The basic CSP reductions revisited

Libor Barto, joint with Michael Pinsker

Charles University in Prague

Banff workshop November 2014

Outline

- Basic CSP reductions 3 views
- Questions
- Basic CSP reductions revisited

Notation

- \mathcal{A} ... finite set of relations on \mathcal{A}
- A \dots the clone of polymorphisms of $\mathcal A$

 $\blacktriangleright \ {\cal B}$ is pp-definable from ${\cal A}$

• \mathcal{B} is pp-definable from \mathcal{A}

B is a "pp-power" of A
 ie. B = Aⁿ and
 each *I*-ary R ∈ B is pp-def from A as an *nI*-ary relation

• \mathcal{B} is pp-definable from \mathcal{A}

B is a "pp-power" of A
ie. B = Aⁿ and
each *l*-ary R ∈ B is pp-def from A as an *nl*-ary relation
B = A|_S (induced substructure), where S is pp-def from A

- \mathcal{B} is pp-definable from \mathcal{A}
- B is a "pp-power" of A
 ie. B = Aⁿ and
 each *I*-ary R ∈ B is pp-def from A as an *nI*-ary relation
- ▶ $\mathcal{B} = \mathcal{A}|_{\mathcal{S}}$ (induced substructure), where S is pp-def from \mathcal{A}
- ▶ $\mathcal{B} \cong \mathcal{A}/\!\sim$, where \sim is pp-def from \mathcal{A}

- \mathcal{B} is pp-definable from \mathcal{A}
- B is a "pp-power" of A
 ie. B = Aⁿ and
 each *I*-ary R ∈ B is pp-def from A as an *nI*-ary relation
- $\mathcal{B} = \mathcal{A}|_{\mathcal{S}}$ (induced substructure), where S is pp-def from \mathcal{A}
- $\mathcal{B} \cong \mathcal{A}/\!\sim$, where \sim is pp-def from \mathcal{A}
- last three together $\Leftrightarrow \mathcal{A}$ pp-interprets \mathcal{B}

- \mathcal{B} is pp-definable from \mathcal{A}
- B is a "pp-power" of A
 ie. B = Aⁿ and
 each *I*-ary R ∈ B is pp-def from A as an *nI*-ary relation
- $\mathcal{B} = \mathcal{A}|_{\mathcal{S}}$ (induced substructure), where S is pp-def from \mathcal{A}
- $\mathcal{B} \cong \mathcal{A}/\!\sim$, where \sim is pp-def from \mathcal{A}
- last three together $\Leftrightarrow \mathcal{A}$ pp-interprets \mathcal{B}
- \mathcal{B} is homomorphically equivalent to $\mathcal{A} \dots$ WLOG core

- \mathcal{B} is pp-definable from \mathcal{A}
- B is a "pp-power" of A
 ie. B = Aⁿ and
 each *I*-ary R ∈ B is pp-def from A as an *nI*-ary relation
- $\mathcal{B} = \mathcal{A}|_{\mathcal{S}}$ (induced substructure), where S is pp-def from \mathcal{A}
- $\mathcal{B} \cong \mathcal{A}/\!\sim$, where \sim is pp-def from \mathcal{A}
- last three together $\Leftrightarrow \mathcal{A}$ pp-interprets \mathcal{B}
- \mathcal{B} is homomorphically equivalent to $\mathcal{A} \dots$ WLOG core
- $\mathcal{B} = \mathcal{A} \cup \{a\}$, if \mathcal{A} is a core

• **B** is an expansion of **A** (ie. $\mathbf{A} \subseteq \mathbf{B}$)

 $\blacktriangleright \mathbf{B} = \mathbf{A}^n$

- **B** is a subalgebra of **A**
- ▶ $\mathbf{B} \cong \mathbf{A} / \sim$, where \sim is a congruence of \mathbf{A}
- ▶ last three \Leftrightarrow **B** \in HSP^{fin}(**A**)
- Finite: WLOG A idempotent
- Infinite: A bit different

