessary: There exists a locally finite variety omitting 1 with no cyclic terms.

- Finite generation is necessary: There exists a locally finite variety omitting 1 with no cyclic terms.
- ► It easily follows that A has an *n*-ary cyclic term for every *n* which is a product of primes > |A|.

- Finite generation is necessary: There exists a locally finite variety omitting 1 with no cyclic terms.
- ► It easily follows that A has an *n*-ary cyclic term for every *n* which is a product of primes > |A|.
- We can't want more: There exists a finitely generated variety omitting 1 with no cyclic term of any other arity.

- Finite generation is necessary: There exists a locally finite variety omitting 1 with no cyclic terms.
- ► It easily follows that A has an *n*-ary cyclic term for every *n* which is a product of primes > |A|.
- We can't want more: There exists a finitely generated variety omitting 1 with no cyclic term of any other arity.
- It follows that a localy finite variety has a *p*-ary WNU for every prime greater than the size of the two-generated free algebra.

 $SD(\vee)$

Definition

A lattice L is join semi-distributive, if

$$\forall a, b, c \in L \qquad a \lor b = a \lor c \implies a \lor b = a \lor (b \land c)$$

 $SD(\vee)$

Definition

A lattice L is join semi-distributive, if

$$\forall a, b, c \in L \qquad a \lor b = a \lor c \implies a \lor b = a \lor (b \land c)$$

A variety \mathcal{V} is congruence join semi-distributive $(SD(\vee))$, if all algebras in \mathcal{V} has join semi-distributive congruence lattices

 $SD(\vee)$

Definition

A lattice L is join semi-distributive, if

$$\forall a, b, c \in L \qquad a \lor b = a \lor c \implies a \lor b = a \lor (b \land c)$$

A variety \mathcal{V} is congruence join semi-distributive $(SD(\vee))$, if all algebras in \mathcal{V} has join semi-distributive congruence lattices

Theorem (TCT + Kearnes 01)

For a locally finite variety $\mathcal V$ TFAE

• \mathcal{V} is $SD(\vee)$

- ► *V* omits 1, 2 and 5
- > \mathcal{V} satisfies certain Maltsev condition involving linear equations only

Cyclic subpowers

Definition

Let **A** be a finite algebra. A subalgebra $\mathbf{R} \leq \mathbf{A}^n$ is called cyclic, if

 $\forall a_1, \ldots, a_n \in A \qquad (a_1, a_2, \ldots, a_n) \in R \Rightarrow (a_2, \ldots, a_n, a_1) \in R$

Definition

Let **A** be a finite algebra. A subalgebra $\mathbf{R} \leq \mathbf{A}^n$ is called cyclic, if

$$\forall a_1, \ldots, a_n \in A \qquad (a_1, a_2, \ldots, a_n) \in R \Rightarrow (a_2, \ldots, a_n, a_1) \in R$$

Lemma

If all nonempty cyclic subalgebras of \mathbf{A}^p contain a constant tuple, then \mathbf{A} has a p-ary cyclic term.

Lemma

If all nonempty cyclic subalgebras of \mathbf{A}^p contain a constant tuple, then \mathbf{A} has a p-ary cyclic term.

Proof.

Lemma

If all nonempty cyclic subalgebras of \mathbf{A}^p contain a constant tuple, then \mathbf{A} has a p-ary cyclic term.

Proof.

► For every tuple $\mathbf{a} = (a_1, \dots, a_p)$, consider $R_{\mathbf{a}} = Sg((a_1, \dots, a_p), (a_2, \dots, a_p, a_1), \dots) \leq \mathbf{A}^p$

Lemma

If all nonempty cyclic subalgebras of \mathbf{A}^p contain a constant tuple, then \mathbf{A} has a p-ary cyclic term.

Proof.

- For every tuple **a** = (a₁,..., a_p), consider
 R_a = Sg((a₁,..., a_p), (a₂,..., a_p, a₁),...) ≤ **A**^p
- ▶ R_a contains a constant tuple \Rightarrow there exists a term t_a such that

$$t_{\mathbf{a}}(a_1, a_2, \ldots, a_p) = t_{\mathbf{a}}(a_2, \ldots, a_p, a_1) = \ldots$$

Lemma

If all nonempty cyclic subalgebras of \mathbf{A}^p contain a constant tuple, then \mathbf{A} has a p-ary cyclic term.

Proof.

