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Recall the near unanimity (NU) identities

f (y , x , x , . . . , x) ≈ f (x , y , x , . . . , x) ≈ · · · ≈ f (x , x , . . . , x , y) ≈ x

NU(l): near unanimity term of arity l ≥ 3

I [Baker-Pixley] A variety has NU(k + 1)
iff subproducts are determined by k-fold projections

I [Bergman] If a variety has NU(k + 1),
then consistent systems of k-ary relations

are k-fold projections of subproducts

I [Our result] A variety has NU(k + 2)
iff consistent systems of k-ary relations

are k-fold projections of subproducts

This talk: k = 2
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[K. Baker, A. Pixley’75: Polynomial interpolation and the Chinese remainder theorem

for algebraic systems]

Theorem

Let V be a variety. TFAE.

(i) V has NU(3).

(ii) Every R ≤ A1 × · · · × An with Ai ∈ V
is uniquely determined by the system (projij(R))i ,j∈[n],i 6=j

Item (ii) rephrased

I for every A1, . . . ,An ∈ V
I for every (Pij)i ,j∈[n],i 6=j where Pij ≤ Ai × Aj

I there exists at most one R ≤ A1 × · · · × An such that
(∀i , j) Pij = projij(R)

What about at least?
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Binary system over V
I A1, . . . ,An ∈ V
I (Pij)i ,j∈[n] where Pij ≤ Ai × Aj (always i 6= j)

Witnessing relation: R ≤ A1 × . . .An with (∀i , j) Pij = projij(R)

Baker-Pixley: A variety V has NU(3) iff
every binary system over V has at most one witnessing relation

Sometimes: clearly no witnessing relation exists, e.g.:

I P12 = {(1, 1)}, P21 = {(1, 2)}
I P12 = P23 = {(1, 1), (2, 2)}, P13 = {(1, 2), (2, 1)}

Definition

(Pij) is consistent if

I (∀i , j) Pij = P−1
ji

I (∀i , j , k) (∀aiaj ∈ Pij) (∃ak) aiak ∈ Pik and ajak ∈ Pjk
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[G. Bergman’77: On the existence of subalgebras of direct products with prescribed

d-fold projections]

Theorem

Let V be a variety. Then (i) implies (ii).

(i) V has NU(3).

(ii) Every consistent binary system (Pij) over V has a witnessing
relation.

Remarks:

I Bergman gave strengthening (ii’) of (ii) and proved (i) ⇔ (ii’)

I Very similar result later obtained in the context of CSPs
[Feder, Vardi’98], [Jeavons, Cohen, Cooper’98]
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[Barto, Kozik, Tan, Valeriote: Sensitive instances of CSPs, submitted]

Theorem

Let V be a variety. TFAE.

(i) V has NU(4).

(ii) Every consistent binary system (Pij) over V has a witnessing
relation.

For a local version (concerning a single algebra):

Definition

An algebra A has local NU(l) if for every finite F ⊆ A
there exists an l-ary term operation tF of A such that
tF (b, a, . . . , a) = tF (a, b, a, . . . , a) = · · · = tF (a, . . . , a, b) = a
for every a, b ∈ F .
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Theorem (Local Baker-Pixley)

Let A be an idempotent algebra. TFAE.

(i) A has local NU(3).

(ii) Every binary system over {A} has at most one witnessing
relation.

Theorem (Local version of our result)

Let A be an idempotent algebra. TFAE.

(i) A has local NU(4).

(ii) Every binary system over {A2} has at least one witnessing
relation.

Remark: Idempotency necessary, square in A2 as well.
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Theorem (Local version of our result)

Let A be an idempotent algebra. TFAE.

(i) A has local NU(4).

(ii) Every binary system over {A2} has at least one witnessing
relation.

(ii) ⇒ (i)

I careful choices of systems give “very local” NU(4)’s

I local NU(4)’s can be assembled from these [Horowitz’13]

(i) ⇒ (ii)

I candidate witness (the largest if any exists):
R = {a1a2 . . . an : (∀i , j) aiaj ∈ Pij}

I enough to show: (∀i , j)(∀aiaj ∈ Pij) there is an extension in R



Proof 8/10

Theorem (Local version of our result)

Let A be an idempotent algebra. TFAE.

(i) A has local NU(4).

(ii) Every binary system over {A2} has at least one witnessing
relation.

(ii) ⇒ (i)

I careful choices of systems give “very local” NU(4)’s

I local NU(4)’s can be assembled from these [Horowitz’13]

(i) ⇒ (ii)

I predecessor: a version for finite algebras [BK]

I main tool for the predecessor: a loop lemma

I main tool for this result: an infinite loop lemma
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Here: S ⊆ T ≤ B2, S “locally absorbs” T , B idempotent

[∼ Oľsák’17] If S is symmetric and ∆A ⊆ T , then S ∩∆A 6= ∅.
[BKTV] If S has a directed cycle and ∆A ⊆ T , then S ∩∆A 6= ∅.
[BKTV] if S has a long d.walk and ∆A ∪S−1 ⊆ T , then S ∩∆A 6= ∅.

Fix a1, a2, a3 ∈ B and assume
∃a4 such that aiaj ∈ Pij for (i , j) ∈ I (a1a2a3a4 works for I)
∃a4 such that aiaj ∈ Pij for (i , j) ∈ J

Consider
S = {a4a

′
4 : a1a2a3a4 works for I , a1a2a3a

′
4 works for J }

T = {b4b
′
4 : (∃b1, b2, b3) b1b2b3b4 work for I , . . . }

Then
S locally absorbs T (because of local NU)
if S and T satisfies ... we get a4a4 ∈ S for some a4

ie. a1a2a3a4 works for I ∪ J
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Of interest for ∞-domain CSPs:

Question

Assume A is oligomorphic core and A has a quasi-NU(4), i.e.,

t(y , x , x , x) ≈ t(x , y , x , x) ≈ t(x , x , y , x) ≈ t(x , x , x , y) ≈
t(x , x , x , x)

Does every binary system over {A} necessarily have at least one
witnessing relation?

Remarks:

I quasi-NU(4) ⇒ local NU(4), but not idempotent

I the loop lemma with quasi-absorption does not work

Thank you!
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