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Loop lemmata 2/13

loop lemma = theorem of the form

Theorem (a loop lemma)

Let A be an algebra such that [...(weak) algebraic assumptions...].
Let R ≤ A2 be such that [...(weak) structural assumptions...].

Then R has a loop, ie. (∃a) (a, a) ∈ R

known: many

this talk: a new loop lemma
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I finiteness, e.g. A is finite
I tame unaries, e.g.

I A is idempotent = only unary term operation is id
I A is core = every unary term operation is a permutation

I some equational condition, e.g.
A satisfies some nontrivial Maltsev condition

strong Maltsev condition = there exist term operations t1, . . . , tn
satisfying [...fixed set of identities...]

Maltsev condition = countable disjunction of strong ones

Example: (∃m) such that m(x , x , y) ≈ y ≈ m(y , x , x)

Recall: Maltsev conditions ↔ properties of compatible relations

Fact: A satisfies some nontrivial (strong) Maltsev condition
⇔ HSP(A) does not contain a naked set

= each operation is a projection



Typical structural assumptions on R ≤ A2
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Viewpoint: digraph (A;R), where A = vertices, R = edges

I R ≤subdirect A
2 (no sources or sinks)

I (A;R) is connected

I R is symmetric = (A;R) is an undirected graph
I (A;R) is far from a directed cycle

I (A;R) is not bipartite (in symmetric case)
I (A;R) is linked: (∀a, b ∈ A) a↗↖↗↖ · · · ↗↖ b
I (A;R) has no homomorphism to a non-trivial directed cycle
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Theorem ([Hell, Nešeťril’90]; [Bulatov’05])

Let A be an algebra such that

I A is finite

I A is idempotent

I A satisfies some nontrivial Maltsev condition

Let R ≤ A2 be such that

I R ≤subdirect A
2

I (A;R) is connected

I R is symmetric

I (A;R) is not bipartite

Then R has a loop.
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Theorem ([Barto, Kozik, Niven’08])

Let A be an algebra such that

I A is finite

I A is idempotent

I A satisfies some nontrivial Maltsev condition

Let R ≤ A2 be such that

I R ≤subdirect A
2

I (A;R) is connected

I (A;R) has no homomorphism to a non-trivial directed cycle

Then R has a loop.
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I it tells us something nontrivial about binary relations
compatible with A
not congruences; large class of finite algebras

I NP-hardness results for some constraint satisfaction problems
(CSPs)

I Thm: A finite, idempotent

satisfies a nontrivial Malsev condition
⇒ A has a term operation s(r , a, r , e) ≈ s(a, r , e, a)

[Kearnes, Marković, McKenzie’14]

I it has led to new useful concepts and theorems
(e.g. absorption theorem)
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I only finite algebras

I only idempotent algebras

Motivation for generalizations

I universal algebra

I infinite domain CSP
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Theorem ([Barto, Kozik])

Let A be an algebra such that

I A is finite

I A is a core

I A satisfies some nontrivial Maltsev condition

Let R ≤ A2 be such that

I R ≤subdirect A
2

I (A;R) is linked

Then R has a loop.
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Corollary

If A is a finite core satisfying a nontrivial Maltsev condition,
then A has term operations such that

t(α1x , . . . , αkx , β1y , . . . , βky , γ1x , . . . , γkx , δ1z , . . . , δkz ,

ε1y , . . . , εky , ζ1z , . . . , ζkz)

≈ t(η1y , . . . , ηky , θ1x , . . . , θkx , ι1z , . . . , ιkz , κ1x , . . . , κkx ,

λ1z , . . . , λkz , µ1y , . . . , µky)

We would like to

I have a nicer corollary (at least k fixed)

I prove an infinite version

I get rid of the the coreness assumption

I weaken the structural assumption
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Definition

B absorbs A, written B / A if (∀i) t(B, . . . ,B,A
i
,B, . . . ,B) ⊆ B

By induction on |A|. The induction step is:
I find a proper subalgebra B / A

I find either proper absorption or a transitive term operation
(∀i) (∀a ∈ A)t(A, . . . ,A, {a}

i

,A, . . . ,A) = A

I get absorption from linked R + transitive term operation

I improve B so that R ′ := R ∩ B2 ≤subdirect B
2

I prove that R ′ is still linked

I use induction hypothesis for R ′ ≤ B2
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2 new ingredients

I getting transitive operation without idempotency

I getting absorption without idempotency

getting absorption with idempotency

I from R <subdirect A
2 linked one can pp–define

S <subdirect A
2 with a central element a: (∀b)(a, b) ∈ S

I such S + transitive operation gives absorption

getting absorption without idempotency

I Zhuk: from Rosenberg’s classification it should follow that
linked R <subdirect A

2 gives absorption
... it is enough to go through xxx cases

I “ingenious” idea: look at Rosenberg’s proof
...or Pinsker’s master thesis

I it is there



Thank you!