- For every tuple **a** = (a₁,..., a_p), consider
 R_a = Sg((a₁,..., a_p), (a₂,..., a_p, a₁),...) ≤ **A**^p
- ▶ R_a contains a constant tuple \Rightarrow there exists a term t_a such that

$$t_{\mathbf{a}}(a_1, a_2, \ldots, a_p) = t_{\mathbf{a}}(a_2, \ldots, a_p, a_1) = \ldots$$

▶ By composing these terms (in certain way) we get a cyclic term

Fix a prime p. We consider a minimal counterexample to the assumption of the last lemma (and we want to get a contradiction):

Fix a prime p. We consider a minimal counterexample to the assumption of the last lemma (and we want to get a contradiction):

Fix a prime p. We consider a minimal counterexample to the assumption of the last lemma (and we want to get a contradiction):

Let **A** be a minimal $SD(\lor)$ algebra (|A| < p) st. there exists a nonempty cyclic **R** \leq **A**^{*p*} with no constant tuple

R is subdirect

Fix a prime p. We consider a minimal counterexample to the assumption of the last lemma (and we want to get a contradiction):

- R is subdirect
- ► A is simple

Fix a prime p. We consider a minimal counterexample to the assumption of the last lemma (and we want to get a contradiction):

- R is subdirect
- ► A is simple
- ▶ The core theorem (Marcin's talk): There exists a nonidentical retraction $f : (A, R) \rightarrow (A, R)$,

Fix a prime p. We consider a minimal counterexample to the assumption of the last lemma (and we want to get a contradiction):

- R is subdirect
- ► A is simple
- ▶ The core theorem (Marcin's talk): There exists a nonidentical retraction $f : (A, R) \rightarrow (A, R)$,
 - i.e. a mapping $f : A \rightarrow A$, $f \neq id$ s.t.
 - $f^2 = f$ (i.e. f is identical on its image)
 - if $(a_1, \ldots, a_p) \in R$, then $(f(a_1), \ldots, f(a_p)) \in R$

- **A**: minimal $SD(\lor)$ algebra st. \exists cyclic $\mathbf{R} \leq \mathbf{A}^p$ with no constant
 - ▶ The core theorem (Marcin's talk): There exists a nonidentical retraction $f : (A, R) \rightarrow (A, R)$, i.e. a mapping $f : A \rightarrow A$, $f \neq id$ s.t.
 - $f^2 = f$ (i.e. f is identical on its image)
 - if $(a_1,\ldots,a_p) \in R$, then $(f(a_1),\ldots,f(a_p)) \in R$

- **A**: minimal $SD(\lor)$ algebra st. \exists cyclic $\mathbf{R} \leq \mathbf{A}^p$ with no constant
 - ▶ The core theorem (Marcin's talk): There exists a nonidentical retraction $f : (A, R) \rightarrow (A, R)$, i.e. a mapping $f : A \rightarrow A$, $f \neq id$ s.t.
 - $f^2 = f$ (i.e. f is identical on its image)
 - if $(a_1, \ldots, a_p) \in R$, then $(f(a_1), \ldots, f(a_p)) \in R$
 - Assume A = (A, t₁,..., t_m), where t₁,..., t_m are from the Maltsev condition for SD(∨)

- **A**: minimal $SD(\lor)$ algebra st. \exists cyclic $\mathbf{R} \leq \mathbf{A}^p$ with no constant
 - ▶ The core theorem (Marcin's talk): There exists a nonidentical retraction $f : (A, R) \rightarrow (A, R)$, i.e. a mapping $f : A \rightarrow A$, $f \neq id$ s.t.
 - $f^2 = f$ (i.e. f is identical on its image)
 - if $(a_1, \ldots, a_p) \in R$, then $(f(a_1), \ldots, f(a_p)) \in R$
 - ► Assume $\mathbf{A} = (A, t_1, \dots, t_m)$, where t_1, \dots, t_m are from the Maltsev condition for $SD(\lor)$

• Consider
$$\mathbf{B} = (f(A), ft_1, \dots, ft_m)$$

- **A**: minimal $SD(\lor)$ algebra st. \exists cyclic $\mathbf{R} \leq \mathbf{A}^p$ with no constant
 - ▶ The core theorem (Marcin's talk): There exists a nonidentical retraction $f : (A, R) \rightarrow (A, R)$, i.e. a mapping $f : A \rightarrow A$, $f \neq id$ s.t.
 - $f^2 = f$ (i.e. f is identical on its image)
 - if $(a_1, \ldots, a_p) \in R$, then $(f(a_1), \ldots, f(a_p)) \in R$
 - ► Assume $\mathbf{A} = (A, t_1, \dots, t_m)$, where t_1, \dots, t_m are from the Maltsev condition for $SD(\lor)$