Definition

- $\xi: \mathbf{A} \to \mathbf{B}$ is a clone homomorphism, if it
 - preserves arities
 - sends projections to projections $\xi(\pi_i^n) = \pi_i^n$
 - ▶ preserves composition: $\xi(f(g_1,...,g_n)) = \xi(f)(\xi(g_1),...,\xi(g_n)),$ where $f \in \mathbf{A}$ is *n*-ary, $g_i \in \mathbf{A}$ is *m*-ary

Alternatively: ξ -images satisfy the same identities.

Theorem (Bodnaruk et el./Geiger; Birkhoff)

- TFAE if A, B are finite:
 - 1. A pp-interprets B

$$\mathcal{A} \stackrel{pp-power}{\leadsto} \mathcal{E} \stackrel{substr}{\leadsto} \mathcal{F} \stackrel{quotient}{\leadsto} \mathcal{B}$$

2. **B** is an expansion of a clone in $\mathrm{HSP}^{\mathrm{fin}}(\mathbf{A})$

$$\mathbf{A} \rightsquigarrow \mathbf{A}^n \xrightarrow{subalg} \mathbf{C} \xrightarrow{quotient} \mathbf{C} / \sim \xrightarrow{expansion} \mathbf{B}$$

3. There exists a clone homomorphisms $\xi : \mathbf{A} \to \mathbf{B}$

Assume $\xi : \mathbf{A} \to \mathbf{B}$ is a clone homomorphism. Want:

$$\mathbf{A} \rightsquigarrow \mathbf{A}^n \stackrel{\text{subalg}}{\rightsquigarrow} \mathbf{C} \stackrel{\text{quotient}}{\rightsquigarrow} \mathbf{C}/\sim \stackrel{\text{expansion}}{\rightsquigarrow} \mathbf{E}$$

Say
$$B = \{b_1, \dots, b_k\}$$

 $n = A^k$

- C = k-ary operations in A
 (C is the free algebra with B generators)
- Define $f: C \to B$ by $t \mapsto \xi(t)(b_1, \ldots, b_k)$
- ► ~= ker *f* is a congruence of **A** and *f* gives an isomorphism $\mathbf{C}/\sim \rightarrow \xi(\mathbf{A})$

Theorem (Bodirsky, Nešetřil; Bodirsky, Pinsker)

- TFAE if $A, B \omega$ -categorical:
 - 1. \mathcal{A} pp-interprets \mathcal{B}

$$\mathcal{A} \stackrel{pp-power}{\leadsto} \mathcal{E} \stackrel{substr}{\leadsto} \mathcal{F} \stackrel{quotient}{\leadsto} \mathcal{B}$$

2. **B** is an expansion of a clone in $HSP^{fin}(A)$.

$$\mathbf{A} \rightsquigarrow \mathbf{A}^n \stackrel{subalg}{\rightsquigarrow} \mathbf{C} \stackrel{quotient}{\rightsquigarrow} \mathbf{C} / \sim \stackrel{expansion}{\rightsquigarrow} \mathbf{B}$$

3. There exists a continuous clone homomorphisms $\xi : \mathbf{A} \to \mathbf{B}$ such that $\overline{\xi(\mathbf{A})}$ is oligomorphic

Conjecture (Bulatov, Jeavons, Krokhin; Barto, Kozik)

Assume A finite. TFAE

- CSP(A) in P
- ▶ A contains an operation t of arity ≥ 2 such that

$$t(x_1, x_2, \ldots, x_n) = t(x_2, \ldots, x_n, x_1)$$

Reality can be worse:

Future theorem (Antonín Barto, Bálint Maróti 2063)

Assume A finite. TFAE

- ▶ CSP(A) in P
- A contains an operations t_1, t_2, \ldots such that

$$egin{aligned} t_1(x_1,t_2(x_{37},x_2),t_3(x_{123})) &= t_3(t_3(t_2(x_{13},x_2))) \ t_{20}(t_{12}(x_1),x_1,x_2) &= t_{13}(x_2,x_1) \end{aligned}$$

. . .

