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Outline and notation

Outline

I Basic CSP reductions – 3 views

I Questions

I Basic CSP reductions revisited

Notation

I A . . . finite set of relations on A

I A . . . the clone of polymorphisms of A



Basic reductions – via relations

CSP(B) is log-space reducible to CSP(A) if

I B is pp-definable from A

I B is a “pp-power” of A
ie. B = An and
each l-ary R ∈ B is pp-def from A as an nl-ary relation

I B = A|S (induced substructure), where S is pp-def from A
I B ∼= A/∼, where ∼ is pp-def from A
I last three together ⇔ A pp-interprets B

I B is homomorphically equivalent to A . . . WLOG core

I B = A ∪ {a}, if A is a core
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Basic reductions – via algebraic constructions

CSP(B) is log-space reducible to CSP(A) if

I B is an expansion of A (ie. A ⊆ B)

I B = An

I B is a subalgebra of A

I B ∼= A/∼, where ∼ is a congruence of A

I last three ⇔ B ∈ HSPfin(A)

I Finite: WLOG A idempotent

I Infinite: A bit different



Basic reductions – via clone homomorphisms

Definition

ξ : A→ B is a clone homomorphism, if it

I preserves arities

I sends projections to projections ξ(πni ) = πni
I preserves composition:
ξ(f (g1, . . . , gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)),
where f ∈ A is n-ary, gi ∈ A is m-ary

Alternatively: ξ-images satisfy the same identities.



The 3 together for finite

Theorem (Bodnaruk et el./Geiger; Birkhoff)

TFAE if A,B are finite:

1. A pp-interprets B

A
pp-power
 E substr

 F
quotient
 B

2. B is an expansion of a clone in HSPfin(A)

A An subalg
 C

quotient
 C/∼

expansion
 B

3. There exists a clone homomorphisms ξ : A→ B



(3) ⇒ (2)

Assume ξ : A→ B is a clone homomorphism.
Want:

A An subalg
 C

quotient
 C/∼

expansion
 B

I Say B = {b1, . . . , bk}
I n = Ak

I C = k-ary operations in A
(C is the free algebra with B generators)

I Define f : C → B by t 7→ ξ(t)(b1, . . . , bk)

I ∼= ker f is a congruence of A and f gives an isomorphism
C/ ∼ → ξ(A)



The 3 together for infinite

Theorem (Bodirsky, Nešeťril; Bodirsky, Pinsker)

TFAE if A,B ω-categorical:

1. A pp-interprets B

A
pp-power
 E substr

 F
quotient
 B

2. B is an expansion of a clone in HSPfin(A).

A An subalg
 C

quotient
 C/∼

expansion
 B

3. There exists a continuous clone homomorphisms ξ : A→ B
such that ξ(A) is oligomorphic



Algebraic dichotomy conjecture vs. reality

Conjecture (Bulatov, Jeavons, Krokhin; Barto, Kozik)

Assume A finite. TFAE

I CSP(A) in P

I A contains an operation t of arity ≥ 2 such that

t(x1, x2, . . . , xn) = t(x2, . . . , xn, x1)

Reality can be worse:



Algebraic dichotomy conjecture vs. reality

Future theorem (Antońın Barto, Bálint Maróti 2063)

Assume A finite. TFAE

I CSP(A) in P

I A contains an operations t1, t2, . . . such that

t1(x1, t2(x37, x2), t3(x123)) = t3(t3(t2(x13, x2)))

t20(t12(x1), x1, x2) = t13(x2, x1)

. . .

...but certainly the characterization looks like this (for any
complexity class)



Questions

I Theorem linking the 3 views does not cover all the easy
reductions...

I ...and by adding homomorphic equivalence we get an
essentially coarser ordering. What is this ordering?

I In most identities relevant in CSP, there are no nested terms.
Is it possible to prove that nesting is not necessary?
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Basic reductions revisited – via relations
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redundant

I B = A/∼
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I B is homomorphically equivalent to A
I B = A ∪ {a}, if A is a core

redundant (less obvious)

Observation

TFAE

I B can be obtained from A using the above constructions

I B is homomorphically equivalent to a pp-power of A
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Basic reductions revisited – via algebraic constructions

I B is an expansion of A (ie. A ⊆ B)
I B = An

I B is a subalgebra of A

redundant

I B = A/ ∼, where ∼ is a congruence of A

redundant

Definition

B is a unary modification of A if ∃ f : A→ B, ∃ g : B → A:
B = 〈t : t ∈ A〉, t(x1, . . . , xk) = f (t(g(x1), . . . , g(xk)))

Observation

TFAE for ω-categorical

I B is homomorphically equivalent to a pp-power of A
I B is an expansion of a unary modification of a power of A

(finite: equivalently g can be taken injective)
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Basic reductions revisited – via weak clone homomorphisms

Definition

ξ : A→ B is a weak clone homomorphism, if it

I preserves arities

I preserves composition with projections:
ξ(f (πl1 , . . . , πln)) = ξ(f )(πl1 , . . . , πln), where f ∈ A is n-ary

Alternatively: ξ-images satisfy the same strongly linear identities
(=height 1 terms on both sides)



The 3 together revisited for finite

Theorem

TFAE if A,B are finite:

1. B is homo equivalent to a pp-power of A

A
pp-power
 E

homo-eq
 B

2. B is expansion of a unary modification of a power of A

A An unary mod
 D

expansion
 B

3. There exists a weak clone homomorphisms ξ : A→ B



(3) ⇒ (2)

Assume ξ : A→ B is a clone homomorphism.
Want:

A An shrink
 D

expansion
 B

I Say B = {b1, . . . , bk}
I n = Ak

I C = k-ary operations in A

I D = the clone generated by ξ(A)

I Define f : Ak → B by t 7→ ξ(t)(b1, . . . , bk) on C , otherwise
arbitrary

I Define g : B → Ak by bi 7→ πi
I D is the unary modification of Ak given by f , g since t = ξ(t)



Algebraic dichotomy conjecture vs. reality revisited

Conjecture (Bulatov, Jeavons, Krokhin; Barto, Kozik)

Assume A finite. TFAE

I CSP(A) in P

I A contains an operation t of arity ≥ 2 such that

t(x1, x2, . . . , xn) = t(x2, . . . , xn, x1)

Reality can be worse



Algebraic dichotomy conjecture vs. reality revisited

Future theorem (Anna Kozik, Hermenegilda Pinsker 2059)

Assume A finite. TFAE

I CSP(A) in P

I A contains an operations t1, t2, . . . such that

t1(x3, x1, x2, x2) = t2(x3, x3, x1)

t20(x1, x1, x2) = t13(x2, x1)

...but certainly the characterization looks like this
(for any complexity class)



The 3 together revisited for infinite

Theorem

TFAE if A,B ω-categorical.

1. B is homo equivalent to a pp-power of A
2. B is expansion of a unary modification of a power of A

And these conditions are implied by

3 There exists continuous ξ : A→ B which preserves arities and

ξ(α(t(β1, . . . βn))) = ξ(α)ξ(t)(ξ(β1), . . . , ξ(βn))

where f ∈ A is n-ary, and α, βi ∈ A are unary bijections.



Summary

Remember: The complexity of CSP(A) for finite
A depends only on linear identities satisfied by A

To do:

I Can we use it?

I Improve the 3 views theorem for infinite domains

I Basic reductions → preoder such that
A ≤ B then CSP(A) is easier then CSP(B)
Can we find some more reductions?
Optimally characterizing log-space reduction (optimistic)

Thank you!
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