• Consider
$$\mathbf{B} = (f(A), ft_1, \dots, ft_m)$$

$$|B| < |A|$$

- **A**: minimal $SD(\lor)$ algebra st. \exists cyclic $\mathbf{R} \leq \mathbf{A}^p$ with no constant
 - ▶ The core theorem (Marcin's talk): There exists a nonidentical retraction $f : (A, R) \rightarrow (A, R)$, i.e. a mapping $f : A \rightarrow A$, $f \neq id$ s.t.
 - $f^2 = f$ (i.e. f is identical on its image)
 - ▶ if $(a_1, \ldots, a_p) \in R$, then $(f(a_1), \ldots, f(a_p)) \in R$
 - ► Assume $\mathbf{A} = (A, t_1, \dots, t_m)$, where t_1, \dots, t_m are from the Maltsev condition for $SD(\lor)$

• Consider
$$\mathbf{B} = (f(A), ft_1, \dots, ft_m)$$

- ▶ |B| < |A|
- ▶ **B** is $SD(\lor)$ (as ft_1, \ldots, ft_m satisfy all linear equations satisfied by t_1, \ldots, t_m)

- A: minimal $SD(\lor)$ algebra st. \exists cyclic $\mathbf{R} \leq \mathbf{A}^p$ with no constant
 - ▶ The core theorem (Marcin's talk): There exists a nonidentical retraction $f : (A, R) \rightarrow (A, R)$, i.e. a mapping $f : A \rightarrow A$, $f \neq id$ s.t.
 - $f^2 = f$ (i.e. f is identical on its image)
 - ▶ if $(a_1, \ldots, a_p) \in R$, then $(f(a_1), \ldots, f(a_p)) \in R$
 - ► Assume $\mathbf{A} = (A, t_1, \dots, t_m)$, where t_1, \dots, t_m are from the Maltsev condition for $SD(\lor)$

• Consider
$$\mathbf{B} = (f(A), ft_1, \dots, ft_m)$$

- $\bullet |B| < |A|$
- ▶ **B** is $SD(\lor)$ (as ft_1, \ldots, ft_m satisfy all linear equations satisfied by t_1, \ldots, t_m)
- $(\mathbf{R} \cap \mathbf{B}^p) \leq \mathbf{B}^p$ is cyclic, without a constant tuple

- A: minimal $SD(\lor)$ algebra st. \exists cyclic $\mathbf{R} \leq \mathbf{A}^p$ with no constant
 - ▶ The core theorem (Marcin's talk): There exists a nonidentical retraction $f : (A, R) \rightarrow (A, R)$, i.e. a mapping $f : A \rightarrow A$, $f \neq id$ s.t.
 - $f^2 = f$ (i.e. f is identical on its image)
 - if $(a_1, \ldots, a_p) \in R$, then $(f(a_1), \ldots, f(a_p)) \in R$
 - ► Assume $\mathbf{A} = (A, t_1, \dots, t_m)$, where t_1, \dots, t_m are from the Maltsev condition for $SD(\lor)$

• Consider
$$\mathbf{B} = (f(A), ft_1, \dots, ft_m)$$

- $\blacktriangleright |B| < |A|$
- ▶ **B** is $SD(\lor)$ (as ft_1, \ldots, ft_m satisfy all linear equations satisfied by t_1, \ldots, t_m)
- ▶ $(\mathbf{R} \cap \mathbf{B}^p) \leq \mathbf{B}^p$ is cyclic, without a constant tuple
- A contradiction!

- A: minimal $SD(\lor)$ algebra st. \exists cyclic $\mathbf{R} \leq \mathbf{A}^{p}$ with no constant
 - ▶ The core theorem (Marcin's talk): There exists a nonidentical retraction $f : (A, R) \rightarrow (A, R)$, i.e. a mapping $f : A \rightarrow A$, $f \neq id$ s.t.
 - $f^2 = f$ (i.e. f is identical on its image)
 - if $(a_1, \ldots, a_p) \in R$, then $(f(a_1), \ldots, f(a_p)) \in R$
 - ► Assume $\mathbf{A} = (A, t_1, \dots, t_m)$, where t_1, \dots, t_m are from the Maltsev condition for $SD(\lor)$

• Consider
$$\mathbf{B} = (f(A), ft_1, \dots, ft_m)$$

- $\blacktriangleright |B| < |A|$
- ▶ **B** is $SD(\lor)$ (as ft_1, \ldots, ft_m satisfy all linear equations satisfied by t_1, \ldots, t_m)
- ▶ $(\mathbf{R} \cap \mathbf{B}^p) \leq \mathbf{B}^p$ is cyclic, without a constant tuple
- A contradiction!
- ► Thank you!!!