...but certainly the characterization looks like this (for any complexity class)

Theorem linking the 3 views does not cover all the easy reductions...

- Theorem linking the 3 views does not cover all the easy reductions...
- …and by adding homomorphic equivalence we get an essentially coarser ordering. What is this ordering?

- Theorem linking the 3 views does not cover all the easy reductions...
- …and by adding homomorphic equivalence we get an essentially coarser ordering. What is this ordering?
- In most identities relevant in CSP, there are no nested terms. Is it possible to prove that nesting is not necessary?

- \mathcal{B} is pp-definable from \mathcal{A}
- \mathcal{B} is a pp-power of \mathcal{A}
- $\mathcal{B} = \mathcal{A}|_{\mathcal{S}}$
- $\mathcal{B} = \mathcal{A}/\!\sim$
- ${\mathcal B}$ is homomorphically equivalent to ${\mathcal A}$
- $\mathcal{B} = \mathcal{A} \cup \{a\}$, if \mathcal{A} is a core

- \mathcal{B} is pp-definable from \mathcal{A} redundant
- \mathcal{B} is a pp-power of \mathcal{A}
- $\blacktriangleright \ \mathcal{B} = \mathcal{A}|_{\mathcal{S}}$
- $\blacktriangleright \ \mathcal{B} = \mathcal{A}/\!\sim$
- ${\mathcal B}$ is homomorphically equivalent to ${\mathcal A}$
- $\mathcal{B} = \mathcal{A} \cup \{a\}$, if \mathcal{A} is a core

- \mathcal{B} is pp-definable from \mathcal{A} redundant
- \mathcal{B} is a pp-power of \mathcal{A}
- $\blacktriangleright \ \mathcal{B} = \mathcal{A}|_{\mathcal{S}} \ \text{redundant}$
- $\blacktriangleright \ \mathcal{B} = \mathcal{A} / \! \sim$
- ${\mathcal B}$ is homomorphically equivalent to ${\mathcal A}$
- $\mathcal{B} = \mathcal{A} \cup \{a\}$, if \mathcal{A} is a core

- \mathcal{B} is pp-definable from \mathcal{A} redundant
- \mathcal{B} is a pp-power of \mathcal{A}
- $\mathcal{B} = \mathcal{A}|_{\mathcal{S}}$ redundant
- $\mathcal{B} = \mathcal{A}/\sim$ redundant
- ${\mathcal B}$ is homomorphically equivalent to ${\mathcal A}$
- $\mathcal{B} = \mathcal{A} \cup \{a\}$, if \mathcal{A} is a core

- \mathcal{B} is pp-definable from \mathcal{A} redundant
- \mathcal{B} is a pp-power of \mathcal{A}
- $\mathcal{B} = \mathcal{A}|_{\mathcal{S}}$ redundant
- $\mathcal{B} = \mathcal{A}/\sim$ redundant
- ${\mathcal B}$ is homomorphically equivalent to ${\mathcal A}$
- $\mathcal{B} = \mathcal{A} \cup \{a\}$, if \mathcal{A} is a core redundant (less obvious)

 $\mathrm{CSP}(\mathcal{B})$ is log-space reducible to $\mathrm{CSP}(\mathcal{A})$ if

- \mathcal{B} is pp-definable from \mathcal{A} redundant
- \mathcal{B} is a pp-power of \mathcal{A}
- $\mathcal{B} = \mathcal{A}|_{\mathcal{S}}$ redundant
- $\mathcal{B} = \mathcal{A} / \sim$ redundant
- ${\mathcal B}$ is homomorphically equivalent to ${\mathcal A}$
- $\mathcal{B} = \mathcal{A} \cup \{a\}$, if \mathcal{A} is a core redundant (less obvious)

Observation

TFAE

- \blacktriangleright ${\cal B}$ can be obtained from ${\cal A}$ using the above constructions
- $\mathcal B$ is homomorphically equivalent to a pp-power of $\mathcal A$

- **B** is an expansion of **A** (ie. $A \subseteq B$)
- $\blacktriangleright \mathbf{B} = \mathbf{A}^n$
- B is a subalgebra of A
- ${f B}={f A}/\sim$, where \sim is a congruence of ${f A}$

- **B** is an expansion of **A** (ie. $A \subseteq B$)
- $\blacktriangleright \mathbf{B} = \mathbf{A}^n$
- B is a subalgebra of A
- ${f B}={f A}/\sim$, where \sim is a congruence of ${f A}$

Definition

B is a unary modification of **A** if $\exists f : A \to B$, $\exists g : B \to A$: **B** = $\langle \overline{t} : t \in \mathbf{A} \rangle$, $\overline{t}(x_1, \dots, x_k) = f(t(g(x_1), \dots, g(x_k)))$

- **B** is an expansion of **A** (ie. $A \subseteq B$)
- $\blacktriangleright \mathbf{B} = \mathbf{A}^n$
- **B** is a subalgebra of **A** redundant
- ${f B}={f A}/\sim$, where \sim is a congruence of ${f A}$

Definition

B is a unary modification of **A** if $\exists f : A \to B$, $\exists g : B \to A$: **B** = $\langle \overline{t} : t \in \mathbf{A} \rangle$, $\overline{t}(x_1, \dots, x_k) = f(t(g(x_1), \dots, g(x_k)))$

- **B** is an expansion of **A** (ie. $A \subseteq B$)
- $\blacktriangleright \mathbf{B} = \mathbf{A}^n$
- **B** is a subalgebra of **A** redundant
- ▶ $\mathbf{B} = \mathbf{A} / \sim$, where \sim is a congruence of \mathbf{A} redundant

Definition

B is a unary modification of **A** if $\exists f : A \to B$, $\exists g : B \to A$: **B** = $\langle \overline{t} : t \in \mathbf{A} \rangle$, $\overline{t}(x_1, \dots, x_k) = f(t(g(x_1), \dots, g(x_k)))$

- **B** is an expansion of **A** (ie. $A \subseteq B$)
- $\blacktriangleright \mathbf{B} = \mathbf{A}^n$
- **B** is a subalgebra of **A** redundant
- ▶ $\mathbf{B} = \mathbf{A} / \sim$, where \sim is a congruence of \mathbf{A} redundant

Definition

B is a unary modification of **A** if $\exists f : A \to B$, $\exists g : B \to A$: **B** = $\langle \overline{t} : t \in \mathbf{A} \rangle$, $\overline{t}(x_1, \dots, x_k) = f(t(g(x_1), \dots, g(x_k)))$

Observation

TFAE for ω -categorical

- \mathcal{B} is homomorphically equivalent to a pp-power of \mathcal{A}
- B is an expansion of a unary modification of a power of A (finite: equivalently g can be taken injective)

Definition

- $\xi: \mathbf{A} \to \mathbf{B}$ is a weak clone homomorphism, if it
 - preserves arities
 - ▶ preserves composition with projections: $\xi(f(\pi_{l_1}, ..., \pi_{l_n})) = \xi(f)(\pi_{l_1}, ..., \pi_{l_n})$, where $f \in \mathbf{A}$ is *n*-ary

Alternatively: ξ -images satisfy the same strongly linear identities (=height 1 terms on both sides)

Theorem

TFAE if A, B are finite: 1. \mathcal{B} is homo equivalent to a pp-power of \mathcal{A} $\mathcal{A}^{pp-power} \mathcal{E}^{homo-eq} \mathcal{B}$ 2. **B** is expansion of a unary modification of a power of **A** $\mathbf{A} \sim \mathbf{A}^{n} \xrightarrow{unary \mod} \mathbf{D} \xrightarrow{expansion} \mathbf{B}$

3. There exists a weak clone homomorphisms $\xi : \mathbf{A} \to \mathbf{B}$

Assume $\xi : \mathbf{A} \to \mathbf{B}$ is a clone homomorphism. Want:

$$\mathbf{A} \rightsquigarrow \mathbf{A}^n \stackrel{\text{shrink}}{\leadsto} \mathbf{D} \stackrel{\text{expansion}}{\leadsto} \mathbf{B}$$

Say
$$B = \{b_1, \dots, b_k\}$$

 $n = A^k$

- C = k-ary operations in **A**
- D = the clone generated by $\xi(A)$
- Define $f : A^k \to B$ by $t \mapsto \xi(t)(b_1, \ldots, b_k)$ on C, otherwise arbitrary
- Define $g: B \to A^k$ by $b_i \mapsto \pi_i$
- **D** is the unary modification of \mathbf{A}^k given by f, g since $\overline{t} = \xi(t)$

Conjecture (Bulatov, Jeavons, Krokhin; Barto, Kozik)

Assume A finite. TFAE

- CSP(A) in P
- ▶ A contains an operation t of arity ≥ 2 such that

$$t(x_1, x_2, \ldots, x_n) = t(x_2, \ldots, x_n, x_1)$$

Reality can be worse

Future theorem (Anna Kozik, Hermenegilda Pinsker 2059)

- Assume A finite. TFAE
 - ▶ CSP(A) in P
 - A contains an operations t_1, t_2, \ldots such that

$$t_1(x_3, x_1, x_2, x_2) = t_2(x_3, x_3, x_1)$$

$$t_{20}(x_1, x_1, x_2) = t_{13}(x_2, x_1)$$

...but certainly the characterization looks like this (for any complexity class)

Theorem

TFAE if $\mathcal{A}, \mathcal{B} \ \omega$ -categorical.

- 1. ${\mathcal B}$ is homo equivalent to a pp-power of ${\mathcal A}$
- 2. B is expansion of a unary modification of a power of ${\bf A}$

And these conditions are implied by

3 There exists continuous $\xi : \mathbf{A} \to \mathbf{B}$ which preserves arities and

 $\xi(\alpha(t(\beta_1,\ldots\beta_n)))=\xi(\alpha)\xi(t)(\xi(\beta_1),\ldots,\xi(\beta_n))$

where $f \in \mathbf{A}$ is n-ary, and $\alpha, \beta_i \in \mathbf{A}$ are unary bijections.

Remember: The complexity of CSP(A) for finite A depends only on linear identities satisfied by **A**

Remember: The complexity of CSP(A) for finite *A* depends only on linear identities satisfied by **A**

To do:

Can we use it?

Remember: The complexity of $CSP(\mathcal{A})$ for finite \mathcal{A} depends only on linear identities satisfied by **A**

To do:

- Can we use it?
- Improve the 3 views theorem for infinite domains

Remember: The complexity of $CSP(\mathcal{A})$ for finite \mathcal{A} depends only on linear identities satisfied by **A**

To do:

- Can we use it?
- Improve the 3 views theorem for infinite domains

▶ Basic reductions → preoder such that
 A ≤ B then CSP(A) is easier then CSP(B)
 Can we find some more reductions?
 Optimally characterizing log-space reduction (optimistic)

Remember: The complexity of $CSP(\mathcal{A})$ for finite \mathcal{A} depends only on linear identities satisfied by **A**

To do:

- Can we use it?
- Improve the 3 views theorem for infinite domains

▶ Basic reductions → preoder such that
 A ≤ B then CSP(A) is easier then CSP(B)
 Can we find some more reductions?
 Optimally characterizing log-space reduction (optimistic)

Thank you!